安川变频器培训教材-讲义

合集下载

Yaskawa培训讲义

Yaskawa培训讲义
运动控制。
多功能、高灵活性
配备多种末端执行器和传感器,可 适应不同工艺需求,实现一机多用 。
易于集成
提供丰富的通信接口和软件开发工 具,方便与周边设备和上位系统集 成。
HC系列协作机器人
安全可靠
采用轻量化设计和碰撞检 测技术,确保人机协作过 程中的安全性。
易于编程
提供直观易用的编程软件 ,支持拖拽式编程和图形 化界面,降低使用门槛。
高度灵活
具有多种安装方式和工作 空间配置选项,可适应不 同场景的协作需求。
其他特色工业机器人产品
焊接机器人
具备高精度焊接和智能化焊接管理功能,提高焊 接质量和效率。
喷涂机器人
可实现复杂形状工件的均匀喷涂和高效表面处理 。
装配机器人
适用于精密装配和自动化生产线,提高生产效率 和产品质量。
选型指南与案例分析
排除故障
根据故障诊断结果,采取相应的维修 措施,恢复系统正常运行。
预防性维护
通过对历史故障数据的分析,提前发 现潜在故障并采取措施。
05
工业机器人应用案例 分享
汽车制造行业应用案例
1 2 3
焊接应用
Yaskawa工业机器人在汽车制造中广泛应用于焊 接工艺,包括点焊、弧焊等,提高了焊接质量和 效率。
扩张与全球化
公司不断在全球范围内拓展业务,设 立多个研发中心和生产基地,以满足 全球客户的需求。
发展历程
经过一个多世纪的发展,Yaskawa逐 渐在工业自动化领域崭露头角,成为 全球领先的驱动器和运动控制器供应 商。
主营业务及产品线
主营业务
Yaskawa主要致力于提供工业自 动化解决方案,包括伺服系统、 变频器、运动控制器等产品的研
学习Yaskawa机器人编程语言,掌握基本操 作和调试技巧。

安川变频器培训资料

安川变频器培训资料

自动化系统的概述
1 2 3
自动化系统定义
自动化系统是指通过各种控制设备和自动化装置 ,使生产过程中的各种参数自动控制、调节和管 理,以达到预定的目标。
自动化系统组成
自动化系统通常由传感器、控制器、执行器、人 机界面等动化系统应用领域
自动化系统广泛应用于工业、农业、军事、交通 、医疗等领域,提高生产效率,降低能耗和人力 成本。
安川变频器在自动化系统中的选型原则
根据负载类型选择
01
根据自动化系统中的负载类型,如电动机、传送带、泵等,选
择合适的安川变频器型号。
根据控制精度选择
02
根据自动化系统对控制精度的要求,选择具有相应控制精度和
调节范围的安川变频器。
根据运行环境选择
03
考虑自动化系统的运行环境,如温度、湿度、振动等,选择能
变频器型号
安川变频器的型号非常丰富,包括Σ-V系列、Σ-II系列、Σ-III系列、Σ-IV系列、 Σ-VII系列等。每个系列都有各自的特点和适用范围,用户可以根据实际需求选 择合适的型号。
安川变频器应用领域
工业自动化
安川变频器广泛应用于各种工业自动化领域,如机械加工 、装配、包装等,能够实现高精度、高效率的自动化生产 。
够在恶劣环境下稳定运行的安川变频器。
安川变频器在自动化系统中的典型应用案例
01
02
03
电机速度控制
通过安川变频器调节电机 速度,实现对自动化系统 中各种设备的精确控制。
物料输送控制
利用安川变频器对传送带 、泵等设备的速度进行调 节,实现物料的稳定输送 。
温度和压力控制
通过安川变频器对加热炉 、反应釜等设备的温度和 压力进行精确控制,提高 产品质量和生产效率。

安川变频器培训课件

安川变频器培训课件

ABCD
检查电缆和连接
定期检查电缆和连接是否完好,如有损坏应及时 更换或修复。
记录运行数据
记录变频器的运行数据,如输入电压、输出电流 、运行温度等,以便及时发现异常情况。
变频器的维修与保养
维修流程
如变频器出现故障,应按照规定的流程 进行维修,不可随意拆卸或改动电路。
保养周期
变频器的保养周期应根据使用环境和 运行情况来确定,一般建议每半年进
THANKS
感谢观看
行一次保养。
更换元件
如变频器内部元件损坏,应选用相同 规格的元件进行更换,不可随意使用 其他规格的元件。
维修与保养记录
每次维修与保养都应做好记录,以便 跟踪和管理。
05
安川变频器的案例分 析
案例一:安川变频器在电梯控制系统中的应用
总结词
高效稳定、节能环保
详细描述
安川变频器在电梯控制系统中表现出高效稳定和节能环保的特点。通过精确控 制电机速度,实现平稳舒适的乘坐体验;同时降低能耗,减少对环境的负担。
பைடு நூலகம்
安川变频器的控制方式
安川变频器的控制方式主要包括V/F 控制、矢量控制和直接转矩控制等。
矢量控制是通过模拟电机的磁通和转 矩分量来控制电机的转矩和速度,具 有更高的动态响应和控制精度。
V/F控制是通过改变电源频率(V)和 电压(F)来控制电机的转速和转矩 ,适用于一般通用电机。
直接转矩控制是通过直接控制电机的 转矩来调节转速,具有快速响应和良 好的静态性能。
02
安川变频器的工作原 理
变频器的基本原理
变频器是一种电力电子装置, 通过改变电机输入电源的频率 来调节电机的转速和转矩。
变频器的基本原理基于电力电 子技术和微处理器控制技术, 通过改变电源频率实现对电机 速度的精确控制。

变频器基础知识培训课件

变频器基础知识培训课件

变频器基础知识培训课件目录一、变频器概述 (2)1.1 变频器的定义 (2)1.2 变频器的发展历程 (3)1.3 变频器在现代工业中的应用 (4)二、变频器工作原理 (5)2.1 交流变频器的基本原理 (6)2.2 变频器主电路分析 (8)2.3 变频器控制电路分析 (9)三、变频器主要参数 (10)3.1 输入输出参数 (11)3.2 功率与效率 (12)3.3 保护功能参数 (13)四、变频器选型与配置 (14)4.1 变频器选型原则 (16)4.2 变频器配置方法 (17)4.3 变频器安装与接线 (17)五、变频器操作与调试 (18)5.1 变频器基本操作步骤 (20)5.2 变频器参数设置 (21)5.3 变频器调试方法 (22)六、变频器常见故障及处理 (23)6.1 变频器故障诊断 (24)6.2 常见故障现象与处理 (25)6.3 故障排除案例分析 (26)七、变频器维护与保养 (27)7.1 变频器日常维护 (28)7.2 变频器定期检查 (29)7.3 变频器故障预防措施 (29)八、变频器高级应用 (30)8.1 变频器与PLC的结合 (31)8.2 变频器与变频器通信 (32)8.3 变频器在节能中的应用 (33)九、总结与展望 (35)9.1 变频器技术发展趋势 (36)9.2 变频器在工业自动化中的重要性 (37)9.3 培训总结与学员反馈 (38)一、变频器概述变频器,全称是交流变频调速器,是一种将固定频率的交流电源转换为可调频率的交流电源的电力调节装置。

其主要功能是对电动机的转速进行调节,以满足不同负载和工作环境的需求。

变频器的工作原理主要基于电力电子技术,通过改变输入电源的频率和电压,实现对电动机转速的调节。

变频器主要由以下几个部分组成:矢量控制变频器:具有较高的调速精度和动态性能,适用于对调速精度要求较高的场合;VF控制变频器:结构简单,成本较低,适用于对调速精度要求不高的场合;直接转矩控制变频器:具有较好的动态性能和抗干扰能力,适用于对调速性能要求较高的场合。

变频器技术培训资料(PPT33页)

变频器技术培训资料(PPT33页)
5
• 变频器 • 变频器是交流电气传动系统的一种,是将交流工频
电源转换成电压、频率均可 变的适合交流电机调 速的电力电子变换装置,英文简称VVVF ( Variable • Voltage Variable Frequency) • 变频器的控制对象 • 三相交流异步电机和三相交流同步电机
6
变频调速的优势
10
停车方式
减速停车 变频器接到停止命令后按照减速时间对应曲线逐渐减小输出频率,到0后停机。 注:这种方式最常用,当直流母线电压过高时会自动启动能耗制动,此时需 配置制动单元,否则会报减速过电压 自由停车 变频器接到运行停止命令后,立刻中止输出,负载靠自然阻力停止。 注:变频器故障时的停车方式就是自由停车 减速+直流制动停车 变频器接到运行停止命令后,按照减速时间对应曲线逐渐减少输出频率,当 到达某一预设频率,即开始直流制动(通脉冲直流)停车,防止电机爬行 注:对于大惯量负载或有定位要求的场合非常适用
– 民用场合,如:宾馆中央空调 – 电网品质恶劣或容量偏小的场合 – 如不选用可能会造成干扰、三相电流偏差大,变频器频繁炸机
• 以下情况要选用交流输出电抗器
– 变频器到电机线路超过100米(一般原则)
• 以下情况一般要选用制动单元和制动电阻
– 提升负载 – 频繁快速加减速 – 大惯量(自由停车需要1min以上,恒速运行电流小于加速电流的
熟较晚
• 模仿直流电机的控制方法,采用矢量坐标变换来实现对异 步电机定子励磁电流分量和转矩电流分量的解耦控制,保 持电机磁通的恒定,进而达到良好的 转矩控制性能,实现 高性能控制。性能优良,控制相同复杂
8
变频器控制算法

启动方式
功能说明
从启动频率启动 变频器输出由0直接变化为启动频率对应的交流电压,而后在此基础上按照 加速曲线逐步提高输出频率和输出电压直到设定频率到达。 注:启动频率不宜过大,否则会造成启动冲击或过流 先制动后从启动频率再启动 变频器先给电机通脉冲直流,使电机保持在停止状态,然后再按照从启动 频率方式直接启动。 注:一般应用在负载初始状态不确定的场合 转速跟踪启动 直接将正在自由旋转的电机或负载由当前速度驱动到预定速度 注:非常适用于水泵的工频变频切换或重要设备的异常停机后的快速恢复

变频器培训ppt课件

变频器培训ppt课件

变频器培训ppt课件xx年xx月xx日目录•变频器基本概念与原理•变频器硬件结构与组成•变频器参数设置与调试方法•变频器在工业生产中应用案例•变频器维护保养与故障排除•变频器选型与使用注意事项01变频器基本概念与原理定义调速控制节能降耗提高生产效率变频器定义及作用01020304变频器是一种电力控制设备,通过改变电源频率来控制交流电动机的转速和运行状态。

实现电动机的无级调速,满足不同负载和工艺要求。

通过优化电机运行效率,降低能源消耗。

实现自动化控制,提高生产线的稳定性和效率。

整流滤波逆变控制变频器工作原理将交流电转换为直流电,通常采用二极管整流桥或可控硅整流器。

将直流电逆变为交流电,通过控制逆变器的开关频率和占空比来调节输出电压和频率。

对整流后的直流电进行滤波处理,以消除谐波和减少电压波动。

采用微处理器或数字信号处理器(DSP)进行闭环控制,实现精确的转速和转矩控制。

电压型变频器通过改变输出电压的幅值来控制电动机的转速。

电流型变频器通过改变输出电流的幅值和相位来控制电动机的转速。

•直接转矩控制变频器:直接对电动机的转矩进行控制,实现快速响应和精确控制。

高效节能通过优化电机运行效率,降低能源消耗。

精确控制实现高精度的转速和转矩控制,满足复杂工艺要求。

宽调速范围适用于不同负载和转速要求的场合。

高可靠性采用先进的控制技术和优质元器件,确保设备长期稳定运行。

02变频器硬件结构与组成将交流电转换为直流电,通常采用三相桥式不可控整流电路。

整流电路滤波电路逆变电路平滑直流电压中的脉动成分,减小电压波动。

将直流电转换为频率和电压可调的交流电,通常采用三相桥式逆变电路。

030201主电路结构通常采用高性能微处理器或数字信号处理器(DSP ),实现复杂的控制算法和逻辑功能。

控制核心将控制信号转换为适合功率开关器件的驱动信号,保证开关器件的可靠导通和关断。

驱动电路实时监测主电路中的电压、电流等参数,为控制核心提供必要的反馈信号。

变频器知识培训PPT

变频器知识培训PPT

常见问题及故障处理
过压故障
引发变频器过电压故障的几个因素
4、变频器硬件问题引发的过电压 电压检测回路异常,导致过电压。 制动单元损坏、制动电阻烧断、制动电阻阻值选配不合适。 变频器逆变单元出现故障引发的过电压故障。
常见问题及故障处理
欠电压故障
通常变频器报欠电压故障,由网侧电压波动引发居多 交流电网电压偏低。 交流进线缺相、比如某一相快熔熔断。
变频器一般参数设置
参数 5 数字输入/输出
5-10 端子 18 数字输入 [8] 开始 针对启动/停止命令选择启动。
5-11 端子 19 数字输入 [10] 反向 更改电机主轴的旋转方向。选择逻辑 1 执行反向。反向信号只更改旋转方向。它并 不激活启动功能。
5-12 端子 27 数字输入 [2]惯性停车 电机保持自由运动模式。
6-60 端子 X30/8 输出 选项和功能与参数参数 6-50端子42输出同。
变频器一般参数设置
参数 14 特殊功能
14-22 工作模式 [2] 初始化 将所有参数值都复位为默认设置, 变频器将在下一次上电期间复位。参数 14-22 工作模式也会恢复为 默认设置。
14-52 风扇控制 [0]自动 如果选择 [0] 自动 ,则仅当变频器内部温度介于35 °C到大 约55 °C的范围内时,风扇才会运行。 [1] 启动 50%。 [2] 启动 75%。 [3] 启动 100%。
3、变频器启动初期正常,但在加速过程中报出过电流 其主要原因则多集中在变频器加速时间设置过短、电动机额定电流值设置于实际不符偏小,转矩补 偿)设定较高等参数设置欠妥上。
常见问题及故障处理
过压故障
引发变频器过电压故障的几个因素
1 、 设计选型不当引发的过电压问题 变频器输出侧电缆超出变频器允许长度,由于电缆分布电容的影响,电压反射造成变频器过电压。 变频器输出侧选配了不合适的滤波器件, 导致变频器过电压。 2、 调试不当引发的过电压问题 电机减速时间设定过短,导致过电压(多见于负载惯量大的设备上)。 大功率通风机运行中,管道阀门突然变化情况,导致变频器过电压。 电机名牌数据设置不正确,也可能导致过电压。

安川G5G7维修培训

安川G5G7维修培训
安川G5G7维修培训
2) V/f控制方式的缺点
① 在低频时,由于V较小,定子阻抗压降的分量 比较显著,不在能忽略。
② 当转矩增大到最大值以后,特性就向下弯了。 ③ 最大转矩随着f的降低而减少。
尽管可以采取低频补偿措施,但通常认为V/F 控制的下限频率应不小于0.3HZ.
安川G5G7维修培训
3)矢量控制
此时随着速度的不断升高,电机输出 转矩是在逐渐减小的。
安川G5G7维修培训
3)特性曲线
安川G5G7维修培训
3.V/f、矢量控制调速原理
安川G5G7维修培训
1)V/f控制基本实现方法 PWM脉冲宽度调制方法(Pulse width Modulation)
利用参考电压U与载频三角波U互相比较,来决 定主功率器件的导通时间,实现调压。脉冲宽度调制 是利用相当于基波分量的信号波对三角载波进行调制 ,达到调节输出脉冲度的一种方法。
安川G5G7维修培训
一.变频器的基本原理
安川G5G7维修培训
1.步电动机的调速原理
异步电机的轴转速为:
n=60×f1×(1- S)/p f1 -----定子频率 S -----异步电动机转差率 p -----磁极对数
可见,改变电动机定子侧供电电源频率,即可改变其同步转速,实现级 调速的目的。 异步电机调速时,希望尽量保持主磁通Øm不变:
安川G5G7维修培训
控制模式 控制模式
速度检出器 速度检出器 Option 速度控制范围 启动转矩 速度控制精度 转矩控制 适用用途
5)四种控制模式的特点
v/f控制
带PG v/f控制
开环矢量控制
闭环矢量控制
电压/频率控制 (Open loop)
不要
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精品
安川变频器培训教材
培训大纲
变频器内部结构介绍 变频器的工作原理 数字操作器的操作方法 变频器模式的种类及参数的构成 常用参数的介绍 变频器主要故障介绍 变频器在使用中的注意事项

变频器内部结构介绍
发 板
PG卡
通讯板
主控板
数字操作器 电源端子板
驱动器内部各线路板的功能
PG卡:把测速编码器的信号转化为驱动器可识别的信号. 完成电机速度信号的反馈.
手操器的操作方法
变频器模式的种类
驱动模式:是变频器可运行的模式。进行频率指令、输 出电流等的监视显示,故障内容显示、故障记录显示等。
QUICK程序模式:进行变频器运行最低限所必要的参数 的参照、设定。
ADVANCED程序模式:进行变频器全部参数的参照、 设定。
效验模式:进行与出场设定值不同的参数的读取设定。 自学习模式:用矢量控制模式运行不知道参数的电机时,
变频器在使用中的注意事项(3)
控制回路易损件有:保险、控制变压器、风扇、 接触器、吸收电阻等。
主控板内存储全部变频器的应用参数。所以,更 换前一定先下载备份。
如果主控板内部有两台电机的参数,校对时第二 台电机的参数有部分不能显示出来,需要在程序 中进行切换。
PG卡损坏一般是外部PG电源线接错造成。
变频器主要故障与对策(1)
变频器主要故障与对策(2)Biblioteka 变频器主要故障与对策(3)
变频器主要故障与对策(4)
变频器在使用中的注意事项(1)
变频器主回路中有保险、IGBT、驱动板、PG卡。 保险一般在外围线路对地短路,电机绕组间绝缘
很低时会造成,直流母线因通过内部二极管形成 环路对地或直流母线对输出之间短路。 如果在静态时发生电机绕组短路现象,则变频器 在启动时有可靠保护,并将故障原因报出。 动态时,尤其在电机高速运转时发生上述短路现 象,则变频器保护IGBT的作用减少很多,因为 信号处理需要时间,此时IGBT可能已经损坏。
通迅板:主要功能是进行驱动器与PLC的CPU之间通迅 信号的转换.以便驱动器与PLC之间能进行信号传输.
主控板:主要进行驱动器各种信号的集中处理,储存驱 动器的各种参数.
手操器:驱动器外部参数输入的操作面板和各种参数的 显视面板.在驱动器出现故障时,显示故障代码和名称.
触发板:供给驱动器内部各线路板的工作电源和IGBT的 触发极电源.
变频器在使用中的注意事项(2)
IGBT的开关频率很高,动态响应很快,外围发 生短路时电流冲击很大。虽然变频器有完善的检 测电路,但因受IGBT开关频率高的影响,控制 回路送来的关断信号一般会有一段时间的延迟。 所以,IGBT在动态电机高速时很难进行关断性 保护。
驱动板与IGBT有电气连接,一旦IGBT发生短路, 高压信号会通过G极和C极的短路引导驱动板上, 损坏内部元件。所以,IGBT损坏,驱动板同时 更换。
易水寒江雪敬奉 Thanks
Thanks
自动计算、设定电机的参数。也可只测定电机线间电阻。
变频器模式的切换
变频器参数的构成
A:环境设定。 C:调整。 E:电机参数。 H:选择端子功能。 N:特殊调整。 T:电机的自学习。
B:应用。 D:指令。 F:选择件。 L:保护功能。 O:操作器关系。 U:监视。
常用参数的介绍
A1-02(控制模式)。选择“3”是带PG矢量控制。 A1-01(参数的存取等级)。 A1-04(密码)。 A1-05(设定密码)。 B1-01(选择频率指令)。 B1-02(选择运行指令)。 O2-01(本地/远程键的功能)。 O3-01(拷贝功能的选择)。
变频器的工作原理
变频器主要有“整流”和“逆变”两部分。 变频器送电后2~3秒后电压上升到80%,INV内
部的M接触器吸合。
整流后的直流电压为:Vac=1.35X460V=760V. 吊具下降时,吊具处于发电状态,通过并联在
IGBT旁的二极管桥式整流,使直流电压升高, 再通过DBU消耗。 Master DBU作为检测,Master和Slave同时执行。 变频器只能消耗20%的反馈电压,80%需要通过 DBR消耗。
相关文档
最新文档