人教版高中数学必修三第三章 概率全章教案

合集下载

高中数学人教A版必修3第三章《概率》小结教学设计

高中数学人教A版必修3第三章《概率》小结教学设计

第三章概率小结(人教A版高中课标教材数学必修3)教学设计一、教学内容解析本节课内容是《普通高中课程标准实验教科书数学》人教A版必修3第三章《概率》的小结课,本节教学内容为梳理本章知识内容,强化知识间的内在联系,提高综合运用知识解决问题的能力.掌握随机现象中的必然事件、不可能事件、随机事件的概念;掌握古典概型、几何概型的特点及概率运算;掌握互斥事件、对立事件的概念,会利用公式计算有关的问题的概率.概率小结是对概率概念和运算的丰富与升华,是对概率认识的又一次质的飞跃.根据本节课的内容特点以及学生的实际情况,在小结课之前让学生自己总结本章知识网络结构,在课堂上学生分组讨论并展示,加之老师对知识网络结构的归纳、总结和评价,使学生对本章内容有一个全面的认识.通过各类题组训练,让学生自己体会知识的横向、纵向联系,对相关概念的认识更加精准和深刻,同时也把它们作为本节课的教学重点.本节课的学习在发展学生运算能力的同时还需要培养学生运用所学知识解决实际问题的能力.另外,概率问题可以与其他模块知识交汇形成不同背景的综合问题,提高学生分析问题、解决问题的能力,因此本节的内容起到了新旧知识相互迁移、融会贯通的重要作用;并且通过本节内容的教学还为培养学生逻辑推理能力和渗透数形结合、等价转化的数学思想方法提供了重要的素材.二、教学目标设置新课标指出教学目标应体现学生学会知识与技能的过程也同时成为学生学会学习,形成正确价值观的过程.新课标要求:通过具体实例,进一步了解概率的意义以及频率与概率的区别;理解古典概型及其概率计算公式;初步体会几何概型的意义.根据新课标的理念及本节课的教学要求,制定了如下教学目标:1.在具体情景中,了解随机事件发生的不确定性和频率的稳定性,进一步了解概率的意义以及频率与概率的区别和联系,培养良好的思维品质.2.通过实例,了解两个互斥事件的概率加法公式,提高分析实际问题的能力,增强数学应用意识.3.通过实例,理解古典概型及其概率计算公式,会用列举法计算一些随机事件所含的基本事件数及事件发生的概率,从而渗透转化的数学思想方法.4.了解随机数的意义,能运用模拟方法估计概率,初步体会几何概型的意义,从而深入体会数形结合的思想方法.5.营造和谐的课堂氛围,通过独立思考,合作交流使学生获得学习数学的成功体验,培养良好的学习习惯及严谨的思维方式.三、学生学情分析本节课面对的是高一年级的学生,这个年龄段的学生思维活跃,求知欲强,但在思维习惯上还有待教师引导.通过之前的学习学生已经了解了概率的意义以及频率与概率的区别和联系,理解了古典概型和几何概型的概念及其计算.同时对于数形结合、等价转化的数学思想方法也有了初步的认识.为了更好的实现本节课的教学目标,需要学生从原有的知识和能力出发进一步体会频率与概率、古典概型和几何概型的内在联系,从而深入感受转化、类比的数学思想方法.让学生充分感受两种概率模型的研究方法和生成过程,从而深入体会数形结合的思想方法.从数形结合、等价转化的数学思想方法的初步具备到本节课的深入强化,从概率的意义、古典概型和几何概型的概念及其计算到整章知识的综合应用,可通过实际教学中积极的双边活动让学生自主寻求解决问题的途径.激发学生学习热情,提高课堂效率,使知识得到螺旋式的巩固与提高.而对于加强学生自身对于数学的应用意识及实际问题的分析能力方面,还有待于教师的指导帮助.根据本节课的教学内容及学生的实际情况,我将本节课的教学难点制定为:对概率本质的深入理解,古典概型和几何概型的概念及其计算的实际应用.学生根据教师提供的情境,采用观察、分析、抽象、概括等方式探索知识,归纳知识.通过创设情境疑问,引导学生开展独立思考、主动探究、合作交流,探求解决问题的方法.鼓励学生创新思考,加强数学实践,培养学生的理性思维,同时注重培养学生良好的数学学习习惯.四、教学策略分析1.《高中数学课程标准》倡导自主探索、动手实践、合作交流等学习方式.根据本节课的教学内容和学生自主学习能力相对比较强的特点,以问题串驱动整个课堂的进行,采用启发、引导、探究相结合的教学方法.2.为了更直观、形象地突出重点,突破难点,借助多媒体或实物投影仪等信息技术手段,增加信息量,为学生的数学探究与数学思维提供支持.3.数学是一门培养重要思维的学科.根据本课特点及学生情况,教学中教师通过创设情境,设置问题,启发学生通过主动观察、主动思考、自主探究、合作交流,实现动眼、动手、动脑操作来达到对知识的发现和接受.围绕本节课的教学重点,教学过程中以问题为驱动,逐层递进,使学生对知识的探究由表及里,逐步深入.通过思考题,以“问题串”形式组织教学,通过探究,引导学生思考、归纳、总结.例题、练习、变式题的设置从浅入深,课后作业分层布置,设置为巩固型、思维拓展型两个阶段,为不同认知基础的学生提供相应的学习机会.在教学过程中,反馈应体现在学生对于课堂所学知识的掌握情况,同时也体现在教师对于学生解题过程中的诊断性评价.例题的自主完成要给学生足够的时间,通过学生板演反馈知识内化情况.通过反馈教师给予学生更有针对性的指导帮助,从而真正实现知识的内化.五、教学过程教学流程:问题1:小组活动,组内学生讨论总结的知识网络结构.师生活动:教师提问,学生思考、回答,教师根据学生回答的情况加以补充、完善.【设计意图】学生及时查漏补缺,让学生再经历知识由零乱到系统的过程,构建起完整的单元知识网络,为单元复习课的深入开展奠定坚实的基础,同时可以使学生逐步形成自主归纳的意识,增强归纳知识的能力.在数学课堂教学中,让学生围绕中心议题展开合作交流,能充分展示学生的主体地位,使学生从“学会”向“会学”转化,促使学生主动地、开放地学习.同时它能充分发扬民主,吸引学生参与,激活思维火花,开启智慧闸门,给学生以发展个性、展示才华的机会,使学生的探索能力得到提高与发展,另外还能培养学生的团结协作能力和社会交往能力.(二)目标训练,突出重点学生完成一组基础训练题,回顾《概率》一章基本概念和基本运算.1.下列说法正确的序号是①不可能事件的概率是0,必然事件的概率是1;0,1之间;②任何事件的概率总是在()③频率是客观存在的,与试验次数无关;④随着试验次数的增加,频率一般会越来越接近概率;⑤概率是随机的,在试验前不能确定;⑥某人射击10次,击中靶心8次,则他击中靶心的概率是0.8 .2.下列事件:①如果a>b,那么a-b>0;②任取一实数a(a>0且a≠1),函数y=log a x是增函数;③某人射击一次,命中靶心;④从装有1个红球、2个白球共3个球的袋子中,摸出一球是黄球;其中是随机事件的为( )A .①②B .③④C .①④D .②③3.12个同类产品中含有2个次品,现从中任意抽出3个,必然事件是( )A .3个都是正品B .至少有一个是次品C .3个都是次品D .至少有一个是正品4. 如果事件A 、B 互斥,且事件A 、B 分别是A 、B 的对立事件,那么( )A. 事件A B 是必然事件; B .事件A B 是必然事件;C .事件A 与B 一定互斥;D .事件A 与B 一定互斥.5.下列结论不正确的是( )A. 若(A)0P =,则(A)1P =;B. 若事件A 、B 对立,则(A B)1P +=;C .若事件A 、B 、C 两两互斥,则事件事件A 与B C +也互斥;D .若事件A 与B 互斥,则事件A 与B 一定不互斥.6.(2014·江苏)从1、2、3、6这4个数中一次随机地取2个数,则所取2个数的乘积为6的概率是________.7.(2013·江苏)现在某类病毒记作X m Y n ,其中正整数m 、n (m ≤7,n ≤9)可以任意选取,则m ,n 都取到奇数的概率为________.8. 在长为12 cm 的线段AB 上任取一点M ,并以线段AM 为一边作正方形,则此正方形的面积介于36 cm 2与81 cm 2之间的概率为 ( )A. 116B. 18C. 14D. 12 9. 在长方体1111ABCD A B C D -内任意取点,则该点落在四棱锥1B ABCD -内部的概率是( )A .12B .13C .14D .16 10. 在棱长为2正方体1111ABCD A B C D -中,点O 为底面ABCD 的中心,在正方体1111ABCD A B C D -内随机取点P ,则该点P 到点O 的距离大于1的概率是( )A .12πB .112π-C .6πD .16π- 学生自主完成,小组讨论,回答老师提出的问题.问题1:恒成立问题、可成立问题、不成立问题分别对应那些事件?问题2:事件的关系有哪些?问题3:事件的关系与集合论的哪些概念等价?问题4:如何利用集合韦恩图解释第4、5题?问题5:第8、9、10题的几何概型的测度分别是什么?师生活动:教师提问,学生思考、回答,教师根据学生回答的情况加以补充、完善.【设计意图】通过设计一组简单的,全面包含要复习的各类知识点的题组进行引入,它的落脚点绝非是为巩固知识技能而进行的简单重复,而是将学生的知识结构分散在不同的知识之中,将渗透或运用的思想、方法有共同点的习题重新组合呈现.这种引入方式有利于激发学生反思,使其产生探究欲望,有利于学生针对具体情况建构用于指引问题解决的图式,形成背景性经验.题目的设置主要是学生以前的错题的再现与澄清,要有层次、有梯度.不仅考查学生的基础知识,还要考查学生基本能力,让学生进行限时训练,力图发现新问题,突出重点和补救性,这是对复习的数学知识和思想方法的运用,是培养学生解题能力的又一次升华.教师借题点拨,系统归纳、总结出有关的基础知识、思想方法和规律等,并板书.(三)典型例题,探究分析1.频率与概率1.下列说法中正确的个数是()①频率反映随机事件的频繁程度,概率反映随机事件发生可能性的大小;②概率为0的事件一定是不可能事件,概率为1的事件一定是必然事件;③每个实验结果出现的频率之和不一定等于1;④频率是不能脱离n次试验的试验值,而概率是具有确定性的不依赖于试验次数的理论值;⑤频率是概率的近似值,而概率是频率的稳定值.A. 4B. 3 C.2 D.1师生活动:教师提问,学生思考、回答,教师根据学生回答的情况加以补充、完善.问题1:概率为0的事件一定是不可能事件吗?为什么?问题2:你能举几个实例吗?师生活动:教师引导学生设计三个测度不同的几何概型问题.2.古典概型中事件的关系和运算2.从装有2个红球和2个白球的口袋中任取两球,那么下列事件中是互斥事件的个数是( )①至少有一个白球,都是白球;②至少有一个白球,至多有一个红球;③恰有一个白球,恰有2个白球;④至少有一个白球,都是红球.A. 0B. 1C. 2D. 3问题1:分别说明每一组事件是什么关系?师生活动:教师提问,学生思考、回答,教师根据学生回答的情况加以补充、完善.3.一个箱子中有红、黄、白三色球各一个, 求:⑴.从中不放回地抽取2个球,①有红色球的概率;②没有红色球的概率;(2).从中不放回地抽取2次,①第一次取到红色球的概率;②没有红色球的概率;(3).从中每次任取一个,有放回地抽取2次,①2次全是红球的概率;②2次颜色全相同的概率;③2次颜色不相同的概率;④2次至少有一次是红球的概率;⑤2次至多有一次是红球的概率.问题1:以上三种不同的抽取方式下的所有基本事件总数分别是多少?如何表示?渗透了哪种数学思想?问题2:分别求解各个事件的概率?师生活动:教师提问,学生思考、回答,教师根据学生回答的情况加以补充、完善.3.几何概型中的不同测度4.如图,在等腰三角形ABC中,∠B=∠C=30°,求下列事件的概率:(1)在底边BC上任取一点P,使BP<AB;(2)在∠BAC的内部任作射线AP交线段BC于P,使BP<AB.问题1:以上两个问题是什么概型?为什么?问题2:它们的测度分别是什么?如何求其概率?ACPB第4题问题3:本题体现了什么数学思想?师生活动:教师提问,学生思考、回答,教师根据学生回答的情况加以补充、完善.4.古典概型和几何概型综合应用5.已知向量(1,1),(,)a b x y =-=.(1)若x ,y 分别表示将一枚质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6,先后抛掷两次时第一次、第二次出现的点数,求满足1a b =-的概率;(2)若,x y ∈[]1,6,求满足1a b >-的概率.问题1:以上两个问题分别是什么概型?为什么?问题2:事件A :1a b =-等价于什么? 事件B :1a b >-等价于什么?问题3:第二个问题的测度是什么?如何求其概率?问题4:本题体现了什么数学思想?师生活动:教师提问,学生思考、回答,教师根据学生回答的情况加以补充、完善.【设计意图】数学复习离不开解题教学,应以知识和能力并重、螺旋上升的原则设置典型例题题组.对每个例题由老师设置问题链引导学生思考,突破一个个问题,从而打通解题的思路以及相关知识点之间的逻辑关系,在引导的过程中不能就题论题,而要引导学生对解题规律进行总结,对知识进行提升,做到让学生知其所以然,既重视基础知识、基本技能的训练,又重视核心思想方法的渗透,以期达到“讲一题、得一法、会一类、通一片”的效果,切实提高学生的解题能力.(四)高考链接,拓展提高1.(2016年北京高考)从甲、乙等5名学生中随机选出2人,则甲被选中的概率为( )(A )15 (B )25 (C )825 (D )9252.(2016年天津高考)甲、乙两人下棋,两人下成和棋的概率是21,甲获胜的概率是31,则甲不输的概率为( )(A )65 (B )52 (C )61 (D )31 3.(2016年全国I 高考)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( )(A )13 (B )12 (C )23 (D )344.(2007年海南 宁夏)设有关于x 的一元二次方程2220x ax b ++=.(Ⅰ)若a 是从0123,,,四个数中任取的一个数,b 是从012,,三个数中任取的一个数,求上述方程有实根的概率.(Ⅱ)若a 是从区间[03],任取的一个数,b 是从区间[02],任取的一个数,求上述方程有实根的概率.师生活动:小组讨论,代表发言交流.【设计意图】高考题有一定的系统性、针对性,有明确的考查目标和培养方向,有利于多方面地促使学生对知识本质的认识,有利于对各种数学思想方法的熟练掌握,有利于培养学生思维的灵活性和深刻性.(五)归纳总结,反思升华【设计意图】教学中要有意识地关注学生在学习过程中的感悟,引导学生反思:每个题组复习了哪些知识?重温了哪些方法?用到了哪些技能?体现了哪些思想?哪道题可以推广、引申?将一题多解及多题一解的疑问交给学生,让学生深入探讨,教师要引导学生根据问题进行反思,在反思中巩固知识、深化认识、提高水平,使学生的知识就能由点到线、由线到面、由面到整体,最终形成最为科学的知识框架和体系.每次学习仅是一种经历,只有通过不断的反思,把经历提升为经验,学习才具备了真正的价值和意义.从这个意义上说,帮助学生养成学习反思的习惯,培养学生的反思意识,对学生的个性发展有不可估量的作用.布置作业:一张练习题【设计意图】课后作业是课堂教学的延伸,它既是对单元知识的巩固训练,也是对单元知识的拓展延伸,可加深对知识的理解、形成数学能力.作业设置一要有针对性,在复习中针对学生学习中的重点、难点、易错点进行选题,避免过多的重复训练.二要有层次性,作业不是一味的罗列习题,而是要将题目有梯度的安排,使每一位学生在做题中都能感受到挑战的存在.教学中还应关注学生的个体差异,允许学生思维方式的多样化和思维水平的不同层次,同时应努力为学有余力的学生提供平台,立足于单元知识,为他们提供几道拓展探究性的习题,并给予个别指导,实现分层提高.。

人教A版高中数学必修3《三章 概率 3.3 几何概型 3.3.2 均匀随机数的产生》优质课教案_7

人教A版高中数学必修3《三章 概率  3.3 几何概型  3.3.2 均匀随机数的产生》优质课教案_7

3.3.2均匀随机数的产生学习目标 1.了解均匀随机数的意义,会利用计算器(计算机)产生均匀随机数;2.理解用模拟方法估计概率的实质,会用模拟方法估计概率;3.会利用均匀随机数解决具体的有关概率的问题.知识点一均匀随机数的意义思考回忆一下在古典概型中我们是如何利用整数值随机数来模拟古典概型的?能不能用它来模拟几何概型?答案我们用整数值随机数对应古典概型中的基本事件,通过大量产生随机数来代替试验,通过统计产生的随机数中代表事件A发生的那些数的个数,进而计算频率来估计事件A发生的概率.因为几何概型的基本事件无限多,代表总的基本事件以及事件A包含的基本事件是连续的区域,所以不能用整数值随机数来模拟几何概型.要想用随机数对应几何概型中的基本事件,也需要用连续的.一般地,在取值区间[a,b]上的任何一个实数出现的可能性都是相等的.我们把这样的随机数叫均匀随机数.知识点二均匀随机数的产生1.计算器上产生[0,1]的均匀随机数的函数是RAND函数.2.Excel软件产生[0,1]的均匀随机数的函数为“rand ()”.3.[a,b]上均匀随机数的产生.利用计算器或计算机产生[0,1]上的均匀随机数x=RAND,然后利用伸缩和平移交换,x=x1*(b-a)+a就可以得到[a,b]内的均匀随机数,试验的结果是[a,b]上的任何一个实数,并且任何一个实数都是等可能的.知识点三用模拟方法估计概率思考我们已经有了几何概型概率公式,为什么还要估计概率?答案原因有两个:一个是几何概型涉及的区域不规则,难以度量;另一个是用计算机产生随机数样本容量可以很大,而且统计结果方便快捷,可操作性强.用模拟方法估计概率的步骤:①把实际问题中事件A及基本事件总体对应的区域转化为随机数的范围;②用计算机(或计算器)产生指定范围内的随机数; ③统计试验的结果,代入几何概型概率公式估得概率.利用几何概型的概率公式,结合随机模拟试验,可以解决求概率、面积、参数值等一系列问题.类型一 均匀随机数的产生例1 取一根长度为5 m 的绳子,拉直后在任意位置剪断,用均匀随机模拟方法估计剪得两段的长都不小于2 m 的概率有多大?解 设“剪得两段的长都不小于2 m ”为事件A .(1)利用计算器或计算机产生n 个0~1之间的均匀随机数,x =RAND. (2)作伸缩变换:y =x *(5-0),转化为[0,5]上的均匀随机数. (3)统计出[2,3]内均匀随机数的个数m . (4)概率P (A )的近似值为mn.反思与感悟 均匀随机数的产生都是以[0,1]上的均匀随机数为基础,通过平移和伸缩变换得到目标区间上的随机数.跟踪训练1 如图所示,向边长为2的正方形内投飞镖,用计算机随机模拟这个试验,求飞镖落在中央边长为1的正方形内的概率.解 用计算机随机模拟这个试验,步骤如下:(1)利用计算器或计算机产生两组[0,1]上的均匀随机数a 1=RAND ,b 1=RAND.(2)经过伸缩平移变换,a =(a 1-0.5)*4,b =(b 1-0.5)*4得到两组[-2,2]上的均匀随机数. (3)统计出试验总次数N ,落在阴影部分的次数N 1.(4)计算频率f n (A )=N 1N就是飞镖落在小正方形内的概率的近似值.类型二 随机模拟方法例2 假设你家订了一份报纸,送报人可能在早上6:30~7:30之间把报纸送到你家,你父亲离开家去上班的时间在早上7:00~8:00之间,如果把“你父亲在离开家之前能得到报纸”称为事件A ,你能设计一种随机模拟的方法近似计算事件A 发生的概率吗? 解 方法一 (随机模拟的方法)做两个带有分针的圆盘,标上时间,分别旋转两个圆盘,记下父亲在离家前能得到报纸的次数,则P (A )=父亲在离家前能得到报纸的次数试验的总次数.方法二 用计算机产生随机数模拟试验.X 是0~1之间的均匀随机数,Y 也是0~1之间的均匀随机数.如果Y +7>X +6.5,即Y >X -0.5,那么父亲在离开家前能得到报纸.在计算机上做M 次试验,统计一下Y >X -0.5的Y 的个数,如果为N ,则所求概率为N /M .反思与感悟 用随机数模拟的关键是把实际问题中事件A 及基本事件总体对应的区域转化为随机数的范围.用转盘产生随机数,这种方法可以亲自动手操作,但费时费力,试验次数不可能很大.用计算机产生随机数,可以产生大量的随机数,又可以自动统计试验的结果,同时可以在短时间内进行多次重复试验,可以对试验结果的随机性和规律性有更深刻的认识.跟踪训练2 在下图的正方形中随机撒一把豆子,计算落在圆中的豆子数与落在正方形中的豆子数之比并以此估计圆周率的值.解 随机撒一把豆子,每个豆子落在正方形内任何一点是等可能的,落在每个区域的豆子数与这个区域的面积近似成正比,即圆的面积正方形的面积≈落在圆中的豆子数落在正方形中的豆子数.设正方形的边长为2,则圆半径为1,则圆的面积正方形的面积=π2×2=π4,由于落在每个区域的豆子数是可能数出来的,所以π≈落在圆中的豆子数落在正方形中的豆子数×4.所以就得到了π的近似值.类型三 用模拟法估计面积例3 利用随机模拟方法计算由y =1和y =x 2所围成的图形的面积.解 以直线x =1,x =-1,y =0,y =1为边界作矩形,(1)利用计算器或计算机产生两组0~1区间的均匀随机数,a 1=RAND ,b =RAND ; (2)进行平移和伸缩变换,a =2(a 1-0.5);(3)数出落在阴影内的样本点数N 1,用几何概型公式计算阴影部分的面积. 例如做1 000次试验,即N =1 000,模拟得到N 1=698, 所以P =N 1N =阴影面积矩形面积=6981 000,即阴影面积S =矩形面积×6981 000=2×6981 000=1.396. 反思与感悟 解决本题的关键是利用随机模拟法和几何概率公式分别求得几何概率,然后通过解方程求得阴影部分面积的近似值,解决此类问题时注意两点:一是选取合适的对应图形;二是由几何概型正确计算概率.跟踪训练3 利用随机模拟的方法近似计算图中阴影部分(y =2-2x -x 2与x 轴围成的图形)的面积.解 (1)利用计算机产生两组[0,1]上的均匀随机数,a 1=RAND ,b 1=RAND ;(2)经过平移和伸缩变换a =a 1*4-3,b =b 1*3,得到一组[-3,1],一组[0,3]上的均匀随机数;(3)统计试验总次数N 和落在阴影部分的点数N 1(满足条件b<2-2a -a 2的点(a ,b )个数); (4)计算频率N 1N就是点落在阴影部分的概率的近似值;(5)设阴影部分面积为S .由几何概型概率公式得点落在阴影部分的概率为S12.即S 12≈N 1N. 所以S ≈12N 1N即为阴影部分面积的近似值.1.用均匀随机数进行随机模拟,可以解决( ) A.只能求几何概型的概率,不能解决其他问题 B.不仅能求几何概型的概率,还能计算图形的面积 C.不但能估计几何概型的概率,还能估计图形的面积 D.最适合估计古典概型的概率 答案 C2.关于用Excel 软件产生均匀随机数,下列说法错误的是( ) A.只能产生[0,1]区间上的随机数 B.产生均匀随机数的函数是RAND C.产生的均匀随机数是伪随机数D.用Excel 软件不但能产生大量均匀随机数,还方便统计结果. 答案 B3.将[0,1]内的均匀随机数转化为[-3,4]内的均匀随机数,需要实施的变换为( ) A.a =a 1*7 B.a =a 1*7+3 C.a =a 1*7-3 D.a =a 1*4答案 C解析 根据伸缩和平移变换a =a 1*[4-(-3)]+(-3)= a 1*7-34.用随机模拟方法求得某几何概型的概率为m ,其实际概率的大小为n ,则( ) A.m >n B.m <nC.m =nD.m 是n 的近似值 答案 D解析 随机模拟法求其概率,只是对概率的估计.5.设x 是[0,1]内的一个均匀随机数,经过变换y =2x +3,则x =12对应变换成的均匀随机数是( )A.0B.2C.4D.5 答案 C1.在区间[a ,b ]上的均匀随机数与整数值随机数的共同点都是等可能取值,不同点是均匀随机数可以取区间内的任意一个实数,整数值随机数只取区间内的整数.2.利用几何概型的概率公式,结合随机模拟试验,可以解决求概率、面积、参数值等一系列问题,体现了数学知识的应用价值.一、选择题1.用计算器或计算机产生20个[0,1]之间的随机数x ,但是基本事件都在区间[-1,3]上,则需要经过的线性变换是( ) A.y =3x -1 B.y =3x +1 C.y =4x +1 D.y =4x -1答案 D解析 将区间[0,1]伸长为原来的4倍,再向左平移一个单位得区间[-1,3],所以需要经过的线性变换是y =4x -1.2.与均匀随机数特点不符的是( ) A.它是[0,1]内的任何一个实数 B.它是一个随机数C.出现的每一个实数都是等可能的D.是随机数的平均数 答案 D解析 A 、B 、C 是均匀随机数的定义,均匀随机数的均匀是“等可能”的意思,并不是“随机数的平均数”.3.质点在数轴上的区间[0,2]上运动,假定质点出现在该区间各点处的概率相等,那么质点落在区间[0,1]上的概率为( ) A.14 B.13C.12D.以上都不对 答案 C解析 区间[0,2]的长度为2,记“质点落在区间[0,1]上”为事件A ,则事件A 的区间长度为1,则P (A )=12.4.一海豚在水池中自由游弋,水池为长30 m ,宽20 m 的长方形,海豚离岸边不超过2 m 的概率为(注:海豚所占区域忽略不计)( ) A.1150 B.2125 C.2375 D.1300 答案 C解析 记“海豚离岸边不超过 2 m ”为事件A ,则事件A 为“海豚离岸边超过2 m ”.且P (A )=(20-4)×(30-4)20×30=5275.∴P (A )=1-P (A )=2375.5.在线段AB 上任取三个点x 1,x 2,x 3,则x 2位于x 1与x 3之间的概率是( ) A.12 B.13 C.14 D.1 答案 B解析 因为x 1,x 2,x 3是线段AB 上任意的三个点,任何一个数在中间的概率相等且都是13.6.向图中所示正方形内随机地投掷飞镖,则飞镖落在阴影部分的概率为( )A.14B.2536C.25144 D.1 答案 C解析 直线6x -3y -4=0与直线x =1交于点⎝⎛⎭⎫1,23,与直线y =-1交于点⎝⎛⎭⎫16,-1,易知阴影部分面积为12×56×53=2536.∴P =S 阴影S 正方形=25364=25144.7.如图,边长为2的正方形中有一封闭曲线围成的阴影区域,在正方形中随机撒一粒豆子,它落在阴影区域内的概率为23,则阴影区域的面积约为()A.43B.83 C.23 D.无法计算答案 B解析 ∵S 阴影S 正方形≈23,∴S 阴影≈23S 正方形=83.8.如图所示,在墙上挂着一块边长为16 cm 的正方形木块,上面画了小、中、大三个同心圆,半径分别为2 cm 、4 cm 、6 cm ,某人站在3 m 之外向此板投镖,设镖击中线上或没有投中木板时不算,可重投,记事件A ={投中大圆内},事件B ={投中小圆与中圆形成的圆环内}, 事件C ={投中大圆之外}.(1)用计算机产生两组[0,1]内的均匀随机数,a 1=RAND ,b 1=RNAD.(2)经过伸缩和平移变换,a =16a 1-8,b =16b 1-8,得到两组[-8,8]内的均匀随机数. (3)统计投在大圆内的次数N 1(即满足a 2+b 2<36的点(a ,b )的个数),投中小圆与中圆形成的圆环次数N 2(即满足4<a 2+b 2<16的点(a ,b )的个数),投中木板的总次数N (即满足上述-8<a <8,-8<b <8的点(a ,b )的个数).则概率P (A ),P (B ),P (C )的近似值分别是( ) A.N 1N ,N 2N ,N -N 1N B.N 2N ,N 1N ,N -N 2N C.N 1N ,N 2-N 1N ,N 2N D.N 2N ,N 1N ,N 1-N 2N 答案 A解析 P (A )的近似值为N 1N ,P (B )的近似值为N 2N ,P (C )的近似值为N -N 1N .二、填空题9.在区间[-1,1]上随机任取两个数x ,y ,则满足x 2+y 2<14的概率为________.答案π16解析 当x ,y ∈[-1,1]时,点(x ,y )构成的区域是一个边长为2的正方形,其面积等于2×2=4,而满足x 2+y 2<14的点(x ,y )构成的区域是一个半径为12的圆的内部,其面积等于π4,所以所求概率P =π44=π16.10.方程x 2+x +n =0 (n ∈(0,1))有实根的概率为________. 答案 14解析 方程有实根,则Δ=12-4n ≥0,即n ≤14,又n ∈(0,1),∴方程有实根的概率为P =14-01-0=14.11.利用计算机产生0~1之间的均匀随机数a ,则事件“3a -1<0”发生的概率为________. 答案 13解析 由3a -1<0得a <13.由几何概型概率公式得P =13.12.已知如图所示的矩形,其长为12,宽为5.在矩形内随机地撒1 000颗黄豆,数得落在阴影部分的黄豆数为550颗,则可以估计出阴影部分的面积约为________.答案 33解析 据题意可知,黄豆落在阴影部分的概率约为5501 000=1120 ,其概率可用阴影部分的面积与矩形面积的比来度量,即1120=S 阴影S 矩形=S 阴影12×5⇒S 阴影=33.三、解答题13.利用随机模拟方法计算图中阴影部分(曲线y =2x 与x 轴、x =±1所围成的部分)的面积.解 (1)利用计算机产生两组[0,1]区间上的均匀随机数,a 1=RAND ,b 1=RAND ; (2)进行平移和伸缩变换得到一组[-1,1]区间上的均匀随机数和一组[0,2]区间上的均匀随机数;(3)统计试验总次数N 和落在阴影内的点数N 1(满足条件b <2a 的点(a ,b )的个数); (4)计算频率N 1N ,即落在阴影部分的概率的近似值;(5)设阴影面积为S ,则用几何概型公式求得点落在阴影部分的概率为P =S4.所以N 1N ≈S 4,所以S ≈4N 1N ,即为阴影部分面积的近似值.。

人教B版高中数学必修三《第三章 概率 3.4 概率的应用》_0

人教B版高中数学必修三《第三章 概率 3.4 概率的应用》_0

《概率的应用》教学设计一、教材分析让学生了解随机事件发生的不确定性和频率的稳定性;让学生澄清生活中的一些对概率的错误认识,进一步体会频率的稳定性和随机思想;让学生感受概率就在身边,从而深化对概率定义的认识。

就知识的应用价值上来看;概率是反映自然规律的基本模型。

概率已经成为一个常用词汇,为人们做决策提供依据。

就内容的人文价值来看:研究概率涉及了必然与偶然的辩证关系,是培养学生应用意识和思维能力的良好载体。

二、教学目标1.正确理解概率的意义;利用概率知识正确理解现实生活中的实际问题.2.通过对现实生活中的“掷币”“游戏的公平性”“彩票中奖”等问题的探究,感知应用数学知识解决数学问题的方法,理解逻辑推理的数学方法.3.通过对概率的实际意义的理解,体会知识来源于实践并应用于实践的辩证唯物主义观,进而体会数学与现实世界的联系.三、教学重难点教学重点:理解概率的意义.教学难点:用概率的知识解释现实生活中的具体问题.四、教学过程(一)导入部分1、概率在现实生活中有哪些应用?教师给出天气预报的例子2、在我们身边有很多概率的例子,你能举出概率的实例吗?活动学生思考举例可以说,概率来源于生活,应用于生活,只要你有一双善于观察的眼睛,便会发现生活中到处都有概率。

(二)研探新知,建构概念给出概率的意义涉及到三个概念1、概率的客观性概率的大小是随机事件发生的“可能性”的客观体现,与我们所说的“可能”“估计”是不同的,也就是说,单独一次结果的不肯定性与大量重复试验累积的结果是有规律的,才是概率意义上的“可能性”。

2、概率的可能性概率是根据大量的随机试验得到的一个相应的期望值,它说明一个事件发生可能性的大小,并不说明这事件一定发生或不发生。

3、随机事件变量的大小任何事件的概率都是区间[0,1]上的一个确定数,它度量该事件发生的可能性。

小概率(概率接近于0)事件不是不发生,也就是发生的可能性较小;大概率(概率接近于1)事件不是一定发生,而是经常发生,也就是发生的可能性较大。

人教A版高中数学必修3《第三章 概率 3.1 随机事件的概率 3.1.2 概率的意义》_47

人教A版高中数学必修3《第三章 概率 3.1 随机事件的概率 3.1.2 概率的意义》_47

《概率的意义》教案1.知识与技能:(1)正确理解概率的意义;(2)利用概率知识正确理解现实生活中的实际问题;2.过程与方法:通过对现实生活中的“掷币”,“游戏的公平性”,、“彩票中奖”等问题的探究,感知应用数学知识解决数学问题的方法。

3.情感态度与价值观:通过对概率的实际意义的理解,体会知识来源于实践并应用于实践的辩证唯物主义观,进而体会数学与现实世界的联系。

二重点与难点:重点:对概率含义的正确理解及其在实际中的应用;难点:随机试验结果的随机性与规律性的联系。

三学法:试验观察自主探究四教学过程复习引入1.请大家回忆一下随机事件发生的概率的定义?2.频率与概率的有什么区别和联系?区别:联系:3、谁能说一说掷一枚质地均匀的硬币出现正面的概率为1/2的含义?学习新课要点诠释:①概率是频率的稳定值,而频率是概率的近似值;②频率和概率在试验中可以非常接近,但不一定相等;③概率是事件在大量重复实验中频率逐渐稳定到的值,即可以用大量重复实验中事件发生的频率去估计得到事件发生的概率,但二者不能简单地等同,两者存在一定的偏差是正常的,也是经常的.【典型例题】(1)指出下列事件中,哪些是不可能事件?哪些是必然事件?哪1 若 a、b、c都是实数,则a(bc)=(ab)c;②没有空气,动物也能生存下去;③在标准大气压下,水在 90℃时沸腾;④直线 y=k(x+1)过定点(-1,0);⑤某一天内电话收到的呼叫次数为 0;⑥一个袋内装有形状大小完全相同的一个白球和一个黑球,从中任意摸出 1个球则为白球.【思路点拨】结合生活经验和所学知识进行判断.【答案与解析】①④是必然事件;②③是不可能事件;⑤⑥是随机事件.【总结升华】要准确掌握不可能事件、必然事件、随机事件的定义.举一反三【变式1】下列事件是必然事件的是( ).A.明天要下雨;B.打开电视机,正在直播足球比赛;C.抛掷一枚正方体骰子,掷得的点数不会小于1;D.买一张彩票,一定会中一等奖.【答案】C.【变式2】(2015•南岗区一模)同时抛掷两枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,下列事件中的不可能事件是()A.点数之和小于4 B.点数之和为10C.点数之和为14 D.点数之和大于5且小于9【答案】C.解:因为同时抛掷两枚质地均匀的正方体骰子,正方体骰子的点数和应大于或等于2,而小于或等于12.显然,是不可能事件的是点数之和是14.C.在一个不透明的口袋中,装有10个除颜色外其它完全相同的球,5个红球,3个蓝球,2个白球,它们已经在口袋中搅匀了.下列事件中,哪些是必然发生的?哪些是不可能发生的?哪些是可能发生的?(1)从口袋中任取出一个球,它恰是红球;(2)从口袋中一次性任意取出2个球,它们恰好全是白球;(3)从口袋中一次性任意取出5个球,它们恰好是1个红球,1个蓝球,3个白球.【答案与解析】(1)可能发生,因为袋中有红球;(2)可能发生,因为袋中刚好有2个白球;(3)不可能发生,因为袋中只有2个白球,取不出3个白球.【总结升华】要了解并掌握三种事件的区别和联系.举一反三:【变式】甲、乙两人做掷六面体骰子的游戏,双方规定,若掷出的骰子的点数大于3,则甲胜,若掷出的点数小于3,则乙胜,游戏公平吗?若不公平,请你设计出一种对于双方都公平的游戏.【答案】不公平,小于3的点数有1、2,大于3的点数有4、5、6,因此,它们的可能性是不同的,所以不公平.可设计掷出的点数为偶数时甲胜,掷出的点数为奇数时乙胜.关于频率和概率的关系,下列说法正确的是()B. 当实验次数很大时,频率稳定在概率附近C. 当实验次数很大时,概率稳定在频率附近D. 实验得到的频率与概率不可能相等【思路点拨】对于某个确定的事件来说,其发生的概率是固定不变的,而频率是随着试验次数的变化而变化的.【答案】B.【解析】事件的概率是一个确定的常数,而频率是不确定的,当试验次数较少时,频率的大小摇摆不定,当试验次数增大时,频率的大小波动变小,并逐渐稳定在概率附近..如图所示,转盘停止后,指针落在哪个颜色区域的可能性大?为什在该区域的可能性也大.【答案与解析】落在黄色区域的可能性大.理由如下:由图可知:黄色占整个转盘面积的.【总结升华】计算随机事件的可能性的大小,根据不同题目的条件来确定解法,如面积法、数值法等.(2015春•江都市期末)“2015扬州鉴真国际半程马拉松”的赛事共A、“半程马拉松”、B、“10公里”、C、“迷你马拉松”.小明参加了该项赛事的志愿者服务工作,组委会随机将志愿者分配到三个项目组.(1)小明被分配到“迷你马拉松”项目组的概率为.(2)为估算本次赛事参加“迷你马拉松”的人数,小明对部分参赛选手作人数的概率为.(精确到0.1)②若本次参赛选手大约有30000人,请你估计参加“迷你马拉松”的人数是多少?【思路点拨】(1)利用概率公式直接得出答案;(2)①利用表格中数据进而估计出参加“迷你马拉松”人数的概率;②利用①中所求,进而得出参加“迷你马拉松”的人数.【答案与解析】解:(1)∵小明参加了该项赛事的志愿者服务工作,组委会随机将志愿者分配到三个项目组,“迷你马拉松”(2“迷你马拉松”人数的概率为:0.4;故答案为:0.4;②参加“迷你马拉松”的人数是:30000×0.4=12000(人).【总结升华】此题主要考查了利用频率估计概率:当大量重复试验时,频率会稳定在概率附近.正确理解频率与概率之间的关系是解题关键.举一反三(2)这个射手射击一次,击中靶心的概率约是多少(精确到0.1)?【答案】 (1)击中靶心的各个频率依次是:0.90,0.95,0.88,0.91,0.89,0.90.(2)这个射手击中靶心的概率约为0.9.课堂练习:五.课堂小结:本节课我们学习了哪些内容?你能具体总结一下吗?。

新人教版高中数学必修三 第三章概率教案:3.1 随机事件的概率

新人教版高中数学必修三 第三章概率教案:3.1 随机事件的概率

随机事件及其概率【知识要点】1、 随机事件:① 一般地,在条件S 下,一定会发生的事件,叫做相对于条件S 的必然事件,简称必然事件,用字母Ω表示。

P (Ω)=1.② 在条件S 下,一定不会发生的事件,叫做相对于条件S 的不可能事件,简称不可能事件,用字母φ表示。

P (φ)=0.③ 在条件S 下,可能发生也可能不发生的事件,叫做相对于条件S 的随机事件,简称随见事件。

0P A 1≤≤()④ 必然事件和不可能事件统称为相对于条件S 的确定事件,简称确定事件。

事件:对于某个现象,如果能让其条件实现一次,就是进行了一次试验,而试验的每一种可能的结果,都是一个事件。

2、 频率:在相同的条件S 下重复n 次试验,观察某一个事件A 是否出现,称n 次试验中事件A 出现的次数A n 为事件A 的出现频数,称事件A 出现的比例(A)=A n n f n 为事件A 出现的频率。

3、 概率:对于给定的随机事件A ,如果随着试验次数的增加,事件A 发生的频率(A)n f 稳定在某个常数上,把这个常数记作(A)P ,称为事件A 的概率,简称为A 的概率。

(1)频率是概率的近似值,随着试验次数的增加,频率会越来越接近概率。

(2)频率本身是随机的,在试验前是不确定的。

(3)概率是一个确定的常数,是客观存在的,与试验的次数无关。

4、概率的基本性质:(1)事件的关系与运算①对于事件A 与事件B ,如果事件A 发生,事件B 一定发生,这时称事件B 包含事件A (或称事件A 包含于事件B ),记作BA ⊇或AB ⊆ ② 一般地,若A B ⊆且B A ⊆,那么称事件A 与事件B 相等,记作A=B③ 若某事件发生当且仅当事件A 发生或者事件B 发生,则称此事件为事件A 与事件B 的并事件(或和事件),记作A B ⋃(或A+B )。

④ 若某事件发生当且仅当A 发生且事件B 发生,则称此事件为事件A 与事件B 的交事件(或积事件),记作A B ⋂(或AB )⑤ 若A B ⋂为不可能事件,即=A B ⋂∅,那么我们称事件A 与事件B 互斥,其含义就是事件A 与事件B 在任何一次试验中都不会同时发生。

人教版高中数学必修三第三章 概率全章教案

人教版高中数学必修三第三章 概率全章教案

第一课时 3.1.1 随机事件的概率教学要求:了解随机事件、必然事件、不可能事件的概念;正确理解事件A 出现的频率的意义;正确理解概率的概念,明确事件A 发生的频率f n (A)与事件A 发生的概率P (A )的区别与联系;利用概率知识正确理解现实生活中的实际问题.教学重点:事件的分类;概率的定义以及概率和频率的区别与联系.教学难点:随机事件及其概率,概率与频率的区别和联系.教学过程:1. 讨论:①抛一枚硬币,它将正面朝上还是反面朝上? ②购买本期福利彩票是否能中奖?2. 提问:日常生活中,有些问题是很难给予准确无误的回答的,但当我们把某些事件放在一起时,会表现出令人惊奇的规律性.这其中蕴涵什么意思?二、讲授新课:1. 教学基本概念:① 实例:①明天会下雨 ②母鸡会下蛋 ③木材能导电② 必然事件:在条件S 下,一定会发生的事件,叫相对于条件S 的必然事件;③ 不可能事件:在条件S 下,一定不会发生的事件,叫相对于条件S 的不可能事件; ④ 确定事件:必然事件和不可能事件统称为相对于条件S 的确定事件; 随机事件:…… ⑤ 频数与频率:在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数;称事件A 出现的比例f n (A)=nn A 为事件A 出现的概率:对于给定的随机事件A ,如果随着试验次数的增加,事件A 发生的频率f n (A)稳定在某个常数上,把这个常数记作P (A ),称为事件A 的概率;⑥ 频率与概率的区别与联系:随机事件的频率,指此事件发生的次数n A 与试验总次数n 的比值nn A ,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。

我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。

频率在大量重复试验的前提下可以近似地作为这个事件的概率.2. 教学例题:① 出示例1:指出下列事件是必然事件、不可能事件还是随机事件?(1)如果,a b 都是实数,a b b a +=+;(2)没有水分,种子发芽;(3)从分别标有1,2,3,4,5,6的6张号签中任取一张,得到4号签.(教法:先依次填入表中的数据,在找出频率稳定在常数,即为击中靶心的概率)③ 练习:某人进行打靶练习,共射击10次,其中有2次中10环,有3次环中9环,有4次中8环,有1次未中靶,试计算此人中靶的频率,假设此人射击1次,试问中靶的频率约为多大?中10环的概率约为多大?3. 小结:随机事件、必然事件、不可能事件的概念;事件A 出现的频率的意义,概率的概念三、巩固练习:1. 练习:1. 教材 P105 1、22. 作业 2、3第二课时 3.1.2 概率的意义教学要求:正确理解概率的意义, 并能利用概率知识正确解释现实生活中的实际问题. 教学重点: 概率意义的理解和应用.教学难点:用概率知识解决现实生活中的具体问题.教学过程:一、复习准备:1. 讨论:有人说,既然抛一枚硬币出现正面的概率是0.5,那么连续两次抛一枚质地均匀的硬币,一定是“一次正面朝上,一次反面朝上”,你认为这种想法正确吗?2. 提问:如果某种彩票的中奖概率是11000,那么买1000张这种彩票一定能中奖吗?二、讲授新课:1. 教学基本概念:①概率的正确理解:概率是描述随机事件发生的可能性大小的度量,事件A的概率P(A)越大,其发生的可能性就越大;概率P(A)越小,事件A发生的可能性就越小.②概率的实际应用(知道随机事件的概率的大小,有利我们做出正确的决策,还可以判断某些决策或规则的正确性与公平性.)③游戏的公平性:应使参与游戏的各方的机会为等可能的,即各方的概率相等,根据这一教学要求确定游戏规则才是公平的④决策中的概率思想:以使得样本出现的可能性最大为决策的准则⑤天气预报的概率解释:降水的概率是指降水的这个随机事件出现的可能,而不是指某些区域有降水或能不能降水.⑥遗传机理中的统计规律:2. 教学例题:①出示例1:有人说,既然抛一枚硬币出现正面向上的概率为0.5,那么连续抛一枚硬币两次,一定是一次正面朝上,一次反面朝上,你认为这种想法正确吗?②练习:如果某种彩票的中奖概率是11000,那么买1000张这种彩票一定能中奖吗?请用概率的意义解释.(分析:买1000张彩票,相当于1000次试验,因为每次试验的结果都是随机的,所以做1000次试验的结果也是随机的,也就是说,买1000张彩票有可能没有一张中奖。

电子教案:人教A版高中数学必修3第三章 概率3.3 几何概型教案(1)

电子教案:人教A版高中数学必修3第三章 概率3.3 几何概型教案(1)

2019-2020学年高中数学《3.3几何概型》教案新人教版必修3一、教学任务分析:1、通过本节课的学习使学生掌握几何概型的特点,明确几何概型与古典概型的区别。

2、通过学生玩转盘游戏、教师分析得出几何概型概率计算公式。

3、通过例题教学,使学生能掌握几何概型概率计算公式的应用,并理解均匀分布的概念。

二、教学重点与难点:重点:(1)几何概型概率计算公式及应用。

(2)如何利用几何概型,把问题转化为各种几何概型问题。

难点:正确判断几何概型并求出概率。

三、教学基本流程:四、教学情境设计:问题问题设计意图师生活动(1)谁能叙述古典概型的有关知识吗?复习上节课相关知识师:提出问题,引导学生回忆,对学生活动进行评价。

生:回忆、概括。

(2)现实生活中,常常遇到试验的所有可能结果是无穷多的情况,如何计算概率?引出课题:几何概型。

师:提出问题,引导学生思考,激发兴趣。

生:思考。

(3)学生玩转盘游戏,猜想在两种情况下,甲获胜的概率是多少?让学生通过观察,猜想几何概型的特点及计算公式。

师:提出问题,引导学生思考、猜想,得出几何概型的概率计算公式。

生:观察、思考、猜想。

(4)你能说说几何概型与古典概型的区别吗?引导学生分析、比较,更加深对几何概型的理解。

师:引导学生比较两种概型的区别,明确几何概型要求的基本事件有无限多个,明确几何概型的复习古典概型的概念提出问题,引入课题学生玩转盘游戏、猜想甲获胜的概率几何概型的概念、特点、与古典概型的区别例1 的教学,明确几何概型的计算步骤练习和小结计算公式。

生:思考,比较,理解。

(5)例题,P 147练习。

通过例1明确与长度有关的几何概型概率的求法。

在练习中设置与角度、面积、体积有关的几何概型的概率求法。

师:引导学生把问题抽象为与长度有关的几何概型问题,并明确求解步骤。

师生共同完成解题过程,然后学生独立完成相应练习,教师进行点评。

引导学生阅读书本P 131明确均匀分布的概念。

生:思考完成练习。

人教A版高中数学必修3《三章 概率 小结》优质课教案_1

人教A版高中数学必修3《三章 概率  小结》优质课教案_1

概率小节(1)教案一、教材分析此处概率是指高中数学人教A版必修3第三章。

这里的概率先从多次重复试验说起,定义了频率和概率。

接下来主要讲了两个概率模型——古典概型和几何概型。

在讲具体的概型之前,编者首先介绍了事件,互斥事件、对立事件这些小概念。

此处未涉及到排列组合的相关知识,但是能分析清楚基本事件将对后面的学习有很大的帮助。

在当代高中数学新课改的背景下,数学教育要把“数学育人”作为根本目标,要将“德育”渗透到教育教学的各环节中。

通过引导学生开展独立思考、主动探究、合作交流等多种活动形式来理解和掌握基本的数学方法和教学技能。

要鼓励学生的创新思考,加强学生的数学实践,培养学生的理性精神,从而激发学生的学习兴趣。

在数学教学过程中,学生成为课堂学习的主体,教师成为学生活动的组织者、引导者、合作者。

二、学情分析学生已在一个半星期内完成了对本章的学习,同学们对概率的掌握大都还停留在概念的简单运用,公式的简单运用上。

尤其在对基本事件的罗列上大部分同学都还比较生疏。

三、教学目标1.知识与技能:掌握对立事件求概率的容斥原理;掌握古典概型的计算公式2.过程与方法:会利用互斥事件和对立事件求解概率;在利用对立事件求解概率的过程中能利用方程的思想;能快速准确地罗列清楚基本事件3.情感态度价值观:帮助学生树立学习概率的信心;在罗列基本事件的过程中训练有条理地思考问题,解决问题。

四、教学重、难点重点:1.会利用互斥事件和对立事件求解概率2.在利用对立事件求解概率的过程中能利用方程的思想3.能快速准确地罗列清楚基本事件4.求古典概型的概率难点:1. 在利用对立事件求解概率的过程中能利用方程的思想2. 能快速准确地罗列清楚基本事件五、教学过程授课时间:清明收假回来第一天早上的第一节课1.互斥事件和对立事件的概率求解1.1 某射手在一次射击中射中10环、9环、8环、7环、7环以下的概率分别为、、、、计算这个射手在一次射击中:射中10环或9环的概率,至少射中7环的概率;射中环数不足8环的概率.解:设“射中10环”“射中9环”“射中8环”“射中7环”“射中7环以下”的事件分别为A、B、C、D、E,题目设计目的:开篇放置一道简单题,调到大家参与的积极性,同时引导同学们回忆概率的相关内容。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一课时 3.1.1 随机事件的概率教学要求:了解随机事件、必然事件、不可能事件的概念;正确理解事件A 出现的频率的意义;正确理解概率的概念,明确事件A 发生的频率f n (A)与事件A 发生的概率P (A )的区别与联系;利用概率知识正确理解现实生活中的实际问题.教学重点:事件的分类;概率的定义以及概率和频率的区别与联系.教学难点:随机事件及其概率,概率与频率的区别和联系.教学过程:1. 讨论:①抛一枚硬币,它将正面朝上还是反面朝上? ②购买本期福利彩票是否能中奖?2. 提问:日常生活中,有些问题是很难给予准确无误的回答的,但当我们把某些事件放在一起时,会表现出令人惊奇的规律性.这其中蕴涵什么意思?二、讲授新课:1. 教学基本概念:① 实例:①明天会下雨 ②母鸡会下蛋 ③木材能导电② 必然事件:在条件S 下,一定会发生的事件,叫相对于条件S 的必然事件;③ 不可能事件:在条件S 下,一定不会发生的事件,叫相对于条件S 的不可能事件; ④ 确定事件:必然事件和不可能事件统称为相对于条件S 的确定事件; 随机事件:…… ⑤ 频数与频率:在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数;称事件A 出现的比例f n (A)=nn A 为事件A 出现的概率:对于给定的随机事件A ,如果随着试验次数的增加,事件A 发生的频率f n (A)稳定在某个常数上,把这个常数记作P (A ),称为事件A 的概率;⑥ 频率与概率的区别与联系:随机事件的频率,指此事件发生的次数n A 与试验总次数n 的比值nn A ,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。

我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。

频率在大量重复试验的前提下可以近似地作为这个事件的概率.2. 教学例题:① 出示例1:指出下列事件是必然事件、不可能事件还是随机事件?(1)如果,a b 都是实数,a b b a +=+;(2)没有水分,种子发芽;(3)从分别标有1,2,3,4,5,6的6张号签中任取一张,得到4号签.(教法:先依次填入表中的数据,在找出频率稳定在常数,即为击中靶心的概率)③ 练习:某人进行打靶练习,共射击10次,其中有2次中10环,有3次环中9环,有4次中8环,有1次未中靶,试计算此人中靶的频率,假设此人射击1次,试问中靶的频率约为多大?中10环的概率约为多大?3. 小结:随机事件、必然事件、不可能事件的概念;事件A 出现的频率的意义,概率的概念三、巩固练习:1. 练习:1. 教材 P105 1、22. 作业 2、3第二课时 3.1.2 概率的意义教学要求:正确理解概率的意义, 并能利用概率知识正确解释现实生活中的实际问题. 教学重点: 概率意义的理解和应用.教学难点:用概率知识解决现实生活中的具体问题.教学过程:一、复习准备:1. 讨论:有人说,既然抛一枚硬币出现正面的概率是0.5,那么连续两次抛一枚质地均匀的硬币,一定是“一次正面朝上,一次反面朝上”,你认为这种想法正确吗?2. 提问:如果某种彩票的中奖概率是11000,那么买1000张这种彩票一定能中奖吗?二、讲授新课:1. 教学基本概念:①概率的正确理解:概率是描述随机事件发生的可能性大小的度量,事件A的概率P(A)越大,其发生的可能性就越大;概率P(A)越小,事件A发生的可能性就越小.②概率的实际应用(知道随机事件的概率的大小,有利我们做出正确的决策,还可以判断某些决策或规则的正确性与公平性.)③游戏的公平性:应使参与游戏的各方的机会为等可能的,即各方的概率相等,根据这一教学要求确定游戏规则才是公平的④决策中的概率思想:以使得样本出现的可能性最大为决策的准则⑤天气预报的概率解释:降水的概率是指降水的这个随机事件出现的可能,而不是指某些区域有降水或能不能降水.⑥遗传机理中的统计规律:2. 教学例题:①出示例1:有人说,既然抛一枚硬币出现正面向上的概率为0.5,那么连续抛一枚硬币两次,一定是一次正面朝上,一次反面朝上,你认为这种想法正确吗?②练习:如果某种彩票的中奖概率是11000,那么买1000张这种彩票一定能中奖吗?请用概率的意义解释.(分析:买1000张彩票,相当于1000次试验,因为每次试验的结果都是随机的,所以做1000次试验的结果也是随机的,也就是说,买1000张彩票有可能没有一张中奖。

)③出示例2:在一场乒乓球比赛前,裁判员利用抽签器来决定由谁先发球,请用概率的知识解释其公平性.(分析:先发球的概率是0.5,取得的发球权的概率是0.5)④练习:经统计某篮球运动员的投篮命中率是90%,对此有人解释为其投篮100次一定有90次命中,10次不中,你认为正确吗?3. 小结:概率的意义,丰富对概率事件的体验,增强对概率背景的认识,体会概率的意义.三、巩固练习:1. 练习:教材P111 1、2 作业:P111 3 P117 52. 生活中,我们经常听到这样的议论:“天气预报说昨天降水概率为90%,结果根本一点雨都没下,天气预报也太不准确了。

”学了概率后,你能给出解释吗?2.孟德尔的豌豆试验数据,孟德尔用黄色和绿色的豌豆杂交,第一年收获的豌豆都是黄色的.第二年,当他把第一年收获的黄色豌豆再种下时,收获的豌豆既有黄色的,又有绿色教学要求:正确理解事件的包含、并和、交积、相等,及互斥事件和对立事件的概念; 掌握概率的几个基本性质; 正确理解和事件与积事件,以及互斥事件与对立事件的区别与联系. 教学重点:概率的加法公式及其应用,事件的关系与运算.教学难点:概率的加法公式及其应用,事件的关系与运算.教学过程:一、复习准备:1.讨论:集合有相等、包含关系,如{1,3}={3,1},{2,4} {2,3,4,5}等;2. 提问:在掷骰子试验中,可以定义许多事件如:C1={出现1点},C2={出现2点},C3={出现1点或2点},C4={出现的点数为偶数}……,这些事件是否存在一定的联系?二、讲授新课:1. 教学基本概念:① 事件的包含、并、交、相等见课本P115;② 若A ∩B 为不可能事件,即A ∩B= ,那么称事件A 与事件B 互斥;③ 若A ∩B 为不可能事件,A ∪B 为必然事件,那么称事件A 与事件B 互为对立事件; ④ 当事件A 与B 互斥时,满足加法公式:P(A ∪B)= P(A)+ P(B);若事件A 与B 为对立事件,则A ∪B 为必然事件,所以P(A ∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B).2. 教学例题:① 出示例1:一个射手进行一次射击,试判断下列事件哪些是互斥事件?哪些是对立事件? 事件A :命中环数大于7环; 事件B :命中环数为10环;事件C :命中环数小于6环; 事件D :命中环数为6、7、8、9、10环. ② 出示例2:如果从不包括大小王的52张扑克牌中随机抽取一张,那么取到红心(事件A )的概率是41,取到方块(事件B )的概率是41,问: (1) 取到红色牌(事件C )的概率是多少?(2) 取到黑色牌(事件D )的概率是多少?(讨论:事件C 是事件A 与事件B 的并,且A 与B 互斥,因此可用互斥事件的概率和公式求解,事件C 与事件D 是对立事件,因此P(D)=1—P(C).)③ 练习:袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的概率为31,得到黑球或黄球的概率是125,得到黄球或绿球的概率也是125,试求得到黑球、得到黄球、得到绿球的概率各是多少?(分析: 利用方程的思想及互斥事件、对立事件的概率公式求解.)3. 小结:概率的基本性质;互斥事件与对立事件的区别与联系.三、巩固练习:1. 练习:教材P114 第1、2、5题.2. 抛掷一粒骰子,观察掷出的点数,设事件A 为出现奇数,事件B 为出现2点,已知P (A )=21,P (B )=61,求出现奇数点或2点的概率之和. 3. 某射手在一次射击训练中,射中10环、8环、7环的概率分别为0.21,0.23,0.25,0.28,计算该射手在一次射击中:(1)射中10环或9环的概率;(2)少于7环的概率.4. 作业 P114 第3题 P117 第6题.第一课时 3.2 古典概型教学要求:通过实例,理解古典概型及其概率计算公式,会用列举法计算一些随机事件所含的基本事件数及事件发生的概率.教学重点:理解基本事件的概念、理解古典概型及其概率计算公式.教学难点:古典概型是等可能事件概率.教学过程:一、复习准备:1. 回忆基本概念:必然事件,不可能事件,随机事件(事件).(1)必然事件:必然事件是每次试验都一定出现的事件.不可能事件:任何一次试验都不可能出现的事件称为不可能事件.(2)随机事件(事件):随机试验的每一种结果或随机现象的每一种表现称作随机事件,简称为事件.二、讲授新课:1. 教学:基本事件(要正确区分事件和基本事件)定义:一个事件如果不能再被分解为两个或两个以上事件,称作基本事件.基本事件的两个特点:(1)任何两个基本事件是互斥的;(2)任何事件(除不可能事件)都可以表示成基本事件的和.例1:字母a,b,c,d中任意取出两个不同字母的试验中,有哪些基本事件?分析:为了得到基本事件,我们可以按照某种顺序,将所有的结果都列出来.2. 教学:古典概型的定义古典概型有两个特征:(1)试验中所有可能出现的基本事件只有有限个;(2)各基本事件的出现是等可能的,即它们发生的概率相同.我们称具有这两个特征的概率称为古典概率模型(classical models of probability)简称古典概型注意:在“等可能性”概念的基础上,很多实际问题符合或近似符合这两个条件,可以作为古典概型来看待.例2:掷两枚均匀硬币,求出现两个正面的概率.取样本空间:{甲正乙正,甲正乙反,甲反乙正,甲反乙反}.这里四个基本事件是等可能发生的,故属古典概型.n=4, m=1, P=1/ 4对于古典概型,任何事件的概率为:AP(A)=包含的基本事件的个数基本事件的总数P120例2:(关键:这个问题什么情况下可以看成古典概型的)P120例3:(要引导学生验证是否满足古典概型的两个条件)3. 小结:古典概型的两个特点:有限性和等可能性三、巩固练习:1. 练习:在10件产品中,有8件是合格的,2件是次品,从中任意抽2件进行检验,计算:(1)两件都是次品的概率;(2)2件中恰好有一件是合格品的概率;(3)至多有一件是合格品的概率(分析:这里出现的结果是等可能性的,因此可以用古典概型.)2.连续向上抛掷两次硬币,求至少出现一次正面的概率.(分析:这一个不是等可能的.)3.一次投掷两颗骰子,求出现的点数之和为奇数的概率.4 作业:①教材P127第2题,②教材P128.第4题第二课时 3.2.2 (整数值)随机数(randon numbers)的产生教学要求:让学生学会用计算机产生随机数.教学重点:初步体会古典概型的意义.教学难点:设计和运用模拟方法近似计算概率.教学过程:一、复习准备:回忆古典概型的两个特征:有限性和等可能性.二、讲授新课:1. 教学:例题P122例4:假设储蓄卡的密码由4位数组成,每个数字可以是0,1,2,……,9十个数字中的任意一个,假设一个人完全忘记了自己的密码,问他到自动取款机上试一次密码就能取到钱的概率是多少?P122例5:某种饮料每箱装配听,如果其中有2听不合格,问质检人员从中随机抽出2听,检测出不合格产品的几率有多大?2. 教学:随机数的产生(教师带着学生用计算器操作)④如何用计算器产生随机数:随机函数:REND(a,b)产生从整数a 到整数b 的取整数值的随机数.②如何用计算机产生随机数:在Excel 执行RANDBETWEEN 函数或者查看P 95的随机数表. P 126例6,天气预报说,在今后的三天中,每一天下雨的概率均为0040。

相关文档
最新文档