接触问题的非线性有限元分析
基于有限元的滚动轴承非线性接触分析

麓 翳
基 于 有 限元 的 滚 动 轴 承 非 线 性 接 触 分析
崔 波 程 珩
太原 00 2 ) 3 0 4 ( 原理工大学 机 械电子工程研 究所 山西 太
摘
要: 基于有 限元 分析软件A ss NY ,对滚 动轴承进 行非 线性接触 分析 ,得到其 受载过程 中的应 力和应 变分布情 况 将 计算结 果同赫 兹解 比较 ,二者较 为接
式 中, :00 3 3 . 6 p, 2
、
y是接 触 区尺寸 ,可 通过 图 表查 出 。对于轴 承钢 可 取值 为 l 。
赫 兹接触 应 力计算 式 表述 如下 : 最 大赫兹 接触 应 力:
p一
考
=
⑤
图1 边 界条件 及 加载模 型 3 4 非线性 有 限元 求解结 果分 析
cn at 7单 元 。 ot c 14
其 中 为接触 体 的 主 曲率 ,分 别 为半 径 , h,听2 , 对于轴 承沟 道 的凸面 取正 值 ,凹面 取 负值 。
3 3 施 加边界 条件 及载 荷 .
根 据赫 兹接 触理 论 ,接触 面椭 圆的 长 半轴瘌 短半 轴b 算式为 ; 计 a e£ 1E ③ , b=
本 文 网格划 分 采用 8 节点 离散 三维 实 体单元 s ld5 o i4 。轴承 的 内外 圈采 用 L IE S Z 定义线 长 ,扫略 生成 网格 ;滚 动体 不能 直接 扫略 生成 网格 ,处理 方
法 是 : 中 问 和 两边 的球 体 分 别通 过 球 心 切 分 为 形状 大 小 相 同 的 四份 和 两 份 , 定义 各 自的源 面 和 目标 面扫 略分 网,这 样 能获得 比通过 直接 自由划 分 的 方法 较 为均 匀 的网 格 。同 时为 了节 省 资源 和提 高计 算 精度 ,采 用接 触 部 位 细 化 网 格 的 方 法 。划 分完 网格 后 模 型 共 有 40 5 单元 ,46 5 节 点 5 5个 96 个
非线性有限元 第5章接触问题的非线性问题

PAi PBi
(i= x , y , z )
(5.8) (5.9)
Az Bz 0 z
Ai Bi
(i= x , y )
同时要满足沿接触面的切平面方向不滑动的条件:
PBz 0 和 PB2x PB2y f PBz
以上式中, 0 z 是接触面在 z 方向的初始间隙,f 是接触面之间的滑动摩擦系数。 (2) 滑动接触条件
Q
向接触力是不可逆的。 因此,凡是考虑接触面切向摩擦力的接触问题,都应当按复杂加载过程来研究,即通过 增量的方式求解。对于不考虑摩擦的可逆过程,是一种简单加载过程,可以一步加载完成求 解。 5.3 弹性接触问题有限元基本方程和柔度法求解 假设 A、B 是相互接触的两个物体,为了研究的方便,将它们分开,代之以接触力 PA B 和 P ,如图 5.4 所示。然后建立各自的有限元支配方程:
K 2δ 2 R2
(5.2)
再由式(5.2)解得δ 2 ,进一步计算接触力 P2 ,将δ 2 和 P2 代入接触条件,验算接触条件是
否满足。这样不断的迭代循环,直至δ n 和 Pn 满足接触条件为止,此时得到的解答就是真实 接触状态下的解答。 在以上的研究中, 没有考虑接触面的摩擦力。 不考虑摩擦力的接触过程是一种可逆的过 程,即最终结果与加载途径无关。此时,只需要进行一次加载,就能得到最终稳定的解。如 果考虑接触面的摩擦力,接触过程就是不可逆的,必须采用增量加载的方法进行接触分析。 1973 年,Tusta 和 Yamaji 的文章详细讨论了接触过程的可逆性和不可逆性。 从 Wilson 和 Parsons 的方法可看出, 每一次接触状态的改变, 都要重新形成整体劲度矩 阵,求解全部的支配方程,既占内存,又费机时。实际上,接触状态的改变是局部的,只有 与接触区域有关的一小部分需要变动,为此又提出一些改进的方法。 1975 年, Francavilla 和 Zienkiewicz 提出相对简单的柔度法。 图 5.1 示出两个相互接触的物体 A 和 B,假定 A 上有外力 R 作用,B 有固定边界。接触面作用在 A 上的接触力是 PJ ,作用在 B 上的接 触力是 PJ ,对于二维问题,
桩-土-桩相互作用有限元接触分析

桩-土-桩相互作用有限元接触分析摘要:桩土体作为一个共同工作的系统,广泛存在于土木工程实践中,是典型的接触问题之一,对桩-土-桩相互作用的研究也是工程十分关心的,其中桩身摩阻力的分布更是关键所在。
本文基于有限元数值分析方法软件对此进行了深入研究。
关键词:有限单元法;接触非线性;桩土相互作用;桩侧摩阻力中图分类号:TU43 文献标识码:A 文章编号:1006-4311(2010)11-0108-020 引言桩土相互作用问题的实质是固体力学中不同介质的接触问题,具体表现为材料非线性、接触非线性等。
目前,有限单元法是解决复杂空间结构静、动力问题、弹塑性问题最有效的数值方法之一。
本文对桩土相互作用中接触问题进行分析时主要采用接触非线性有限元法,利用ABAQUS有限元软件进行研究。
1 ABAQUS软件概述ABAQUS是功能强大的有限元法软件[1,2],提供了广泛的功能且使用起来十分简明。
对于非线性分析,ABAQUS能自动选择合适的荷载增量和收敛精度,且拥有十分丰富的、可模拟任意实际形状的单元库。
2 ABAQUS桩土接触分析中需解决的问题2.1 单元类型的选择在接触模拟中采用二阶单元会引起接触面上等效节点力的计算出现混淆,因此接触面两侧的单元一般不宜采用二阶单元,只能采用线性单元。
2.2 主从接触面的建立可以通过定义接触面(surface)来模拟接触问题,本文所涉及的桩土体之间的接触面主要有两类:①桩侧单元构成的柔性接触面(桩侧土体表面)或刚性接触面(桩表面);②桩底土体一般采用节点构成的接触面,选取桩底土体节点时,不包含己定义在柔性接触面上的节点。
在模拟过程中,接触方向总是主面的法线方向,从面上的节点不会穿越主面,但主面上的节点可以穿越从面。
一般遵循以下原则:①应选择刚度较大的面作为主面,对于刚度相似的两个面,应选择网格较粗的面作为主面;②主面不能是由节点构成的面,并且必须是连续的;③如果接触面在发生接触的部位有很大的凹角或尖角,应该将其分别定义为两个面;④如果两个接触面之间的相对滑动小于接触面单元尺寸的20%,选用小滑动,否则选用有限滑动。
有限元非线性分析

下表简要列出了线性和非线性有限元分析之间的主要不同。关于荷载-位移关系、应力-应变关系、应力-应变度量 等主要不同将在本章详细介绍。
序号 1.
特征 荷载-位移关系
2.
应力-应变关系
3.
比例缩放
4.
线性叠加
5.
可逆性
6.
求解序列
7.
计算时间
8.
用户与软件的交互
13.3 非线性的类型
2)对数应变和真实应力 对数应变/自然应变/真实应变是度量大应变的方法,计算公式如下:
它是非线性应变的度量,因此是关于最终长度的非线性函数。与线性应变相比,对数应变(或真实应变)是可加
的。考虑一个初始长度为1m的杆经过下面3步的变形: 第1步: 从1m 变形至1.2m 第2步:从1.2m 变形至1.5m 第3步:从1.5m变形至2m 在下表中我们比较了工程应变和真实应变。可以清楚地看到,只有真实应变是可加的,因此在非线性分析中应该
13.6 非线性静力分析的一般流程
一个典型的非线性静力分析项目需要以下步骤:
网格划分:有限元模型的创建是有限元分析一个非常重要的步骤,不论进行什么样的分析。在第4-7章已经讨论过对 于某些应用的如何选择适当的单元类型。FEA小组会得到零件的几何数据,需要对这些几何进行网格划分以得到零件 网格。当装配中所有的零件划分网格后,使用适当的连接单元把它们都连接在一起如CWELD或CBUSH。一般来说, 四边形单元和六面体单元优于三角形单元、楔形单元和四面体单元。应该注意模型中的关键特征,比如圆角、孔和倒 角。如果在两个平行表面之间有紧固件或焊接,应该尽量在两个面上创建相似的网格。这将有助于焊接单元或刚性单 元垂直于表面而不破坏壳单元。然而,许多有限元分析(FEA)代码支持不依赖于节点焊接,而是基于绑定接触。这 允许用户在两个焊接零件之间创建不依赖于节点的连接单元。建议首先对复杂零件进行网格划分,然后对简单或平面 几何进行网格划分以保证良好的单元质量。需要用适当的方式来模拟夹紧、铰接和焊接以在结构中正确地传递荷载。 为单元定义适当的刚度和预荷载以得到更高的精度。如果荷载从结构上的某个面传递到另一个面上,应该在两个面间 定义接触。每个FEA代码都有自己的接触参数输入格式。一个典型的接触定义需要主从节点或单元,摩擦系数,接触 面间的间隙和接触算法。
第18章接触问题有限元分析技术

第18章接触问题的有限元分析技术第1节基本知识接触问题是一种高度非线性行为,需要较大的计算资源,为了进行准确而有效的计算,理解问题的特性和建立合理的模型是很重要的。
接触问题存在两个较大的难点:其一,在求解问题之前,不知道接触区域,表面之间是接触或分开是未知的、突然变化的,这些随载荷、材料、边界条件和其它因素而定;其二,大多数的接触问题需要计算摩擦,有几种摩擦和模型可供挑选,它们都是非线性的,摩擦使问题的收敛性变得困难。
一、接触问题分类接触问题分为两种基本类型:刚体─柔体的接触和半柔体─柔体的接触。
在刚体─柔体的接触问题中,接触面的一个或多个被当作刚体,(与它接触的变形体相比,有大得多的刚度),一般情况下,一种软材料和一种硬材料接触时,问题可以被假定为刚体─柔体的接触,许多金属成形问题归为此类接触;另一类,柔体─柔体的接触,是一种更普遍的类型,在这种情况下,两个接触体都是变形体(有近似的刚度)。
ANSYS支持三种接触方式:点─点、点─面和平面─面。
每种接触方式使用的接触单元适用于某类问题。
二、接触单元为了给接触问题建模,首先必须认识到模型中的哪些部分可能会相互接触,如果相互作用的其中之一是一点,模型的对立应组元是一个节点。
如果相互作用的其中之一是一个面,模型的对应组元是单元,例如梁单元,壳单元或实体单元。
有限元模型通过指定的接触单元来识别可能的接触匹对,接触单元是覆盖在分析模型接触面之上的一层单元。
下面分类详述ANSYS使用的接触单元和使用它们的过程。
1.点─点接触单元点─点接触单元主要用于模拟点─点的接触行为,为了使用点─点的接触单元,需要预先知道接触位置,这类接触问题只能适用于接触面之间有较小相对滑动的情况(即使在几何非线性情况下)。
如果两个面上的节点一一对应,相对滑动又以忽略不计,两个面挠度(转动)保持小量,那么可以用点─点的接触单元来求解面─面的接触问题,过盈装配问题是一个用点─点的接触单元来模拟面─与的接触问题的典型例子。
第8章 接触问题的有限元法

18
小滑动和有限滑动 当选用小滑动公式时,ABAQUS从模拟开始就
建立从属表面和主控表面的关系。ABAQUS确定主 控表面的哪个部分与从属表面的每一个节点发生关 系。这种关系在整个分析中保持不变。如果分析包 括几何非线性,小滑动公式需要考虑主控表面的任 何转动与变形对接触力的影响。如果不包括几何非 线性问题,可忽略主控表面的任何转动和变形,认 为加载路径是固定的。
一对接触面的法线方向应该相反,如果法线方向 错误,ABAQUS理解为过盈接触,因此无法收敛。
17
从属表面和主控表面
ABAQUS采用主控—从属接触算法:从属表面 的节点不能穿透主控表面的任何部分。这种算法对 主控表面没有限制,它可以穿透从属表面。为了获 得接触模拟的最好结果,必须认真和准确地定义从 属和主控表面:
力引起的等效节点力向量
和罚系数有关的矩阵
F 'k+1 = −Λ'T T N cd c − Λ'd '
整体坐标系下接触力等效节点力向量
对称阵 F k+1 = −(N c )T T Λ'T T N cd c − (N c )T T Λ'd '
F k+1 = −Kcd c + F̃ k+1 --系统的等效节点接触力向量
采用有限元法分析接触问题时,需要分别对接触 物体进行有限元网格剖分,并规定在初始接触面上, 两个物体对应节点的坐标位置相同,形成接触对。整 体和局部坐标系下,两个物体由于接触载荷引起的等 效节点力矢量分别记为
3
{ } F Ι = F1Ι , F2Ι , F3Ι T
机械设计中有限元分析的几个关键问题

机械设计中有限元分析的几个关键问题机械设计中有限元分析是一种重要的工程分析方法,通过对机械结构进行有限元分析,可以评估结构的强度、刚度、稳定性等性能,为设计提供依据,提高产品的可靠性和安全性。
在进行有限元分析时,有一些关键问题需要特别注意,本文将就机械设计中有限元分析的几个关键问题进行探讨。
一、材料特性的选择在进行有限元分析时,首先需要确定材料的特性,例如弹性模量、屈服强度、断裂韧性等参数。
这些参数的选择对于有限元分析结果的准确性有着重要的影响。
在实际工程中,材料的特性往往是不确定的,因此需要根据实际情况进行合理的选择。
对于复合材料等非均质材料,其材料特性更为复杂,需要进行更为精细的分析和计算。
二、网格的生成和质量有限元分析是通过将结构划分为有限个小单元来进行分析计算的,这些小单元即为网格单元。
网格的生成和质量直接关系到分析结果的准确性。
不合理的网格划分可能会导致计算结果的误差,甚至影响到整个分析的可靠性。
合理的网格生成和质量的控制是进行有限元分析时的关键问题之一。
三、边界条件的确定在进行有限元分析时,需要明确结构的边界条件,包括约束边界和加载边界。
边界条件的确定关系到分析结果的可靠性和准确性。
合理的边界条件能够更好地模拟实际工况,得到真实的分析结果。
不合理的边界条件可能导致分析结果的失真,甚至无法得到可靠的结论。
四、材料非线性和接触非线性在实际工程中,材料的行为往往是非线性的,包括弹塑性、损伤、断裂等。
在一些结构的分析中,考虑到接触的影响也需要考虑到接触非线性。
这些非线性因素对于分析结果有着重要的影响,需要在有限元分析中予以充分考虑。
五、模态分析和稳定性分析除了结构的强度和刚度等静态性能外,对于一些关键结构还需要进行模态分析和稳定性分析。
模态分析用于评估结构的振动特性,稳定性分析则用于评估结构在受到外部载荷时的稳定性。
这些分析对于确保机械结构的安全性和可靠性至关重要。
六、敏感性分析和可靠度分析在进行有限元分析时,还需要进行敏感性分析和可靠度分析。
橡胶O形密封圈的非线性有限元分析

收稿日期:2004-08-11作者简介:王伟(1971-),男,硕士,主要从事轮胎和橡胶制品结构有限元分析及其应用的研究1E 2mail:wdavid1@1631com 1橡胶O 形密封圈的非线性有限元分析王 伟 赵树高(青岛科技大学高分子科学与工程学院橡塑材料与工程教育部重点实验室 山东青岛266042)摘要:借助于大型非线性有限元分析软件M S C 1MARC,建立了橡胶O 形圈与沟槽接触的非线性有限元分析模型,分析了橡胶O 形圈在安装和使用中的接触变形、接触宽度和密封界面上的接触应力分布规律,从而为进一步可靠设计、优化橡胶O 形圈提供了理论依据。
关键词:橡胶O 形密封圈;接触问题;非线性有限元中图分类号:T Q33611 文献标识码:A 文章编号:0254-0150(2005)4-106-2Nonli n ear F i n ite Ele m ent Ana lysis of Rubber O 2sea li n g Ri n gW a ng W e i Zhao S hugao(Key Laborat ory of Rubber 2p lastics ofM inistry of Educati on,School of Poly mer Science &Engineering,Q ingdao University of Science &Technol ogy,Q ingdao 266042,China )Abstract:W ith the help of commercial nonlinear finite element analysis code,MSC .MARC,a nonlinear finite elementmodel for rubber O 2sealing ring and its groove were set up.The contact defor mation,contact width and the distributi on of contact stress within the sealing interface were discussed 1It puts for ward a theory base on designing and op ti m izing rubber O 2sealing ring .Keywords:rubber O 2sealing ring;contact p r oblem;nonlinear finite element 橡胶密封件广泛应用于机械设备中,其性能直接影响设备的正常工作,密封件失效有时甚至会引起重大事故。