粉末冶金:压制成形原理与工艺过程

合集下载

粉末冶金高速压制技术的原理、特点及其研究进展

粉末冶金高速压制技术的原理、特点及其研究进展

粉末冶金高速压制技术的原理、特点及其研究进展粉末冶金高速压制技术是一种重要的金属材料制备技术,它通过高速冲击和压缩粉末颗粒,将其迅速烧结成固体材料。

该技术具有独特的原理和特点,并在过去几十年中得到了广泛的研究和应用。

本文将从原理、特点以及研究进展三个方面对粉末冶金高速压制技术进行深入探讨。

一、原理粉末冶金高速压制技术是通过将金属或合金的粉末颗粒置于模具中,并在极短的时间内施加高压力,使得颗粒之间发生塑性变形和结合。

其主要原理可以归纳为以下几个方面:1.1 高速冲击在高速压制过程中,模具以极快的速度向下运动,使得模具与待加工材料之间产生剧烈碰撞。

这种高速冲击能够使得颗粒之间发生变形,并且加快了结合过程。

1.2 高温效应在高温下进行压制可以提供更好的塑性变形能力,使得粉末颗粒能够更好地结合。

此外,高温还可以促进晶粒的生长和再结晶,进一步提高材料的力学性能。

1.3 界面扩散在高速压制过程中,颗粒之间会发生扩散现象。

界面扩散可以使得颗粒之间的接触面积增大,并且在界面处形成更强的结合。

此外,界面扩散还可以促进晶粒的再结晶和生长。

1.4 塑性变形在高速压制过程中,颗粒会发生塑性变形,并且与周围颗粒发生冷焊接触。

这种塑性变形可以使得颗粒之间产生更强的结合,并且提高材料的密度和力学性能。

二、特点与传统冶金加工方法相比,粉末冶金高速压制技术具有以下几个特点:2.1 高效快速由于采用了高速冲击和压缩技术,这种方法具有快速、高效的特点。

一般情况下,整个过程只需要几十毫秒到几秒钟即可完成。

2.2 高质量由于采用了高温和高压力的条件,粉末冶金高速压制技术可以获得高密度和均匀的材料。

此外,由于塑性变形和界面扩散的作用,材料的结合强度也得到了显著提高。

2.3 复杂形状粉末冶金高速压制技术可以制备各种复杂形状的金属零件。

由于采用了模具,可以根据需要设计出各种形状和尺寸的零件。

2.4 节约能源与传统冶金加工方法相比,粉末冶金高速压制技术具有节约能源的优势。

粉末冶金原理概述

粉末冶金原理概述

粉末冶金原理概述简介粉末冶金是一种通过将金属粉末压制成型,然后通过烧结或热处理使其结合成型而获得金属制品的工艺。

粉末冶金具有许多优点,包括高材料利用率、能够制造高复杂度的零件、制造成本低等。

本文将对粉末冶金的原理进行概述。

原理概述粉末冶金是通过粉末的压制和烧结过程来制造金属制品。

其基本流程包括粉末制备、粉末的成型和烧结过程。

粉末制备粉末制备是粉末冶金的第一步。

金属粉末可以通过多种方法来制备,包括机械研磨、凝固法、气相法等。

选择合适的粉末制备方法可以控制粉末的粒度、形状和组成,以适应所需的材料特性和制品要求。

粉末成型粉末成型是将金属粉末转化为所需形状的过程。

常见的成型方法包括压制、注塑、挤压等。

其中,压制是最常用的成型方法之一。

通过将金属粉末放入模具中,然后施加高压使其成型。

成型过程中,通过给予粉末适当的压力和温度,使粉末颗粒之间发生塑性变形和结合。

烧结过程烧结是粉末冶金的关键步骤之一。

在烧结过程中,经过成型后的粉末通过加热使其进行结合。

在加热的同时,粉末颗粒之间发生扩散,并形成跨粒界结合。

烧结温度和时间的选择对最终材料的性能和结构有重要影响。

后续热处理在烧结后,通常还需要对金属制品进行后续的热处理。

热处理可以有选择地改变材料的性能和结构,如提高强度、改善耐腐蚀性等。

常见的热处理方法包括固溶处理、时效处理、淬火等。

粉末冶金的优点粉末冶金具有以下优点:1.高材料利用率:由于粉末冶金可以直接利用金属粉末进行成型,因此避免了传统加工中的材料浪费,相比传统冶金方法,粉末冶金材料利用率更高。

2.制造高复杂度零件:粉末冶金可以制造复杂度高的零件,如多孔件、中空件等。

这是传统加工方法无法实现的。

3.制造成本低:粉末冶金不需要进行复杂的加工步骤,相比传统加工方法,制造成本更低。

4.可以利用废料:粉末冶金可以利用废料或回收材料进行制造,提高了资源的利用率。

应用领域粉末冶金广泛应用于各个领域,包括汽车制造、航空航天、船舶制造、化工、电子等。

粉末冶金加压成型

粉末冶金加压成型

1、成形步骤:成形模具可分为上冲、中模、下冲、芯棒四大部份。

而依零件之复杂程度,其上、下冲之数目不同。

1、步骤:粉末成形后,中模向下移动,使胚体露出中模面,此步骤称为脱模顶出。

接着填粉盒向右方前进,利用其前端将胚体顶向右方的收料盘。

接着中模向上移,而填粉盒则移至模穴正方,使粉末落入模穴内,再此过程中填粉盒将左右振动使粉末较易落入。

当充填结束后,填粉盒向左移,上冲向下移动进入中模挤压粉末。

当压结动作结束后,上冲上移而中模继续下移,直到试片露出中模。

2、充填:粉末的充填有四种方法:A:落入法:传统之填粉法,亦即中模上升至最高点之位置后,填粉盒才到达模穴上方,将粉以自由落体的方式掉入模穴中。

利用此法填粉时,充填之速度及均匀性常取决于模穴的截面积之大小及粉末的速度。

B:吸入法:由于一般所使用粉末的粒径多在40~200μm之间,若使用落入法,当模穴狭窄时,粉末进入不易,速度较慢,将影响成形机的使用效率。

为改善此现象,可采用吸入法。

亦即当填粉盒到达模穴上方时,中模才往上移,此动作造成真空吸粉之现象,可加快粉末进入模穴之速度,以及充填的完全性。

对于形状复杂有尖角之零件,或小于1mm之薄壁轴承之充填均有很大之帮助。

C:上充填法:粉末填入模穴后,芯棒才向上移至模面之高度,此对于薄壁零件亦有相当大之帮助,因为薄壁零件成形时芯棒与中模间之空隙小,易产生架桥现象,阻碍了后续粉末之掉入,若芯棒先在下方,可增加模穴空间有利充填,待充填结束后,芯棒再往上移即可改善这些困扰。

D:下充填法:当充填结束后,下冲不动,中模和芯棒再向上移,使粉末相对下移低于模面,此可防止上冲向下移动到达中模面时粉末向外喷,且可减少因中模有推拔角或圆弧角而使一些粉末卡在上冲与中模间造成夹粉之现象。

粉末之充填量、深度以及胚体尺寸之关系:填粉的深度H1、生胚胚体之高度H2、ρg生胚密度、ρa粉末之视密度。

公式为:(H1/H2)=( ρg/ρa) 以圆柱体为例:若H2=3mm、ρg=6.8g/cm3、ρa=2.8g/cm3 则H1=7.28mm3、成形:粉末的充填有四种方法:A:单压成形:成形时下冲不动,由上冲施力,压结后,中模不动,由下冲向上将产品顶出。

粉末冶金材料的成型

粉末冶金材料的成型

粉末冶金材料的成型一、压制成型基本规律压模压制是指松散的粉末在压模内经受一定的压制压力后,成为具有一定尺寸、形状和一定密度、强度的压坯。

当对压模中粉末施加压力后,粉末颗粒间将发生相对移动,粉末颗粒将填充孔隙,使粉末体的体积减小,粉末颗粒迅速达到最紧密的堆积。

粉末压制时出现的过程有:颗粒的整体运动和重排;颗粒的变形和断裂;相邻颗粒表面间的冷焊。

颗粒主要沿压力的作用方向运动。

颗粒之间以及颗粒与模壁之间的摩擦力阻止颗粒的整体运动,并且有些颗粒也阻止其他颗粒的运动。

最终颗粒变形,首先是弹性变形,接着是塑性变形;塑性变形导致加工硬化,削弱了在适当压力下颗粒进一步变形的能力。

与被压制粉末对应的金属或合金的力学性能决定塑性变形和加工硬化的开始。

例如,压制软的铝粉时颗粒变形明显早于压制硬的钨粉时的颗粒变形,最后颗粒断裂形成较小的碎片。

而压制陶瓷粉时通常发生断裂而不是塑性变形。

随着压力的增大,压坯密度提高。

不同粉末压制压力与压坯密度之间存在一定的关系。

然而,至今没有得到令人满意的压坯密度与压制压力之间的关系。

建立在实际物理模型基础上的一些关系,仍然是经验性的,因为其中使用了与粉末性能无关的调节参数。

更准确地应当使用给定粉末的压制压力与压坯密度之间关系的图形或表格数据。

二、粉末的位移粉末体的变形不仅依靠颗粒本身形状的变化,而且主要依赖于粉末颗粒的位移和孔隙体积的变化。

粉末体在自由堆积的情况下,其排列是杂乱无章的。

当粉末体受到外力作用时,外力只能通过颗粒间的接触部分来传递。

根据力的分解可知,不同连接处受到外力作用的大小和方向都不一样。

所以颗粒的变形和位移也是多种多样的。

当施加压力时,粉末体内的拱桥效应遭到破坏,粉末颗粒便彼此填充孔隙,重新排列位置,增加接触。

可用图4.9所示的两颗粉末5种状态来近似地说明粉末的位移情况。

图4.9 粉末位移的形式三、粉末的变形粉末体在受压后体积明显减小,这是由于粉末体在压制时不但发生了位移,而且还发生了变形。

粉末冶金粉末压制成型流程

粉末冶金粉末压制成型流程

粉末冶金粉末压制成型流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!粉末冶金粉末压制成型流程。

1. 粉末混合。

将多种粉末按照所需比例进行均匀混合,以确保材料成分的均匀性和性能一致性。

6.2粉末冶金成形工艺

6.2粉末冶金成形工艺

二、粉末பைடு நூலகம்形
1.普通模压法成形
2.特殊成形法 等静压成形,金属粉末轧制成形、粉 浆浇注成形、连续成形、无压成形、注射 成形、高能成形等。
三、烧结
在低于基体金属熔点下对金属粉末的 压坯进行加热,粉末颗粒之间产生原子扩 散、固溶、化合和熔接,致使压坯收缩并 强化的过程,称烧结。
四、后处理 金属粉末压坯经烧结后的处理叫后处理。 1.浸渍 利用烧结件空隙的毛细现象,在烧结件中浸入各种液体的过 程。为提高制件的润滑性能,可浸入润滑油、聚四氟乙烯溶液、 铅溶液;为提高制件的强度和防腐能力,可浸入铜溶液; 为提 高制件的表面保护能力,可浸入树脂或清漆。 2.表面冷挤压 包括为提高零件的尺寸精度和表面状况进行的整形压制;为 提高零件的密度,进行的复压;为改变零件的形状或表面状况, 进行的精压。 3.切削加工及热处理 对于零件上的横槽、横孔以及轴向尺寸精度较高的面,需进行切 削处理;为提高铁基制品的强度和硬度,可进行热处理。
第二节粉末冶金成形工艺过程
粉末冶金成形工艺流程为: 粉料制备--成形--烧结--后处理 一、粉料制备 粉末的制备方法有:机械法、物理化学法 1.机械法制粉 将原材料(块体材料)机械地粉碎而化学成分基本不变。 2.物理化学法 借助于化学反应或物理变化改变原材料的化学成分及聚集状态。 3.粉末的预处理 为改善粉末的纯度及表面活性,对粉末进行还原退火处理,以去 除粉末表面的氧化物和吸附的气体,消除粉末颗粒的加工硬化。 4.粉末的混合 将不同组元粉料混合均匀,以保证压制和烧结后制品成分均匀。
6.2粉末冶金成形工艺
第一节 概述
一、粉末冶金成形的概念 以金属粉为原料,通过成形、烧结和必要的后处理,制取 金属材料和制品的工艺。 二、粉末冶金的特点 1.能生产用其它工艺不能生产的材料和制品,如难熔材料;互不 溶解的金属或金属与非金属组成的假合金(铜-钨,银-钨、 铜-石墨);粉末冶金多孔材料。 2.是一种少无切削的成形工艺,能获得具有最终尺寸和形状的零 件。 三、粉末冶金成形的应用 可制造板、带、棒、管、丝等型材以及齿轮、链轮、棘轮、轴 承、轴套等零件。

粉末冶金成型原理

粉末冶金成型原理

中小学生足球学习兴趣的提高策略分析随着体育教育的普及和足球运动的热度不断增加,越来越多的中小学生对足球运动产生了浓厚的兴趣。

如何提高中小学生对足球学习的兴趣,让他们在足球运动中得到快乐和成长,是每个足球教练和老师都需要思考和关注的问题。

本文将分析并总结一些有效的策略,帮助中小学生提高足球学习兴趣。

一、注重趣味性和互动性中小学生的足球学习应该是一种快乐的体验。

教练和老师们可以通过增加趣味性和互动性,激发学生对足球的兴趣。

可以利用小游戏和趣味赛事的形式,让学生在轻松愉快的氛围中学习和训练足球技能,增强学生的参与感和归属感。

还可以引入一些趣味性的训练器材和设备,如彩色训练球、趣味障碍训练道具等,让学生在训练中感受到乐趣。

二、激发学生的竞争欲望竞争是足球运动中不可缺少的元素,教练和老师们可以通过设置一些竞赛和比赛,激发学生的竞争欲望,让他们在比赛中感受到胜利的喜悦和失败的挫折,从而提高学生的学习兴趣和积极性。

还可以利用小组合作的形式进行比赛训练,培养学生的团队合作意识和集体荣誉感,增强学生的足球学习兴趣。

三、关注学生的个性化需求中小学生的个性差异较大,教练和老师们应该关注学生的个性化需求,根据学生的特长和兴趣,灵活调整训练内容和方式。

对于对足球技能有特长的学生,可以给予重点培养和引导,提供更高级的技战术训练;对于对足球漫技能较为薄弱但对足球运动很感兴趣的学生,可以通过一些外围活动和故事分享,激发他们学习足球的热情。

只有关注学生的个性化需求,才能真正激发学生的学习兴趣。

四、营造积极的学习氛围教练和老师们应该努力营造一个积极向上的足球学习氛围,让学生在积极的氛围中学习和成长。

可以通过举办足球文化节、足球运动会等活动,让学生感受到足球运动的魅力和魅力,增强他们对足球的热爱。

还可以邀请一些足球明星或资深教练来学校做客,与学生分享足球学习经验和技巧,激发学生的学习兴趣。

五、鼓励学生坚持训练和比赛足球学习是一个长期的过程,教练和老师们应该鼓励学生坚持训练和比赛,培养学生的毅力和耐心。

粉末冶金成形

粉末冶金成形
致密化
通过烧结过程中的物质迁移和相变,使烧结体内部孔隙减小或消失, 提高其密度和性能。
致密化程度
与烧结温度、时间、气氛等因素有关,需根据产品要求进行控制。
03 粉末冶金成形的关键技术
粉末注射成形技术
定义
粉末注射成形是一种将金属粉末与有机粘结 剂混合,通过注射机注入模具中成形,然后 脱脂和烧结的工艺。
能源领域
粉末冶金技术在风力发电、核能等领 域中用于制造高性能的零部件。
粉末冶金成形的优缺点
材料利用率高,减少材料 浪费;
可生产出形状复杂、精度 高的制品;
优点
01
03 02
粉末冶金成形的优缺点
01
可通过控制成分和工艺参数制备高性能材料;
02
适用于大规模生产。
缺点
03
粉末冶金成形的优缺点
生产过程中易产生粉尘污染; 制品内部可能存在孔隙和缺陷; 部分材料制备成本较高。
等静压成形技术
定义
等静压成形技术是一种利用液体介质传递压力,使金属粉末在各 个方向上均匀受压而成形的工艺。
优点
可生产高精度、高密度、高性能的产品,适用于大规模生产。
应用领域
广泛应用于陶瓷、粉末冶金等领域。
04 粉末冶金成形的材料性能
材料力学性能
硬度
抗拉强度
粉末冶金制品的硬度通常较高,可达到 HRC60以上,这主要得益于其致密的结构 和合金元素的固溶强化作用。
粉末冶金制品具有较高的抗拉强度,通常 在1000MPa以上,这与其致密的结构和晶 粒细化有关。
疲劳性能
韧性
由于其良好的力学性能,粉末冶金制品在 循环载荷下表现出良好的疲劳性能。
粉末冶金制品的韧性与其成分、显微组织 和热处理状态有关,通过合理的工艺控制 可以提高其韧性。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

加压方式的影响
➢振动压制 ➢磁场压制
压制成形工艺
工艺过程
原料准备 称料 装料 压制 脱模
压制成形工艺
原料准备 ➢ 退火 ➢ 混合 ➢ 筛分 ➢ 制粒 ➢ 加润滑剂
压制成形工艺
称料
➢ 容积法
Q Vd松
➢ 重量法 Q Vd松 1 K
压制成形工艺
装料 ➢ 手工装料 ➢ 自动装料
✓ 落入法 ✓ 吸入法 ✓ 多余装料法 ✓ 零腔法 ✓ 超满法 ✓ 不满法
4H D
4
dp外 4 dH
p
D
p'
4H
pe D
p' p exp 4 H
D
p" p exp 8 H
D
压制过程力的分析
➢ 脱模压力pt
pt C p
与压制压力、粉末性能、压坯密度、压坯形状 尺寸、润滑剂等有关。
压制过程力的分析
➢ 弹性后效
l l0 100%
l0
层裂
x3
p1x E
x1 x2 x3 0
p1x p1y p1
p1 p 1
压制过程力的分析
➢ 压制压力(总压力)p ➢ 侧压力p1、侧压系数ξ
p1 p 1
f p1
➢ 外摩擦力f、摩擦系数μ
f p
压制过程力的分析
➢ 模底压力p’ ,p”
p外 p1
p外 p
p1
p
DHp D2 p
粉末压制成形
➢压制成形原理 ➢压坯密度分布 ➢压制成形工艺 ➢等静压成形简介
压制成形原理
压制过程与压坯密度: ➢ 消除松装拱桥效应 ➢ 塑性变形 陶瓷与金属压坯密度的比较
压制成形原理
压制过程力的分析
p p内 p外
弹性模量 E
泊松比
横 纵
压制过程力的分析
x1
p E
x2
p1y E
压制缺陷
开裂 ➢ 横向裂纹 ➢ 纵向裂纹 ➢ 分层
等静压成形原理
等静压成形原理
等静压成形工艺
等静压成形工艺
等静压成形模具
常用高分子材料:氯丁橡胶、硅氯丁橡 胶、聚氯乙烯、聚丙烯、聚氨酯等
影响压制成形的因素
➢ 粉末性能的影响 ➢ 润滑剂和塑化剂的影响 ➢ 工艺参数的影响 ➢ 加压方式的影响
粉末性能的影响
➢硬度 ➢流动性 ➢堆积密度 ➢粒度
润滑剂和塑化剂的影响
工艺参数的影响
加压速度 ➢ 冲击成形 ➢ 冲压成形 ➢ 静压成形 保压时间和卸压速度 ➢ 延长保压时间有利于压坯强度提高 ➢ 对卸压速度适当控制防止弹性变形反弹层裂
弹性后效的影响因素
➢ 为什么瘠性陶瓷粉末 成型时压制压力不宜 过大?
➢ 压制压力、粉末粒度、 压模材质和结构、压 坯孔隙率、润滑剂对 弹性后效有何影响?
粉末压制理论
➢ 巴尔申理论(1938) ➢ 川北公夫理论(1956) ➢ 黄培云理论(1964~1980)
巴尔申压制方程(1938)
d d
dp Kdh A
考虑了弹滞体应力、应变的弛豫与冷加工硬化 现象,并采用自然应力概念推导出公式:
lg ln (dm d0)d n lg p lg M (dm d)d0
压制方法及压坯密度分布
单向加压
压制方法及压坯密度分布
双向加压
压制方法及压坯密度分布
复杂零件的压制成形
➢ 带有台阶零件的压制 ➢ 带有曲面零件的压制 ➢ 长径较大零件的压制
压制成形工艺
压制 ➢ 行程限制法 ➢ 压力限制法
压制成形工艺
脱模
F 静 p侧 剩S侧
压制缺陷
物理性能 ➢ 压坯密度
为什么有时单重和高度符合工艺 要求却得不到合格的压坯密度? (提示:从公差方面考虑)
✓ 抗弯强度试验 ✓ 边角稳定性转鼓试验
压制缺陷
几何精度 ➢ 压坯尺寸精度:直径、长、宽、高等 ➢ 压坯形位精度:同轴度、直度等 ➢ 外观质量:划痕、拉毛、掉角、掉边等
dp A' H
kdh
lg
p
p
K
lg K
1
m
m lg
h 1
hk
A,H m 1
S坯
mபைடு நூலகம்
lg p lg pmax m lg
pmax K HB HV
p AH'
K
常数
米尔逊
川北公夫理论(1956)
c V0 V abp V0 1 bp
1 1 11 c ab p a
黄培云理论(1964)
相关文档
最新文档