硅钼蓝分光光度法二氧化硅曲线绘制
硅钼蓝分光光度法测定湿法磷酸中的二氧化硅

硅钼蓝分光光度法测定湿法磷酸中的二氧化硅硅钼蓝分光光度法是一种广泛应用于化学分析中的方法,特别适用于测定磷酸盐中的二氧化硅。
本文将介绍硅钼蓝分光光度法的原理、实验步骤和注意事项,以及其在湿法磷酸中测定二氧化硅的应用。
一、硅钼蓝分光光度法原理硅钼蓝是一种蓝色染料,它可以与磷酸盐中的二氧化硅形成复合物,形成的复合物在400nm附近有一个吸收峰。
通过测量这个吸收峰的强度,可以计算出样品中的二氧化硅含量。
二、实验步骤1. 样品制备:将待测样品称取一定量,加入适量的去离子水,用磁力搅拌器搅拌均匀,过滤掉杂质,取滤液备用。
2. 标准曲线制备:取一系列二氧化硅浓度不同的标准溶液,分别加入硅钼蓝试剂,测量吸光度,绘制标准曲线。
3. 光度计校准:将光度计调至400nm处,用去离子水进行零点校准。
4. 测定样品吸光度:将样品溶液加入硅钼蓝试剂,混合均匀,放置10分钟后,测量吸光度。
根据标准曲线,计算出样品中的二氧化硅含量。
三、注意事项1. 样品制备和测量过程中要注意洁净卫生,避免杂质的干扰。
2. 标准曲线制备时要注意标准溶液的准确浓度,以及试剂的使用量和混合均匀程度。
3. 测量样品吸光度时,要保证样品与试剂充分混合,并且放置时间要一致。
四、应用硅钼蓝分光光度法在湿法磷酸中测定二氧化硅的应用非常广泛。
湿法磷酸是一种重要的化学原料,在农业、化工、医药等领域都有广泛的应用。
其中,二氧化硅是湿法磷酸生产过程中的一个重要指标。
利用硅钼蓝分光光度法可以快速、准确地测定湿法磷酸中的二氧化硅含量,为生产和质量控制提供了可靠的依据。
总之,硅钼蓝分光光度法是一种简单、快速、准确的化学分析方法,特别适用于测定磷酸盐中的二氧化硅。
在湿法磷酸生产中,它具有重要的应用价值。
通过本文的介绍,相信读者已经对硅钼蓝分光光度法有了更深入的了解。
硅钼蓝分光光度法测定矿物中硅.

硅酸盐学报 7 卷1 期 . 0 8 . 口 6 . 0 8 哪米翻。
0 6 . 0 4 . 0 2 500 ・ 600 700 波长 ( 毫微米图 1 二氧化硅吸收曲线 1一以试剂作参比厘米液池 , 夕一以水作参 , . 0 5 比 , 2 厘米液池温度 ( 。
C } } 420 450 50 0 53 0 5 O 600 7 0 0 ~ 5 0 0 ( 5 分钟 ]0 00 ( 1 小时表 9 ............. ....... ... ......... ..... . . . . 温度( ’ C 口侧.. .. ... .. .. .. ... . … 0 0 。
0 0 0 0 0 。
0 0 0 0 0 一石榴子石 500 5 10 5 20 6 30 5O 。
0 0 0 0 0 0 。
0 0 0 0 0 0 。
0 0 0 0 0 0 i —咨 4 . 0 0 。
2 1 0 0 2 0 0 3 0 0 4 0 0 翻架 500 60 0 700 800 二氧化硅 (微克着粤揣粉漏图 2 二氧化硅标准曲线表 8不同熔剂对铂增塌的侵蚀情况铂损失量 ( 克克过氧化钠 0 0 0 2 克过氧化钠 O l 克焦硫酸钾 1 克碳酸钠。
0 0 0 1 0 0 0 0 1 。
0 0 0 1 0 0 0 0 1 。
.0 0 0 0 2 0 0 0 0 2 。
0 0 0 0 2 0 0 0 0 5 。
0 0 0 0 3 0 0 0 0 7 。
0 0 0 0 6 . 0 0 0 0 9 。
0 0 0 0 透 . . 过叙化钠于不同温度对硅酸盐矿物分解情况” 渣重 (克, } 云 0 母 0 1 黑云母。
透辉石。
0 0 0 0 0 0 角闪石 . 0 0 0 0 0 0 钠长石。
0 错英石。
0 0 0 0 0 5 . 0 0 0 0 0 0 0 0 2 0 0 0 0 0 。
硅钼蓝分光光度法测定石灰石及白云石中二氧化硅含量

硅钼蓝分光光度法测定石灰石及白云石中二氧化硅含量摘要试料用碳酸钠-硼酸混合溶剂熔融,稀盐酸浸取。
分取部分试液,在约0.15mol/L的盐酸介质中,钼酸铵与硅酸形成硅钼杂多酸,加入草酸-硫酸混合酸,消除磷、砷干扰,用硫酸亚铁铵将其还原为硅钼蓝,于分光光度计680nm处测量吸光度。
关键词石灰石白云石二氧化硅硅钼蓝分光光度法1引言二氧化硅是制造玻璃、石英玻璃、水玻璃、光导纤维、电子工业的重要部件、光学仪器、工艺品和耐火材料的原料,是科学研究的重要材料。
二氧化硅的分析方法较为成熟,主要有滴定法、重量法、硅钼蓝分光光度法、电感耦合等离子体原子发射光谱法(ICP-AES)、X射线荧光光谱法(XRF)、火花放电原子发射光谱法等。
其中重量法和分光光度法因理论成熟、操作简单、结果准确稳定等优点应用广泛。
2实验部分2.1主要仪器和试剂(1)SP-756P。
(2)混合溶剂:取两份无水碳酸钠与一份硼酸研磨,混匀。
(3)盐酸(1+5),盐酸(1+14),无水乙醇。
(4)钼酸铵溶液(60g/L),存储于塑料瓶中,必要时过滤后使用。
(5)草酸-硫酸混合酸:称取35g草酸(H2C2O4·2H2O),溶于1000mL硫酸(1+8)中。
(6)硫酸亚铁铵溶液(60g/L):称取6g硫酸亚铁铵[Fe(NH4)2(SO4)2·6H2O]溶于加有3滴~5滴硫酸(ρ=1.84g/mL)的水中,用水稀释至100mL。
用时配制。
(7)二氧化硅标准溶液:称取0.2500g高纯二氧化硅(不低于99.99%,称量前预先于950℃~1000℃灼烧30min并冷却至室温)于铂坩埚中,加3g混合溶剂,混匀,再覆盖1g混合溶剂。
盖上铂盖(留一缝隙),将铂坩埚置于950℃高温炉中熔融10min,取出,冷却至室温。
将铂坩埚和铂盖置于盛有100mL热水的聚四氟乙烯烧杯中,低温加热浸取熔块至溶液清亮。
用热水洗出铂坩埚及铂盖,冷却至室温。
将溶液移入500mL容量瓶中,用水稀释至刻度,混匀,立即转移至塑料瓶中贮存。
硅钼蓝光度法测定银精矿中二氧化硅含量

278管理及其他M anagement and other硅钼蓝光度法测定银精矿中二氧化硅含量胡续一,刘 磊(江西铜业集团贵溪冶炼厂,江西 贵溪 335424)摘 要:试料用氢氧化钠熔融,热水浸出。
在弱酸性溶液中,硅酸能与钼酸铵生成可溶性黄色硅钼杂多酸,被硫酸亚铁还原成硅钼蓝,于分光光度计波长650nm 处测定其吸光度,按标准曲线法计算二氧化硅的含量。
本方法适用于银精矿中二氧化硅量的测定,测定范围:1.00%~10.00%。
关键词:银精矿;二氧化硅;分光光度法中图分类号:P575.4 文献标识码:A 文章编号:11-5004(2020)14-0278-2收稿日期:2020-07作者简介:胡续一,女,生于1984年,汉族,辽宁新民人,本科,工业分析与检验工程师,研究方向:工业分析与检验。
银精矿是有色金属冶炼过程中的中间产品,二氧化硅的含量影响冶炼熔剂的配比,银精矿中二氧化硅含量在1%~10%之间,准确测定二氧化硅含量对冶金生产存在重要意义。
1 实验部分除非另有说明外,在分析中仅使用确认为分析纯的试剂和蒸馏水或去离子水。
1.1 试剂与仪器(1)盐酸(ρ=1.19g/mL)。
(2)盐酸(2mol/L)。
(3)草硫混酸:草酸(40g/L)与硫酸(4mol/L)按体积3+1混合。
(4)钼酸铵溶液(50g/L),过滤备用。
(5)硫酸亚铁铵溶液(60g/L):称取6g 硫酸亚铁铵溶于加有5mL 硫酸(1+1)的100mL 水中摇匀。
(6)二氧化硅标准溶液:准确称取0.0500g 二氧化硅(高纯)于预先置有无水碳酸钠的铂坩埚中,表面再覆盖一层无水碳酸钠,加盖于900℃马弗炉中熔融1小时,取出,然后用热水浸出,冷却,移入500mL 容量瓶中,用水定容。
移入塑料瓶中贮存,此溶液每毫升含二氧化硅0.1mg。
(7)岛津UV-1700,双光束分光光度计。
(8)比色皿:1cm。
1.2 实验方法称取0.1000g 试样于30mL 镍坩埚中,加3g 氢氧化钠,在电热板上加热蒸发水分,进700℃马弗炉熔融15分钟,使熔融物呈透明流体,取出稍冷,放入加有沸水的300mL 塑料杯中,浸取,洗净坩埚,在不断搅拌下一次加入20mL 盐酸使溶液清亮,冷却,移入200mL 容量瓶中,稀释至刻度,摇匀。
化验硅量方法--硅钼蓝吸光光度法

书山有路勤为径,学海无涯苦作舟化验硅量方法--硅钼蓝吸光光度法在弱酸性溶液中,硅酸与钼酸铵生成可溶性黄色钼杂多酸,此杂多酸能被硫酸亚铁还原成硅钼蓝,于吸光光度计波长650nm 或740nm 处测量吸光度。
其主要反应式如下:H4SiO4+12H2Mo4H8[Si(MO2O7)6]+10H2OH8[Si(MO2O7)6]+4FeSO4H8[SiMO2O5(MO2O7)5]+2Fe2(SO4)3+2H2O本方法适用于矿石中10%以下二氧化硅量的测定。
一、试剂及配制1、混比熔剂:2 份无水碳酸钠与1 份硼酸研细混匀。
2、钼酸铵(100g/L):称取50g 钼酸铵于500ml 沸水中。
3、还原液:12.5g 硫酸亚铁铵,16.2g 草酸,1g 抗坏血酸,67.5ml 硫酸溶于740ml 水中。
4、二氧化硅标准贮存溶液:准确称取0.1000g 二氧化硅(高纯)于铂坩锅中,加入5g 混合熔剂,混匀,表面再覆盖2g 熔剂,加盖于900~950℃马弗炉中,熔融1 小时,取出,冷却后,置于聚四氟乙烯烧杯中加水溶解,待溶液澄清后移入1000ml 容量瓶中,用水定容。
移入塑料瓶中贮存。
此溶液含二氧化硅100μg/ml。
5、二氧化硅标准溶液;准确移取50.00ml 二氧化硅标准贮存溶液于500ml 容量瓶中,用水定容。
移入塑料瓶中贮存。
此溶液含二氧化硅10μg/ml。
二、分析步骤⑴碱熔法:称取0.1000g~0.5000g 试样于银坩锅中,加入4g 氢氧化钾,置于己升温至700℃的马弗炉中熔融40min,待试样熔融完全后,取下,冷却,置于聚四氟乙烯烧杯中,用盐酸(1+6)浸取熔块,使其澄清,以稀盐酸及水洗净。
二氧化硅的测定(钼蓝光度法)

矿石中二氧化硅的测定硅钼蓝光度法方法提要在0.1~0.3mol/LHCl介质中,硅酸要离子与钼酸铵生成黄色的硅钼酸配合物。
当提高溶液的酸度为0.6~1mol/L时,加入钼蓝色显色剂,使成硅钼蓝进行测定。
硅钼蓝的颜色至少可稳定8h。
溶液的酸度和温度对硅钼黄显色影响较大。
酸度过高,显色不完全;酸度过低,显色速度减慢。
温度以20~30℃为宜,5~10min即显色完全。
本法适用于含量0.05%~4%二氧化硅的测定。
仪器分光光度计。
试剂氢氧化钠。
盐酸。
乙醇。
钼酸铵溶液(100g/L)称取10g(NH4)2MoO4溶于80mL水,倾入盛有20mL3mol/LH2SO4的容器中。
钼蓝显色剂溶液称取20g草酸、15g硫酸亚铁铵,溶于1000mL3mol/LH2SO4中。
二氧化硅标准溶液ρ(SiO2)=100μg/mL 称取0.1000g优级纯二氧化硅,置于铂坩埚中,加入2.5~3g无水NaCO3,搅匀,于950~1000℃熔融20~30min,取出,用400mL水加热提取,冷却后移入1000mL容量瓶中,迅速用水稀释至刻度,摇匀。
将溶液立即倒入干燥塑料瓶中备用。
此溶液一个月内有效。
标准曲线移取0.00mL、0.50mL、1.00mL、2.00 mL、3.00 mL、4.00 mL、5.00mL二氧化硅标准溶液(100μg/mL),置于100mL容量瓶中,加100mL乙醇,用水稀释至约30mL,加5mL(5+95)HCl、2.5mL(NH4)2MoO4溶液,加1滴0.004mol/LKMnO4溶液,放置10~20min(放置时间应根据室温而定。
低于20℃时,放置20min;20~30℃时,放置5~10min;30℃以上放置时间不能超过5min)。
加入20mL钼蓝显色剂溶液,立即摇匀,用水稀释至刻度,摇匀。
5min后在分光光度计上,用试剂空白作参比,于波长600nm处测量吸光度。
绘制校准曲线。
分析步骤称取0.2000g试样,置于银坩埚中,加数滴乙醇润湿,加入约1.5g粒状NaOH,于650~700℃熔融10min,取出,冷却。
硅钼蓝分光光度法二氧化硅曲线绘制

硅钼蓝分光光度法二氧化硅曲线绘制硅钼蓝分光光度法二氧化硅曲线绘制一、背景介绍硅钼蓝分光光度法是一种用于测定物质浓度的常用方法,该方法利用硅钼蓝在碱性溶液中与物质产生显色反应,通过测定显色溶液在特定波长处的光吸收程度来确定物质浓度的方法。
而对于二氧化硅的测定,通过该方法可以绘制出二氧化硅曲线,从而实现对二氧化硅浓度的准确测定。
二、硅钼蓝分光光度法原理硅钼蓝在碱性溶液中与物质发生显色反应后,形成的显色物质在特定光波长处吸收光线的特性被用来测定物质的浓度。
通过在不同浓度下对显色后的溶液进行测定,绘制出吸光度与浓度的标准曲线,从而实现对未知浓度的物质进行测定。
三、硅钼蓝分光光度法二氧化硅曲线绘制步骤1. 准备工作在使用硅钼蓝分光光度法绘制二氧化硅曲线之前,需要准备好所需的试剂和实验器材,如硅钼蓝、碱性溶液、标准二氧化硅溶液、吸光度计等。
2. 样品处理将待测的二氧化硅样品与碱性溶液进行显色反应处理,得到显色后的溶液作为测定样品。
3. 绘制标准曲线分别以不同浓度的标准二氧化硅溶液进行相同的显色处理,测定各个浓度下显色后溶液的光吸收度,绘制出吸光度与浓度的标准曲线。
4. 测试待测样品使用同样的方式处理待测的二氧化硅样品,并测定其显色后溶液的光吸收度,利用标准曲线可以得出待测样品的二氧化硅含量。
四、个人观点和理解硅钼蓝分光光度法二氧化硅曲线绘制是一种简便、快速、准确的测定方法,特别适用于实验室中对二氧化硅含量进行测定的场合。
通过绘制标准曲线,可以根据待测样品的光吸收度快速得出其浓度,提高了工作效率和准确度。
总结回顾硅钼蓝分光光度法作为一种测定物质浓度的方法,广泛应用于实验室和工业生产中。
而对于二氧化硅的测定,通过该方法绘制出的二氧化硅曲线,不仅可以准确测定其含量,也为了解样品性质和质量提供了重要参考。
通过本次文章的撰写,不仅对硅钼蓝分光光度法的原理和应用有了更加深入的理解,也对二氧化硅的测定方法有了更为全面的认识。
硅钼黄法测定海水中二氧化硅标准曲线

硅钼黄法测定海水中二氧化硅标准曲线摘要:一、引言二、硅钼黄法原理简介三、实验器材与方法1.实验器材2.实验步骤四、数据处理与分析1.标准曲线的绘制2.测定海水中的二氧化硅含量五、结果与讨论1.测定结果2.方法的精确性与可靠性3.影响因素分析六、结论正文:一、引言硅钼黄法是一种广泛应用于测定海水中二氧化硅含量的方法。
准确测定海水中的二氧化硅含量对于了解海洋环境的变化具有重要意义。
本文旨在探讨硅钼黄法在测定海水中的二氧化硅含量方面的应用,并建立标准曲线。
二、硅钼黄法原理简介硅钼黄法是一种基于硅钼蓝光度法的改进方法。
在海水中,二氧化硅与钼酸盐反应生成硅钼黄复合物,其颜色与二氧化硅含量成正比。
通过测量硅钼黄复合物的吸光度,可以推算出海水中二氧化硅的含量。
三、实验器材与方法3.1 实验器材实验所用仪器包括:分光光度计、酸度计、硅钼黄试剂、海水样品等。
3.2 实验步骤(1)配制硅钼黄标准溶液:称取一定质量的硅酸钠,加入水中溶解,制成一定浓度的硅钼黄溶液。
(2)制备海水样品:采集海水样品,经过滤、蒸馏等处理,得到所需的海水样品。
(3)测定吸光度:将硅钼黄溶液和海水样品分别倒入比色皿,放入分光光度计中,测定其吸光度。
(4)计算二氧化硅含量:根据吸光度,利用标准曲线计算出海水中二氧化硅的含量。
四、数据处理与分析4.1 标准曲线的绘制以硅钼黄溶液的浓度为横坐标,吸光度为纵坐标,绘制标准曲线。
4.2 测定海水中的二氧化硅含量利用标准曲线,根据海水样品的吸光度,计算出海水中二氧化硅的含量。
五、结果与讨论5.1 测定结果通过硅钼黄法测定了多个海水样品中的二氧化硅含量,结果表明,该方法具有较高的精确性和可靠性。
5.2 方法的精确性与可靠性硅钼黄法具有良好的精度和可靠性,适用于海水样品的分析。
但在实际操作过程中,应注意控制实验条件,避免误差的发生。
5.3 影响因素分析影响硅钼黄法测定海水中的二氧化硅含量的因素主要有:硅钼黄溶液的浓度、测定吸光度的波长、海水样品的前处理等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
硅钼蓝分光光度法二氧化硅曲线绘制
绘制硅钼蓝分光光度法二氧化硅的曲线可以按照以下步骤进行:
1. 准备实验材料:硅钼蓝溶液,二氧化硅溶液,不同浓度的硅钼蓝标准溶液,分光光度计等。
2. 准备测量样品的溶液:根据实验需求,将不同浓度的二氧化硅溶液分别与硅钼蓝溶液混合,制备一系列浓度不同的二氧化硅样品溶液。
3. 在分光光度计中选择合适的波长:硅钼蓝在430nm左右的波长范围内有最大吸收峰,因此可以选择适当的波长进行测量。
4. 测量样品吸光度:分别将制备好的一系列浓度不同的二氧化硅样品溶液,以及硅钼蓝标准溶液(作为空白对照),加入分光光度计的样品槽中,并分别测量它们的吸光度。
5. 绘制标准曲线:将测得的吸光度值作为纵坐标,样品的二氧化硅浓度作为横坐标,绘制硅钼蓝分光光度法二氧化硅的标准曲线。
6. 分析样品浓度:根据待测样品的吸光度值,使用标准曲线确定其对应的二氧化硅浓度。
请注意,在此过程中可能会有若干实验步骤和实验条件的具体细节,因此建议按照具体实验方法或者仪器操作手册进行操作。