寿险精算数学

寿险精算数学
寿险精算数学

寿险精算数学

考试时间:4小时

考试形式:客观判断题

考试内容和要求:

考生应掌握生命表、纯保费(趸缴、均衡)、责任准备金(均衡、修正)、总保费、多元生命函数、多元风险模型等主要内容。能够熟练运用精算现值的概念以及平衡原理计算纯保费、年金和责任准备金。理解纯保费与总保费的影响因素的差别。对于多元生命函数和多元风险模型,能够熟练运用精算现值的概念以及平衡原理计算纯保费和年金。初步了解养老金计划的精算方法。

A. 生存分布和生命表(分数比例约为10%)

1. 各种生存分布及其特征,例如:密度函数、死亡力、剩余寿命变量和的矩

2. 生命表的结构及其度量指标,如,,

3. 关于分数年龄的假设

B. 趸缴纯保费(分数比例约为10%)

1. 精算现值

2. 离散型与连续型的各种寿险模型及其纯保费的计算

3. 现值变量的方差

4. 在死亡均匀假设下离散型与连续型纯保费的关系

C. 生存年金(分数比例约为10%)

1. 离散型与连续型的各种生存年金模型及其纯保费的计算

2. 现值随机变量的方差

3. 特殊的两种生存年金

a. 完全期末年金

b. 比例期初年金

4. 寿险与生存年金纯保费的递推关系

5. 寿险纯保费与生存年金纯保费的关系

D. 均衡纯保费(分数比例约为15%)

1. 平衡原理

2. 各种寿险模型(完全离散、完全连续、半连续、每年缴次)的年缴纯保费

3. 亏损变量的方差

4. 特殊的两种寿险模型

a. 保费可部分返还的寿险(对应的纯保费称为比例保费)

b. 累积增额受益的寿险

E. 均衡纯保费的责任准备金(分数比例约为20%)

1. 平衡原理与责任准备金的出现

2. 各种寿险模型(完全离散、完全连续、半连续、每年缴次)的责任准备金

3. 亏损变量的方差

4. 责任准备金通常的四种计算方法

5. 比例责任准备金

6. 责任准备金的一种分解(或计算)方式:亏损按各保单年度分摊

F. 总保费与修正准备金(分数比例约为10%)

1. 包括费用的保险模型

2. 广义的平衡原理与总保费的计算

3. 总保费准备金

4. 各种修正准备金

G. 多元生命函数(分数比例约为10%)

1. 连生状况和最后生存状况

2. 连续型和离散型未来存在时间变量的分布

3. 非独立的寿命模型

4. 趸缴纯保费与年金的精算现值

5. 考虑死亡顺序的趸缴纯保费

6. 特殊假设下趸缴纯保费的计算

H. 多元风险模型(分数比例约为10%)

1. 存在时间与终止原因的联合分布与边际分布

2. 趸缴纯保费

3. 伴随单风险表和多元风险表的构造

I. 养老金计划(分数比例约为5%)

1. 养老金计划的基本概念与函数

2. 捐纳金的精算现值

3. 年老退休给付的精算现值

等额本息和等额本金计算公式

等额本息和等额本金计算公式 等额本金: 本金还款和利息还款: 月还款额=当月本金还款+当月利息式1 其中本金还款是真正偿还贷款的。每月还款之后,贷款的剩余本金就相应减少: 当月剩余本金=上月剩余本金-当月本金还款 直到最后一个月,全部本金偿还完毕。 利息还款是用来偿还剩余本金在本月所产生的利息的。每月还款中必须将本月本金所产生的利息付清: 当月利息=上月剩余本金×月利率式2 其中月利率=年利率÷12。据传工商银行等某些银行在进行本金等额还款的计算方法中,月利率用了一个挺孙子的算法,这里暂且不提。 由上面利息偿还公式中可见,月利息是与上月剩余本金成正比的,由于在贷款初期,剩余本金较多,所以可见,贷款初期每月的利息较多,月还款额中偿还利息的份额较重。随着还款次数的增多,剩余本金将逐渐减少,月还款的利息也相应减少,直到最后一个月,本金全部还清,利息付最后一次,下个月将既无本金又无利息,至此,全部贷款偿还完毕。 两种贷款的偿还原理就如上所述。上述两个公式是月还款的基本公式,其他公式都可由此导出。下面我们就基于这两个公式推导一下两种还款方式的具体计算公式。 1. 等额本金还款方式 等额本金还款方式比较简单。顾名思义,这种方式下,每次还款的本金还款数是一样的。因此: 当月本金还款=总贷款数÷还款次数 当月利息=上月剩余本金×月利率 =总贷款数×(1-(还款月数-1)÷还款次数)×月利率

当月月还款额=当月本金还款+当月利息 =总贷款数×(1÷还款次数+(1-(还款月数-1)÷还款次数)×月利率) 总利息=所有利息之和 =总贷款数×月利率×(还款次数-(1+2+3+。。。+还款次数-1)÷还款次数) 其中1+2+3+…+还款次数-1是一个等差数列,其和为(1+还款次数-1)×(还款次数-1)/2=还款次数×(还款次数-1)/2 :总利息=总贷款数×月利率×(还款次数+1)÷2 由于等额本金还款每个月的本金还款额是固定的,而每月的利息是递减的,因此,等额本金还款每个月的还款额是不一样的。开始还得多,而后逐月递减。 等额本息还款方式: 等额本金还款,顾名思义就是每个月的还款额是固定的。由于还款利息是逐月减少的,因此反过来说,每月还款中的本金还款额是逐月增加的。 首先,我们先进行一番设定: 设:总贷款额=A 还款次数=B 还款月利率=C 月还款额=X 当月本金还款=Yn(n=还款月数) 先说第一个月,当月本金为全部贷款额=A,因此: 第一个月的利息=A×C 第一个月的本金还款额 Y1=X-第一个月的利息

郑州大学高等数学下课后习题答案解析

习题7.7 3.指出下列方程所表示的曲线. (1)???==++;3, 25222x z y x (2)???==++;1,3694222y z y x (3)???-==+-;3, 254222x z y x (4)???==+-+.4,08422y x z y 【解】 (1)表示平面3=x 上的圆周曲线1622=+z y ; (2)表示平面1=y 上的椭圆19 32322 2=+z x ; (3)表示平面3-=x 上的双曲线14 162 2=-y z ; (4)表示平面4=y 上的抛物线642-=x z . 4.求() () ?????=++=++Γ2, 21, :2 22 2 222Rz z y x R z y x 在三个坐标面上的投影曲线. 【解】 (一)(1)、(2)联立消去z 得 2224 3R y x = + 所以,Γ在xoy 面上的投影曲线为 ?????==+.0, 4 322 2z R y x (二)(1)、(2)联立消去y 得 R z 2 1 = 所以,Γ在zox 面上的投影曲线为 .23.0,21R x y R z ≤ ?? ? ??==

(三)(1)、(2)联立消去x 得 R z 21 = 所以,Γ在yoz 面上的投影曲线为 .23.0, 21R y x R z ≤ ????? == 6.求由球面224y x z --= ①和锥面() 223y x z += ②所围成的立体在xoy 面上的投影区域. 【解】联立①、②消去z 得 122=+y x 故Γ在xoy 面上的投影曲线为 ? ??==+.0, 122z y x 所以,球面和锥面所围成的立体在xoy 面上的投影区域为(){}1|,22≤+=y x y x D . 习题7.8 2.设空间曲线C 的向量函数为(){} t t t t t r 62,34,122--+=,R t ∈.求曲线C 在与 20=t 相应的点处的单位切向量. 【解】因(){}64,4,2-=t t t r ,故C 相应20=t 的点处的切向量为 (){}2,4,42='r . C 相应20=t 的点处的单位切向量为 (){}.31,32,322,4,4612? ?????±=± =' 3.求曲线32,,:t z t y t x ===Γ在点)1,1,1(0M 处的切线方程和法平面方程. 【解】0M 对应参数1=t .Γ在0M 点处的切线方向为

房贷等额本息还款公式推导(详细)

等额本息还款公式推导 设贷款总额为A,银行月利率为β,总期数为m(个月),月还款额设为X,则各个月所欠银行贷款为: 第一个月A 第二个月A(1+β)-X 第三个月(A(1+β)-X)(1+β)-X=A(1+β)2-X[1+(1+β)]第四个月((A(1+β)-X)(1+β)-X)(1+β)-X =A(1+β)3-X[1+(1+β)+(1+β)2] … 由此可得第n个月后所欠银行贷款为 A(1+β)n –X[1+(1+β)+(1+β)2+…+(1+β)n-1]= A(1+β)n –X [(1+β)n-1]/β 由于还款总期数为m,也即第m月刚好还完银行所有贷款,因此有 A(1+β)m –X[(1+β)m-1]/β=0 由此求得

X = Aβ(1+β)m /[(1+β)m-1] ======================================================= ===== ◆关于A(1+β)n –X[1+(1+β)+(1+β)2+…+(1+β)n-1]= A(1+β)n –X[(1+β)n-1]/β的推导用了等比数列的求和公式 ◆1、(1+β)、(1+β)2、…、(1+β)n-1为等比数列 ◆关于等比数列的一些性质 (1)等比数列:An+1/An=q, n为自然数。 (2)通项公式:An=A1*q^(n-1); 推广式:An=Am·q^(n-m); (3)求和公式:Sn=nA1(q=1) Sn=[A1(1-q^n)]/(1-q) (4)性质: ①若m、n、p、q∈N,且m+n=p+q,则am·an=ap*aq; ②在等比数列中,依次每k项之和仍成等比数列. (5)“G是a、b的等比中项”“G^2=ab(G≠0)”. (6)在等比数列中,首项A1与公比q都不为零. ◆所以1+(1+β)+(1+β)2+…+(1+β)n-1 =[(1+β)n-1]/β 等额本金还款不同等额还款 问:等额本金还款是什么意思?与等额还款相比是否等额本金还款更省钱?

高等数学第六版(同济大学)上册课后习题答案解析

高等数学第六版上册课后习题答案及解析 第一章 习题1-1 1. 设A =(-∞, -5)?(5, +∞), B =[-10, 3), 写出A ?B , A ?B , A \B 及A \(A \B )的表达式. 解 A ?B =(-∞, 3)?(5, +∞), A ? B =[-10, -5), A \ B =(-∞, -10)?(5, +∞), A \(A \B )=[-10, -5). 2. 设A 、B 是任意两个集合, 证明对偶律: (A ?B )C =A C ?B C . 证明 因为 x ∈(A ?B )C ?x ?A ?B ? x ?A 或x ?B ? x ∈A C 或x ∈B C ? x ∈A C ?B C , 所以 (A ?B )C =A C ?B C . 3. 设映射f : X →Y , A ?X , B ?X . 证明 (1)f (A ?B )=f (A )?f (B ); (2)f (A ?B )?f (A )?f (B ). 证明 因为 y ∈f (A ?B )??x ∈A ?B , 使f (x )=y ?(因为x ∈A 或x ∈B ) y ∈f (A )或y ∈f (B ) ? y ∈f (A )?f (B ), 所以 f (A ?B )=f (A )?f (B ). (2)因为 y ∈f (A ?B )??x ∈A ?B , 使f (x )=y ?(因为x ∈A 且x ∈B ) y ∈f (A )且y ∈f (B )? y ∈ f (A )?f (B ), 所以 f (A ?B )?f (A )?f (B ). 4. 设映射f : X →Y , 若存在一个映射g : Y →X , 使X I f g =ο, Y I g f =ο, 其中I X 、 I Y 分别是X 、Y 上的恒等映射, 即对于每一个x ∈X , 有I X x =x ; 对于每一个y ∈Y , 有I Y y =y . 证明: f 是双射, 且g 是f 的逆映射: g =f -1. 证明 因为对于任意的y ∈Y , 有x =g (y )∈X , 且f (x )=f [g (y )]=I y y =y , 即Y 中

完整word版,保险精算学公式

《精算技术》公式 第一章 利息理论 1n n v a i -=; ()11n n n v a a i d -=+=&&; () ()11 1n n n n i s a i i +-=+= ; ?? ? ?? -=11511000x l x ; 1a i ∞=; 1a d ∞ =&&; 1n n v a δ -= ; ()11 n n i s δ +-= ; ()n n n a nv Ia i -= &&; ()()()1n n n n s n Is Ia i i -=+=&&; ()n n n a Da i -=; ()()1n n n n i s Ds i +-= ; ()211 Ia i i ∞ =+。

第二章 生命表 22x x x m q m = +; 1x x x l l d +=-; x x x d q l =; ()11 2 x x x L l l += +; 1 x x x t t T L ?--+== ∑ ; x x x T e l = 。 第三章 生存年金 生存年金的概念及其种类。 生存年金现值计算公式

各种年金之间的关系式: x a =:x n a +|n x a | n x a =n x E x n a + x a &&=1+x a :x n a &&=1+:1x n a - | n x a &&=1|n x a - |n m x a &&=1|n m x a - :x n s =:x n a 1 n x E :x n s &&=:x n a &&1n x E ()m x a &&=()m x a + 1 m ()m x a =():m x n a +()|m n x a () | m n x a =n x E ()m x n a + 转换函数的定义

高等数学课后习题及解答

高等数学课后习题及解答 1. 设u=a-b+2c,v=-a+3b-c.试用a,b,c 表示2u-3v. 解2u-3v=2(a-b+2c)-3(-a+3b-c) =5a-11b+7c. 2. 如果平面上一个四边形的对角线互相平分,试用向量证明它是平 行四边形. 证如图8-1 ,设四边形ABCD中AC 与BD 交于M ,已知AM = MC ,DM 故 MB . AB AM MB MC DM DC . 即AB // DC 且|AB |=| DC | ,因此四边形ABCD是平行四边形. 3. 把△ABC的BC边五等分,设分点依次为D1,D2,D3,D4,再把各 分点与点 A 连接.试以AB=c, BC=a 表向量 证如图8-2 ,根据题意知 1 D 1 A, 1 D 2 A, D 3 A, D A. 4 1 D3 D4 BD1 1 a, 5 a, D1D2 a, 5 5 1 D 2 D 3 a, 5 故D1 A=- (AB BD1)=- a- c 5

D 2 A =- ( AB D A =- ( AB BD 2 BD )=- )=- 2 a- c 5 3 a- c 3 =- ( AB 3 BD 4 )=- 5 4a- c. 5 4. 已知两点 M 1(0,1,2)和 M 2(1,-1,0) .试用坐标表示式表示 向量 M 1M 2 及-2 M 1M 2 . 解 M 1M 2 =(1-0, -1-1, 0-2)=( 1, -2, -2) . -2 M 1M 2 =-2( 1,-2,-2) =(-2, 4,4). 5. 求平行于向量 a =(6, 7, -6)的单位向量 . a 解 向量 a 的单位向量 为 ,故平行向量 a 的单位向量为 a a 1 = ( 6,7, -6)= 6 , 7 , 6 , a 11 11 11 11 其 中 a 6 2 72 ( 6)2 11. 6. 在空间直角坐标系中,指出下列各点在哪个卦限? A (1,-2,3), B ( 2, 3,-4), C (2,-3,-4), D (-2, -3, 1). 解 A 点在第四卦限, B 点在第五卦限, C 点在第八卦限, D 点在第三卦限 . 7. 在坐标面上和在坐标轴上的点的坐标各有什么特征?指出下列各点的位置: A ( 3, 4, 0), B ( 0, 4,3), C ( 3,0,0), D ( 0, D A 4

精算师考试数学基础考点大纲

一)准精算师部分 准精算师部分由八门专业课程及一门职业道德教育课程组成。 具体课程名称和主要内容如下: 课程名称 考试内容 A1 数学 1)概率论(30%); 2)数理统计(20%); 3)随机过程(20%); 4)应用统计(20%); 5)随机微积分(10%)。 A2 金融数学 1)复利数学(40%); 2)利率期限结构和随机利率模型(20%); 3)未定权益基本分析和风险中性评估(20%); 4)投资组合理论基础(20%)。 A3 精算模型 1)基本模型:生存模型和多状态模型、财产责任保险常见风险标的模型、个体模型和聚合模型;(40%)2)统计建模初步:参数估计和校验:频率和索赔额模型、信度理论;(20%) 3)统计模型的进一步分析:修匀原理和方法(10%)

4)破产模型;(20%) 5)情景及敏感性测试:随机模拟(10%) A4 经济学 宏观经济学(30%)、微观经济学(50%)、金融学(20%)A5 寿险精算 1)寿险精算数学(60%) 2)寿险精算实务(40%) A6 非寿险精算 1)非寿险精算数学(60%) 2)非寿险精算实务(40%) A7 会计与财务 1)会计基本原理(25%); 2)会计准则(25%); 3)各种经营实体介绍(20%); 4)企业会计的基本结构(15%); 5)企业会计的解释能力和局限性(15%)。 A8 精算管理 1)企业运营的一般环境(10%); 2)风险评估、风险类型和风险度量(15%);

3)产品(或服务)的设计和开发(10%); 4)产品和服务的定价及定价假设(10%); 5)准备金和负债评估(15%); 6)风险管理基本方法(15%); 7)资产负债管理基础(10%); 8)经验监测(10%); 9)偿付能力、盈利能力和资本管理(5%)。 (注:1、课程A1-A8均为3小时笔试。2、考生在通过了A1-A8全部课程后,还需参加为期一天的中国准精算师《A9职业道德教育》课程的培训,方可获得中国准精算师资格。) 一)科目名称:数学基础I 1、科目代码:01中国精算师资格考试 2、考试时间:3小时中国精算师资格考试 3、考试形式:标准化试题中国精算师资格考试 4、考试内容:中国精算师资格考试 (1)微积分(分数比例:60%)中国精算师资格考试 ①函数、极限、连续中国精算师资格考试 函数的概念及性质反函数复合函数隐函数分段函数基本初等函数的性质初等函数数列极限与函数极限的概念函数的左、右极限无穷小和无穷大的概念及其关系无穷小的比较极限的四则运算中国精算师资格考试 函数连续与间断的概念初等函数的连续性闭区间上连续函数的性质中国精算师资格考试 ②一元函数微积分中国精算师资格考试 导数的概念函数可导性与连续性之间的关系导数的四则运算基本初等函数的导数复合函数、反函数和隐函数的导数高阶导数微分的概念和运算法则微分在近似计算中的应用中值定理及其应用洛必达(L’Hospital)法则函数的单调性函数的极值函数图形的凹凸性、拐点及渐近线函数的最大值和最小值中国精算师资格考试 原函数与不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理变上限定积分及导数不定积分和定积分的换元积分法和分部积分法广义积分的概念及计算定积分的应用中国精算师资格考试 ③多元函数微积分中国精算师资格考试 多元函数的概念二元函数的极限与连续性有界闭区间上二元连续函数的性质偏导数的概念与计算多元复合函数及隐函数的求导法高阶偏导数全微分多元函数的极值和条件极值、最大值和最小值二重积分的概念、基本性质和计算***区域上的简单二重积分的计算曲线的切线方程和法线方程中国精算师资格考试 ④级数中国精算师资格考试 常数项级数收敛与发散的概念级数的基本性质与收敛的必要条件几何级数与p级数的收敛性正项级数收敛性的判断任意项级数的绝对收敛与条件收敛交错级数莱布尼茨定理幂级数的概念收敛半

等额本息法及等额本金法两种计算公式.doc

精品文档 等本息法和等本金法的两种算公式 一: 按等额本金还款 法:贷款额为: a, 月利率为: i , 年利率为: I , 还款月数: n, an 第 n 个月贷款剩余本金: a1=a, a2=a-a/n, a3=a-2*a/n ...次类推 还款利息总和为Y 每月应还本金: a/n 每月应还利息: an*i 每期还款 a/n +an*i 支付利息 Y=( n+1)*a*i/2 还款总额 =( n+1)*a*i/2+a 等本金法的算等本金(减法):算公式: 每月本金=款÷期数 第一个月的月供 =每月本金+款×月利率 第二个月的月供 =每月本金+(款-已本金)×月利率 申10 万 10 年个人住房商性款,算每月的月供款?(月利率: 4.7925 ‰)算果: 每月本金: 100000÷120= 833 元 第一个月的月供:833+ 100000×4.7925 ‰=1312.3 元 第二个月的月供:833+( 100000- 833)×4.7925 ‰= 1308.3 元 如此推?? 二 : 按等本息款法:款 a,月利率 i ,年利率 I ,款月数n,每月款 b,款利息和 Y 1: I =12×i 2: Y=n×b- a 3:第一月款利息:a×i 第二月款利息:〔a-( b- a×i )〕×i =( a×i -b)×( 1+ i ) ^1 +b 第三月款利息:{ a-( b- a×i )-〔 b-( a×i - b)×( 1+ i ) ^1 -b〕}×i =( a×i -b)×( 1+i ) ^2 + b 第四月款利息:=( a×i - b)×( 1+ i ) ^3 + b 第 n 月款利息:=(a×i - b)×( 1+ i ) ^( n- 1)+ b 求以上和:Y=( a×i -b)×〔( 1+ i ) ^n- 1〕÷i + n×b 4:以上两Y 相等求得 月均款 :b = a×i ×( 1+ i ) ^n ÷〔( 1+ i )^n - 1〕 支付利息 :Y = n×a×i ×( 1+i ) ^n ÷〔( 1+ i ) ^n - 1〕- a 款 :n ×a×i ×( 1+ i )^n ÷〔( 1+ i ) ^n- 1〕 注:a^b 表示 a 的 b 次方。 等本息法的算 ----- 例如下: 如款 21 万, 20 年,月利率 3.465 ‰按照上 面的等本息公式算 月均款 :b = a×i ×( 1+ i ) ^n ÷〔( 1+ i )^n - 1〕即: =1290.11017 即每个月款1290 元。 。 1欢迎下载

精算数学读书笔记

精算数学读书笔记 ————数学班 王秋阳 09080124 摘要:利用生命函数,以预定利率和预定死亡率为基础计算定期寿险、终身寿险、延期寿险、生存保险、两全保险的精算现值。 关键字:生命函数、剩余寿命、生命表、精算现值、定期寿险、终身寿险、延期寿险、生存保险、两全保险 一、生命函数 1、初生婴儿未来寿命X 的分布函数()()Pr F x X x =≤ 0x ≥ 生存函数()()Pr S x X x =≥ 初生婴儿在x 至z 之间死亡的概率()()()Pr x X z S x S z <≤=- 3、剩余寿命F (x ):分布函数Pr(())()()()() t x q T X t pr x X x t X x s x s x t s x =≤=<≤+>-+= 生存函数 Pr(())Pr()() () t x p T x t X x t X t s x t s x =>=>+>+= :x 岁的人至少能活到x+1岁的概率 :x 岁的人将在1年内去世的概率 :x 岁的人将在x+t 岁至x+t+u 岁之间去世的概率 整值剩余寿命T(x):(), ()1,0,1,K X k k T x k k =≤<+= 概率函数 ()()()()1 1Pr(())Pr(()1) Pr 1Pr k x k x k x k x k x x k x k K X k k T x k T x k T x k q q p p p q q +++==≤<+=≤+-≤= -=-=?= 死力()() ln[()]()() x s x f x s x s x s x μ''=- ==- 死力与生存函数的关系 0()exp{} exp{} x s x t t x s x s x ds p ds μμ+=-=-?? 死力与密度函数的关系()()}0 exp x x x s f x s x ds μμμ?=?=?-??? x p x q x t u q

大学《高等数学A》课后复习题及解析答案

大学数学A (1)课后复习题 第一章 一、选择题 1.下列各组函数中相等的是. …….. ……..…………………………………………………………………………………….( ) A .2 ln )(,ln 2)(x x g x x f == B .0 )(,1)(x x g x f == C .1)(,11)(2-=-?+= x x g x x x f D .2)(|,|)(x x g x x f == 2.下列函数中为奇函数的是. ……. …….. …………………………………………………………………………………….( ). A .)1ln()(2++=x x x f B .| |)(x e x f = C .x x f cos )(= D .1 sin )1()(2--= x x x x f 3.极限??? ? ?+++∞→22221lim n n n n n 的值为………………………………………………………………………..…….( ) A .0 B .1 C .2 1 D .∞ 4.极限x x x x sin lim +∞→的值为.. …….. ……..……………………………………………………………………………...…….( ) A .0 B .1 C .2 D .∞ 5.当0→x 时,下列各项中与 2 3 x 为等价无穷小的是…………………………………………………….( ) A .)1(3-x e x B .x cos 1- C .x x sin tan - D .)1ln(x + 6.设12)(-=x x f ,则当0→x 时,有…………………………………………………………………………..…….( ). A .)(x f 与x 是等价无穷小 B .)(x f 与x 同阶但非等价无穷小 C .)(x f 是比x 高阶的无穷小 D .)(x f 是比x 低阶的无穷小 7.函数)(x f 在点x 0可导是)(x f 在点x 0连续的____________条件. ………...………………....…..( ) A .充分不必要 B .必要不充分 C .充要 D .既不充分也不必要 8.设函数?? ? ??<≤--<≤≤≤-=01,110, 21,2)(2x x x x x x x f ,则下述结论正确的是……………………………………….( )

保险精算学笔记:生命表函数与生命表构造

《保险精算学》笔记:生命表函数与生命表构造 第一节生命表函数 一、生存函数 1、定义: 2、概率意义:新生儿能活到的概率 3、与分布函数的关系: 4、与密度函数的关系: 二、剩余寿命 1、定义:已经活到x岁的人(简记),还能继续存活的时间,称为剩余寿命,记作T(x)。 2、剩余寿命的分布函数 5、:, 它的概率意义为:将在未来的年去世的概率,简记 3、剩余寿命的生存函数:, 它的概率意义为:能活过岁的概率,简记 特别: (1) (2) (3) (4):将在岁与岁之间去世的概率 4、整值剩余寿命

(1)定义:未来存活的完整年数,简记 (2)概率函数: 5、剩余寿命的期望与方差 (1)期望剩余寿命:剩余寿命的期望值(均值),简记 (2)剩余寿命的方差: 6、整值剩余寿命的期望与方差 (1)期望整值剩余寿命:整值剩余寿命的期望值(均值),简记 (2)整值剩余寿命的方差: 2 三、死亡效力 1、定义:的人瞬时死亡率,记作 2、死亡效力与生存函数的关系 3、死亡效力与密度函数的关系 4、死亡效力表示剩余寿命的密度函数

记为剩余寿命的分布函数,为的密度函数,则 第二节生命表的构造 一、有关寿命分布的参数模型 1、de Moivre模型(1729) 2、Gompertz模型(1825) 3、Makeham模型(1860) 4、Weibull模型(1939) 二、生命表的起源 1、参数模型的缺点 (1)至今为止找不到非常合适的寿命分布拟合模型。这四个常用模型的拟合效果不令人满意。 (2)使用这些参数模型推测未来的寿命状况会产生很大的误差 (3)寿险常不使用参数模型拟合寿命分布,而是使用非参数方法确定的生命表拟合人类寿命的分布。 (4)在非寿险领域,常用参数模型拟合物体寿命的分布。 2、生命表的起源

高数课后题答案及详解

2019年广西满分作文:毕业前的最后一堂课时光飞逝,白马过隙。2019高考如约而至,距离我的那年高考也已有二十岁的年份。烈日的阳光,斑驳的光影,仿佛又把我拉进了在宽窄巷子的学堂里最后冲刺的时光。 高中即将毕业,意味着每个人将为人生方向的开启选好时光的阀门,单纯的学历生涯即将告一段落。课堂上朗朗整齐的晨读和起立,行礼的流程将渐行远去。它是青春懵懂的里程,也是最为单纯的诗书礼仪,课桌黑板走廊都将记录这里每个人在经历人生的最后一课,无论是同学还是老师。 记得1999年炙热的炎夏,当年的二十八中还隐藏在老成都皇城宽窄巷子里面,距离高考还有一周,同学们已经不再像之前那样紧张忙碌的复习节奏,三三两两,甚至结伴到学校周围看看能不能捡到老皇城留下的一砖半瓦,为自己这里的高中学涯留点念想。 还记得是用过学校食堂的午餐,在最后一节考前动员课上完以后,大家就会各自回到家中,为最后到来的大考最最后的准备。课堂的气氛很是轻松,甚至我和我的同桌还在讨论中午学校食堂红椒肉丝的白糖是否搁多了,随着班主任走进教室,踏上讲台,一如既往地喊道:上课!接着就是值日生的“起立敬礼老师好”的三重奏,最后一节课的师生礼仪完毕后,班主任转身在黑板上用粉笔撰写了四个大字“勇往直前”,语重心长的寄语和感慨在此不表,大家彼此默契的拿出早已准备好的记事本开始彼此留言签名,数言珍语,寥寥几笔都赫然纸上。 人生最后一堂课,没有习题的讲解和紧张备考的威严氛围。三年同窗,彼此单纯的朝夕相处和课桌校园间的点滴生活早已让这个班级凝成了一片经脉。“聚是一团火,散是满天星,不求桃李满天下,只愿每人福满多。”班主任最后这句话至今印刻脑海。二十载已过,当时班主任的心境早已能够理解,也希望每年高考时,同学志愿看天下!

等额本息还款法

一、按揭贷款等额本息还款计算公式 1、计算公式 每月还本付息金额=[本金×月利率×(1+月利率)还款月数]/(1+月利率)还款月数-1] 其中:每月利息=剩余本金×贷款月利率 每月本金=每月月供额-每月利息 计算原则:银行从每月月供款中,先收剩余本金利息,后收本金;利息在月供款中的比例中虽剩余本金的减少而降低,本金在月供款中的比例因而升高,但月供总额保持不变。 2、商业性房贷案例 贷款本金为300000元人民币 还款期为10年(即120个月) 根据5.51%的年利率计算,月利率为4.592‰ 代入等额本金还款计算公式计算: 每月还本付息金额=[300000×4.592‰×(1+月利率)120]/[(1+月利率)120-1] 由此,可计算每月的还款额为3257.28元人民币 二、按揭贷款等额本金还款计算公式 1、计算公式 每月还本付息金额=(本金/还款月数)+(本金-累计已还本金)×月利率 每月本金=总本金/还款月数 每月利息=(本金-累计已还本金)×月利率 计算原则:每月归还的本金额始终不变,利息随剩余本金的减少而减少 2、商业性房贷案例 贷款本金为300000元人民币 还款期为10年(即120个月) 根据5.51%的年利率计算,月利率为4.592‰ 代入按月递减还款计算公式计算: (第一个月)还本付息金额=(300000/120)+ (300000-0)×4.592‰ 由此,可计算第一个月的还款额为3877.5元人民币 (第二个月) 还本付息金额=(300000/120)+ (300000-2500)×4.592‰ 由此,可计算第一个月的还款额为3866.02元人民币 (第二个月) 还本付息金额=(300000/120)+ (300000-5000)×4.592‰

完整word版,寿险精算公式汇总,推荐文档

1.(x)=1-F ()=P (X>x) >=0x X r S r x x 生存函数: 2.我们约定:x (0)=0,S (0)=1;x F 3.r ()(X>y )= ()X X S y P X x S x > 4. =Pr(T(x)>t)=Pr(X>x+t ) (+)=()t x X X p X x S x t S x > 5. ++q =Pr[t

《高等数学一》第一章-函数--课后习题(含答案解析)

第一章函数 历年试题模拟试题课后习题(含答案解析)[单选题] 1、 设函数,则f(x)=() A、x(x+1) B、x(x-1) C、(x+1)(x-2) D、(x-1)(x+2) 【正确答案】B 【答案解析】 本题考察函数解析式求解. ,故 [单选题] 2、 已知函数f(x)的定义域为[0,4],函数g(x)=f(x+1)+f(x-1)的定义域是(). A、[1,3] B、[-1,5] C、[-1,3] D、[1,5] 【正确答案】A 【答案解析】x是函数g(x)中的定义域中的点,当且仅当x满足0≤x+1≤4且0≤x-1≤4 即-1≤x≤3且1≤x≤5也即1≤x≤3,由此可知函数g(x)的定义域D(g)={x|1≤x≤3}=[1,3]. [单选题] 3、 设函数f(x)的定义域为[0,4],则函数f(x2)的定义域为(). A、[0,2] B、[0,16] C、[-16,16] D、[-2,2] 【正确答案】D 【答案解析】根据f(x)的定义域,可知中应该满足: [单选题] 4、 函数的定义域为(). A、[-1,1] B、[-1,3] C、(-1,1) D、(-1,3) 【正确答案】B 【答案解析】 根据根号函数的性质,应该满足: 即 [单选题]

写出函数的定义域及函数值(). A、 B、 C、 D、 【正确答案】C 【答案解析】 分段函数的定义域为各个分段区间定义域的并集, 故D=(-∞,-1]∪(-1,+∞). [单选题] 6、 设函数,则对所有的x,则f(-x)=(). A、 B、 C、 D、 【正确答案】A 【答案解析】本题考察三角函数公式。 . [单选题] 7、 设则=(). A、 B、

等额本息和等额本金还款原理解释及公式推导过程

等额本息和等额本金还款的解释及公式推导过程 住房贷款的分期还款方式分为等额本息付款和等额本金方式付款两种方式,两种付款方式的月付款额各不相同,计算方式也不一样。网上分别有着两种还款方式的计算公式,然而,对于这两个公式的来源却很少有解释,或者解释是粗略的或错误的。本人经过一段时间的思考,运用数学理论推导出了这两个计算公式。本文将从原理上解释一下这两种还款方式的原理及计算公式的推导过程。 无论哪种还款方式,都有一个共同点,就是每月的还款额(也称月供)中包含两个部分:本金还款和利息还款。 月还款额 = 当月本金还款 + 当月利息 其中本金还款是真正偿还贷款的,每月还款之后,贷款的剩余本金就相应减少:当月剩余本金=上月剩余本金 — 当月本金还款 直到最后一个月,全部本金偿还完毕。 利息还款是用来偿还剩余本金在本月所产生的利息,每月还款中必须将本月本金所产生的利息付清。 当月利息 = 上月剩余本金 × 月利率 其中月利率=年利率÷12,由上面利息偿还公式中可见,月利息是与上月剩余本金成正比的,由于在贷款初期,剩余本金较多,所以贷款初期每月的利息较多,月还款额中偿还利息的份额较重。随着还款次数的增多,剩余本金将逐渐减少,月还款的利息也相应减少,直到最后一个月,本金全部还清,利息付最后一次,下个月将既无本金又无利息,至此,全部贷款偿还完毕。 两种贷款的偿还原理就如上所述,下面推导一下两种还款方式的具体计算公式。1. 等额本金还款方式 等额本金还款方式比较简单顾名思义,这种方式下,每次还款的本金还款数是一样的。以下结合一事例帮助理解公式推导过程。比如贷款24万,年利率7.2%,则月利率为7.2%÷12=0.6%,分20年还完。 当月本金还款=总贷款数÷还款次数=240000÷(12×20) =1000

高等数学第二章课后习题答案

第二章 导数与微分 1. ()().1,102-'=f x x f 试按定义求设 200200(1)(1)10(1)10 '(1)lim lim 1020lim lim (1020)20x x x x f x f x f x x x x x x ?→?→?→?→-+?--?---==???-?==?-=-? 2. 下列各题中均假定()0x f '存在,按导数定义观察下列极限,指出此极限表示什么, 并将答案填在括号内。 ⑴ ()()=?-?-→?x x f x x f x 000lim (0'()f x -); ⑵ ()=→?x x f x 0lim ('(0)f ), 其中()()存在;且0,00f f '= ⑶ ()() =--+→h h x f h x f h 000lim (02'()f x ). 3. 求下列函数的导数: ⑴ ='=y x y ,4 则3 4x ⑵ ='=y x y ,32则132 3 x - ⑶ ='=y x y ,1 则32 12x -- ⑷ = '=y x x y ,53则115165x 4. 求曲线. 21,3 cos 程处的切线方程和法线方上点?? ? ??=πx y 'sin ,'()3y x y π=-= 所以切线方程为1)23y x π- =- 2(1)0y +-=

法线方程为1)23y x π- =- 化简得3)0x π+-= 5. 讨论函数?????=≠=0 00 1sin 2 x x x x y 在0=x 处的连续性和可导性. 20(0)0 1 lim sin 0(0)()x f x f x →===因为有界量乘以无穷小 所以函数在0x =处连续 因为 20001 sin (0)(0) 1lim lim lim sin 0x x x x f x f x x x x x ?→?→?→?+?-==?=??? 所以函数在0x =处可导. 6. 已知()()()()是否存在? 又及求 0 ,0 0 , 0 2f f f x x x x x f '''???<-≥=-+ 2 ' 00(0)(0)(0)lim lim 0h h f h f h f h h + →+→++-=== '0 0(0)(0)(0)lim lim 1h h f h f h f h h -→-→++--===- ''(0)(0)f f +-≠Q '(0)f ∴不存在 7. ()(). , 0 sin x f x x x x x f '?? ?≥<=求已知 当0x <时, '()(sin )'cos f x x x ==; 当0x >时, '()()'1f x x ==; 当0x =时

保险精算学公式

保险精算学公式

《精算技术》公式 第一章 利息理论 1n n v a i -= ; ()11n n n v a a i d -=+= ; () ()11 1n n n n i s a i i +-=+= ; ? ? ? ?? -=11511000x l x ; 1a i ∞= ; 1a d ∞= ; 1n n v a δ -= ; ()11 n n i s δ +-= ; ()n n n a nv Ia i -= ; ()()()1n n n n s n Is Ia i i -=+= ; ()n n n a Da i -=; ()()1n n n n i s Ds i +-= ; ()211Ia i i ∞ =+。

终身年 金一年给 付一次 期末付x a1x x N D + 期首付x a x x N D n年定期一年给 付一次 期末付:x n a11 x x n x N N D +++ - 期首付:x n a x x n x N N D + - n年延期一年给 付一次 期末付|n x a1x n x N D ++ 期首付|n x a x n x N D + n年延 期的m年定 期一年给 付一次 期末付|n m x a11 x n x n m x N N D +++++ - 期首付|n m x a x n x n m x N N D +++ - 终身年 金一年给 付m次 期末付()m x a x a+1 2 m m - 期首付()m x a x a-1 2 m m - n年延期一年给 付m次 期末付()|m n x a |n x a+12m m-n x E 期首付()|m n x a |n x a-12m m-n x E n年定期一年给 付m次 期末付():m x n a:x n a+12m m-(1-n x E ) 期首付():m x n a:x n a-1 2 m m -(1- n x E) 终身年 金连续年 金 ——x a x x N D

等额本息和等额本金还款法计算公式

【等额本息还款法】: 一、 月还款计算: 计算公式:月还款=月还款系数*贷款金额的万元倍数 (注意贷款的年数与系数相对应) 二、 总利息的计算: 计算公式:总利息=月还款额*总期数-总贷款额 【等额本金还款法】: 一、月还款计算: 月供本金=贷款总额/总期数 月利息=贷款余额*月利率 即: 月利息 推算: =(贷款总额-已还本金)*月利率 第一期 第二期 第三期 已还本金=0 已还本金=月供本金*1 已还本金=月供本金*2 第n 期:已还本金=月供本金*(n-1) (备注:n 为当前还款期数) 那么: 已还本金=月供本金X n-1) 月利息=[贷款总额-月供本金N n-1)]*月利率 月还款=月供本金+[贷款总额-月供本金N n-1)]贷款月利率 即: 月还款=贷款总额 /贷款总期数+[贷款总额-贷款总额/贷款总期数N n-1)]贷款月利率 二、总利息的计算: 第一期:月利息=(贷款总额-0) x 贷款月利率 第二期:月利息=(贷款总额-月供本金X ) x 贷款月利率 第三期:月利息=(贷款总额-月供本金X 2) X 贷款月利率 第n 期:月利息=[贷款总额-月供本金X n-1)] x 贷款月利率 已还本金=月供本金*(n- 1) 把n 期的月利息加起来,即是客户总共所需支付的总利息。 即:总利息=(贷款总额-0)X5款月利率+ (贷款总额-月供本金X ) X 贷款月利率+ (贷款总额-月供本金X 2) X 贷款月利率+….. [贷款总额-月供本金X n-1)] X 贷款月利率 已还本金=0 已还本金二月供本金*1 已还本金二月供本金*2

即:总利息={贷款总额Xi —月供本金X n X n-1)/2]}贷款月利率 等额本息还款方式指的是你每个月向银行还一样多的钱,(包括本金和利息),这样由于每月的还款额固定,可以有计划地控制家庭收入的支出,也便于每个家庭根据自己的收入情况,确定还贷能力。 优点:1、每月还款金额一样,便于还款,不易产生逾期 2、前期还款压力较小, 缺点:还款期支付的总利息增加 使用人群:前期还款收入较少,后期收入会增加或前期还款压力较大的人 等额本金还款方式指的是,每个月你还的贷款本金一样,根据剩余本金支付利息,这种还款方式随着剩余的本金越来越少你的还款额也越来越少。也就是说指将本金每月等额偿还,然后根据剩余本金计算利 息,所以初期由于本金较多,将支付较多的利息,从而使还款额在初期较多,而在随后的时间每月递减,这种方式的好处是,由于在初期偿还较大款项而减少利息的支出,比较适合还款能力较强的家庭。 优点:在贷款期间支付的总贷款利息比等额本息要少,也就是节省利息 缺点:每期还款金额不同,容易产生逾期 使用人群:收入会越来越少的中老年人或还款压力不大,想节省贷款利息的人。 计算公式: 一:按等额本金还款法: 设贷款额为a,月利率为i,年利率为I,还款月数为n,an第n个月贷款剩余本金 a1=a,a2=a-a/n,a3=a-2*a/n...以次类推 还款利息总和为丫 每月应还本金:a/n 每月应还利息:an *i 每期还款a/n +an*i 支付利息丫=( n+1)*a*i/2 还款总额=(n+1)*a*i/2+a 二:按等额本息还款法: 设贷款额为a,月利率为i,年利率为I,还款月数为n,每月还款额为b,还款利息总和为丫1:1 = 12为 2: Y= nxb —a 3:第一月还款利息为:a Xi 第二月还款利息为:〔a —( b —a X)〕X=( a X —b) X (1 + i)的1次方+ b 第二月还款利息为:{a — ( b —a X) —〔 b — ( a X —b) X (1 + i)的 1 次方一b〕}X = (a X—b) X (1 + i)的2 次方+ b 第四月还款利息为:=(a X—b) X (1 + i)的3次方+ b 第n月还款利息为:=(a X —b) X (1 +门的(n —1)次方+ b 求以上和为:Y=( a X i—b) X 〔( 1 + i)的n 次方一1: 4 + n X b 4 :以上两项丫值相等求得 月均还款b = a X i X( 1 + i)的n次方十〔(1 + i)的n次方一1〕 支付利息丫= n X a X X( 1 + i)的n次方4〔( 1 + i)的n次方一1〕一a 还款总额n X a X X( 1 + i)的n次方4〔( 1 + i)的n次方一1〕 第一种简单,第二种一定要考虑再减上一月还款时里面有利息需要扣掉,否则你就想不明白原理的.

相关文档
最新文档