拉伸实验数据表格
钢筋拉伸实验

钢筋拉伸实验一、实验目的了解钢筋在纯拉应力条件下直至破坏的整个过程;了解拉伸过程的四个阶段,即弹性阶段,屈服阶段,强化阶段和颈缩阶段;掌握钢筋拉伸试验的荷载位移曲线,从图中得出上、下屈服强度;计算钢筋的断后伸长率、断面收缩率。
二、实验设备万能材料试验机(示值误差不大于1%)、游标卡尺(精度为0.1mm)。
三、实验步骤1.钢筋试件一般不经切削。
图1 试件示意图a—直径;l—标距长度;h1—(0.5~1)a;h—夹头长度2.在试件表面,选用小冲点、细划线或有颜色的记号做出两个或一系列等分格的标记,以表明标距长度,测量标距长度l0(l0=10a或l0=5a)(精确至0.1 mm)。
调整试验机测力度盘的指针,对准零点,拨动副指针与主指针重叠。
3.将试件固定在试验机的夹具内,开动试验机机进行拉伸。
屈服前,应力增加速度按表1规定,并保持试验机控制器固定于这一速率位置上,直至该性能测出为止;测定抗拉强度时,平行长度的应变速率不应超过0.008/s。
应力速率(N/mm2)·s-1材料弹性模量(Mpa)最小最大<150000 2 20≥150000 6 604.钢筋在拉伸试验时,读取测力度盘指针首次回转前指示的恒定力或首次回转时指示的最小力,即为屈服点荷载F s(N);钢筋屈服之后继续施加荷载直至将钢筋拉断,从测力度盘上读取试验过程中的最大力F b(N)。
5.拉断后标距长度L1(精确至0.1mm)的测量。
将试件断裂的部分对接在一起使其轴线处于同一直线上。
如拉断处到邻近标距端点的距离大于l0/3时,可直接测量两端点的距离;如拉断处到邻近的标距端点的距离小于或等于l0/3时,可用移位方法确定l1:在长段上从拉断处O点取基本等于短段格数,得B点,接着取等于长段所余格数(偶数)之半得C点;或者取所余格数(奇数)减1与加1之半,得到C与C1点,移位后的l1分别为AO+OB+2BC或AO+OB+BC+BC1(如图2所示)。
材料力学实验报告参考答案(标准版)

目录一、拉伸实验二、压缩实验三、拉压弹性模量E测定实验四、低碳钢剪切弹性模量G测定实验五、扭转破坏实验六、纯弯曲梁正应力实验七、弯扭组合变形时的主应力测定实验八、压杆稳定实验一、拉伸实验报告标准答案实验目的:见教材。
实验仪器见教材。
实验结果及数据处理:例:(一)低碳钢试件试验前试验后最小平均直径d=10.14mm 最小直径d= 5.70mm 截面面积A=80.71mm 2截面面积A 1=25.50mm 2计算长度L=100mm计算长度L 1=133.24mm试验前草图试验后草图强度指标:P s =__22.1___KN 屈服应力σs =P s /A __273.8___MP a P b =__33.2___KN 强度极限σb =P b /A __411.3___MP a塑性指标:1L -L100%Lδ=⨯=伸长率33.24%1100%A A Aψ-=⨯=面积收缩率68.40%低碳钢拉伸图:(二)铸铁试件试验前试验后最小平均直径d=10.16mm最小直径d=10.15mm截面面积A=81.03mm2截面面积A1=80.91mm2计算长度L=100mm计算长度L1≈100mm 试验前草图试验后草图强度指标:最大载荷Pb=__14.4___KN强度极限σb =Pb/A=_177.7__M Pa问题讨论:1、为何在拉伸试验中必须采用标准试件或比例试件,材料相同而长短不同的试件延伸率是否相同?答:拉伸实验中延伸率的大小与材料有关,同时与试件的标距长度有关.试件局部变形较大的断口部分,在不同长度的标距中所占比例也不同.因此拉伸试验中必须采用标准试件或比例试件,这样其有关性质才具可比性.材料相同而长短不同的试件通常情况下延伸率是不同的(横截面面积与长度存在某种特殊比例关系除外).2、分析比较两种材料在拉伸时的力学性能及断口特征.答:试件在拉伸时铸铁延伸率小表现为脆性,低碳钢延伸率大表现为塑性;低碳钢具有屈服现象,铸铁无.低碳钢断口为直径缩小的杯锥状,且有450的剪切唇,断口组织为暗灰色纤维状组织。
一低碳钢和铸铁的拉伸实验报告纸

一、低碳钢和铸铁的拉伸实验报告纸1.1 实验数据记录表格表1-1 试件原始尺寸记录表(mm)横截面1横截面2 横截面3 材料 (1) (2) 平均 (1)(2)平均 (1)(2) 平均 低碳钢 铸铁表1-2低碳钢弹性模量原始数据记录表表1-3 低碳钢实验后结果数据记录表上屈服力F eH (kN ) 下屈服力 F eL (kN )最大力 F m (kN ) 强度 指标上屈服强度R eL (MPa)下屈服强度R eH (MPa)抗拉强度 R m (MPa)原始标距(L 0)(mm ) 断后标距(L u )(mm )断后延伸率A(%)0°向直径断口直径d u (mm ) 90°向直径塑性指标断面收缩率Z (%)表1-4 铸铁实验后结果数据记录表横截面面积S(mm 2)最大力Fm (kN )强度指标极限强度R m (MPa)低碳钢拉伸曲线图实验前后试样形状图铸铁拉伸曲线图实验前后试样形状图1.2思考题(1)从实验现象和实验结果对比低碳钢和铸铁的力学性能。
(2)测定E时为何要选取初载荷F0?为什么使用增量法计算弹性模量?(3)实验时如何确定低碳钢的屈服强度?(4)对于同一根试样,标距不同,其A和Z是否相同?为什么?(5)实验速率的控制对实验结果是否有影响?如何影响?二、低碳钢和铸铁的压缩实验报告纸2.1 实验数据记录表格表2-1 试件原始尺寸横截面1 横截面2 横截面3 材料 高度 (mm ) (1) (2) 平均(1)(2)平均(1) (2)平均低碳钢 铸 铁表2-2 实验及计算数据材料面积S 0(mm 2)屈服点破坏点屈服力(kN) 最大力(kN)── 低碳钢屈服强度σs (MPa) 极限强度σb (MPa) ── 屈服力(kN)── 最大力(kN) 铸 铁屈服强度σs (MPa)──极限强度σb (MPa)低碳钢压缩曲线图 实验前后试样形状图铸铁压缩曲线图 实验前后试样形状图2.2思考题(1)为何低碳钢压缩时测不出破坏载荷,而铸铁压缩时测不出屈服载荷?(2)根据铸铁试件的压缩破坏形式分析其破坏原因,并与拉伸破坏作比较。
材料拉伸实验

实验一:光滑静态拉伸试验金属材料的拉伸试验是人们应用最广泛的测定其力学性能的方法。
试验时取一定的标准试样,在温度、环境介质、加载速度均为确定条件下将载荷施加于试样两端,使试样在轴向拉应力作用下产生弹性变形、塑性变形、直至断裂。
通过测定载荷和试样尺寸变化可以求出材料的力学性能指标。
一、实验数据分析与处理n 0.2721S b290.6534 535.09796e B0.00406 0.17887ψeB-0.00406 -0.178871.1光滑钢1.1.1计算机数据图1—1 钢光滑拉伸试验应力~应变曲线图1—2 钢光滑拉伸试验均匀塑性变形阶段lgS~lge的线性拟合2010-4-5 15:43Linear Regression for A0709032_lgS:Y = A + B * XParameter Value Error------------------------------------------------------------A 2.9417 0.00425B 0.2721 0.00386------------------------------------------------------------R SD N P------------------------------------------------------------ 0.99321 0.00788 70 <0.0001经计算得:K=10A=102.9417=874.38MPan=B=0.27211.1.2坐标纸数据图1—3 钢光滑拉伸试验载荷~位移曲线图1—4 钢光滑拉伸试验应力~应变曲线图1—5 钢光滑拉伸试验均匀塑性变形阶段lgS~lge的线性拟合2010-4-6 20:24Linear Regression for Data1_lgs:Y = A + B * XParameter Value Error------------------------------------------------------------A 3.19016 0.05524B 0.6578 0.06625------------------------------------------------------------R SD N P------------------------------------------------------------ 0.95726 0.02645 11 <0.0001经计算得:K=10A=103.19016=1549.39MPan=B=0.65781.2光滑铸铁1.2.1计算机数据图1—6 铸铁光滑拉伸试验应力~应变曲线1.2.2坐标纸数据图1—7 铸铁光滑拉伸试验载荷~位移曲线图1—8 光滑铸铁拉伸试验应力~应变曲线(注:对于光滑铸铁,没有“均匀塑性变形阶段”,所以不能得到K,n值。
板材焊缝拉伸报告

板材焊缝拉伸报告简介本报告旨在对板材焊缝进行拉伸测试,并分析其力学性能和应力应变曲线。
通过此测试,我们将为板材焊缝的设计和应用提供可靠的参考数据。
实验目的本次拉伸测试的主要目的是评估板材焊缝的拉伸强度、断裂伸长率和应力应变曲线。
这些数据将对焊接工艺的合适性以及焊接接头的性能进行评估。
实验器材1.拉力试验机2.夹具装置3.板材焊缝试样实验步骤1.准备焊缝试样。
根据标准规范,选择合适的板材和焊接工艺,制备焊缝试样。
2.将焊缝试样在夹具装置中固定好,确保试样的边缘不受夹具影响。
3.将试样放入拉力试验机,设置合适的拉伸速度,并开始拉伸试验。
4.记录试样的拉伸力和伸长率。
5.绘制应力应变曲线。
实验结果与分析根据实验数据,我们得到了以下结果:1.拉伸强度:XXXX MPa2.断裂伸长率:XX%3.应力应变曲线:见下图(表格形式)应变(%)应力(MPa)0 01 1002 2003 3004 4005 5006 5507 5608 5709 58010 600根据应力应变曲线可以看出,在开始阶段(应变小于5%)应力和应变呈线性关系,随着应变的增加,应力逐渐增大,呈现出非线性的趋势。
当应变超过5%后,应力增长缓慢,说明试样已进入塑性变形阶段。
当应变达到10%时,试样发生断裂。
结论通过本次拉伸试验,我们得出了以下结论:1.板材焊缝具有较高的拉伸强度,能够承受较大的力。
2.断裂伸长率较低,说明焊缝试样在承受拉力时容易发生断裂。
3.应力应变曲线呈现出典型的非线性趋势,表明板材焊缝试样经历了塑性变形过程。
这些结论对于板材焊缝的设计和工艺选择具有重要的指导意义,可以帮助工程师和焊接技术人员优化焊接工艺,提高焊接接头的性能和可靠性。
参考文献(此处列出相关的引用文献)结语通过本次实验,我们对板材焊缝的拉伸性能进行了评估,并得出了结论。
这些结果将对焊接工艺和焊缝设计提供重要的参考信息。
在以后的工作中,我们还可以进一步研究焊缝的其他力学性能,以完善对焊接接头的评估和设计。
拉伸法测弹性模量 实验报告

大连理工大学大 学 物 理 实 验 报 告院(系) 材料学院 专业 材料物理 班级 0705 姓 名 童凌炜 学号 200767025 实验台号 实验时间 2008 年 11 月 11 日,第12周,星期 二 第 5-6 节实验名称 拉伸法测弹性模量教师评语实验目的与要求:1. 用拉伸法测定金属丝的弹性模量。
2. 掌握光杠杆镜尺法测定长度微小变化的原理和方法。
3. 学会处理实验数据的最小二乘法。
主要仪器设备:弹性模量拉伸仪(包括钢丝和平面镜、直尺和望远镜所组成的光杠杆装置), 米尺, 螺旋测微器实验原理和内容: 1. 弹性模量一粗细均匀的金属丝, 长度为l , 截面积为S , 一端固定后竖直悬挂, 下端挂以质量为m 的砝码; 则金属丝在外力F=mg 的作用下伸长Δl 。
单位截面积上所受的作用力F/S 称为应力, 单位长度的伸长量 Δl/l 称为应变。
有胡克定律成立:在物体的弹性形变范围内,应力F/S 和Δl/l 应变成正比, 即ll∆=E S F 其中的比例系数ll SF E //∆=称为该材料的弹性模量。
性质: 弹性模量E 与外力F 、物体的长度l 以及截面积S 无关, 只决定于金属丝的材料。
实验中测定E , 只需测得F 、S 、l 和l ∆即可, 前三者可以用常用方法测得, 而l ∆的数量级很小, 故使用光杠杆镜尺法来进行较精确的测量。
2. 光杠杆原理光杠杆的工作原理如下: 初始状态下, 平面镜为竖直状态, 此时标尺读数为n 0。
当金属丝被拉长l ∆以后, 带动平面镜旋转一角度α, 到图中所示M ’位置; 此时读得标尺读数为n 1, 得到刻度变化为01n n n -=∆。
Δn 与l ∆呈正比关系, 且根据小量忽略及图中的相似几何关系, 可以得到n Bbl ∆⋅=∆2 (b 称为光杠杆常数) 将以上关系, 和金属丝截面积计算公式代入弹性模量的计算公式, 可以得到nb D FlBE ∆=28π(式中B 既可以用米尺测量, 也可以用望远镜的视距丝和标尺间接测量; 后者的原理见附录。
金属材料的拉伸与压缩实验
机械学基础实验指导书力学实验中心金属材料的拉伸与压缩实验1.1 金属材料的拉伸实验拉伸实验是材料力学实验中最重要的实验之一。
任何一种材料受力后都要产生变形,变形到一定程度就可能发生断裂破坏。
材料在受力——变形——断裂的这一破坏过程中,不仅有一定的变形能力,而且对变形和断裂有一定的抵抗能力,这些能力称为材料的力学机械性能。
通过拉伸实验,可以确定材料的许多重要而又最基本的力学机械性能。
例如:弹性模量E 、比例极限R p 、上和下屈服强度R eH 和R eL 、强度极限R m 、延伸率A 、收缩率Z 。
除此而外,通过拉伸实验的结果,往往还可以大致判定某种其它机械性能,如硬度等。
我们以两种材料——低碳钢,铸铁做拉伸试验,以便对于塑性材料和脆性材料的力学机械性能进行比较。
这个实验是研究材料在静载和常温条件下的拉断过程。
利用电子万能材料试验机自动绘出的载荷——变形图,及试验前后试件的尺寸来确定其机械性能。
试件的形式和尺寸对实验的结果有很大影响,就是同一材料由于试件的计算长度不同,其延伸率变动的范围就很大。
例如:对45#钢:当L 0=10d 0时(L 0为试件计算长度,d 0为直径),延伸率A 10=24~29%,当L 0=5d 0时,A 5=23~25%。
为了能够准确的比较材料的性质,对拉伸试件的尺寸有一定的标准规定。
按国标GB/T228-2002、GB/P7314-2005的要求,拉伸试件一般采用下面两种形式:图1-11. 10倍试件;圆形截面时,L 0=10d 0 矩形截面时,L 0=11.30S 2. 5倍试件圆形截面时,L 0=5d 矩形截面时, L 0=5.650S =45Sd 0——试验前试件计算部分的直径; S 0——试验前试件计算部分断面面积。
此外,试件的表面要求一定的光洁度。
光洁度对屈服点有影响。
因此,试件表面不应有刻痕、切口、翘曲及淬火裂纹痕迹等。
一、实验目的:1.研究低碳钢、铸铁的应力——应变曲线拉伸图。
材料的拉伸试验实验报告
材料的拉伸试验实验内容及目的(1)测定低碳钢材料在常温、静载条件下的屈服强度s σ、抗拉强度b σ、伸长率δ和断面收缩率ψ。
(2)掌握万能材料试验机的工作原理和使用方法。
实验材料及设备低碳钢、游标卡尺、万能试验机。
试样的制备按照国家标准GB6397—86《金属拉伸试验试样》,金属拉伸试样的形状随着产品的品种、规格以及试验目的的不同而分为圆形截面试样、矩形截面试样、异形截面试样和不经机加工的全截面形状试样四种。
其中最常用的是圆形截面试样和矩形截面试样。
如图1所示,圆形截面试样和矩形截面试样均由平行、过渡和夹持三部分组成。
平行部分的试验段长度l 称为试样的标距,按试样的标距l 与横截面面积A 之间的关系,分为比例试样和定标距试样。
圆形截面比例试样通常取d l 10=或d l 5=,矩形截面比例试样通常取A l 3.11=或A l 65.5=,其中,前者称为长比例试样(简称长试样),后者称为短比例试样(简称短试样)。
定标距试样的l 与A 之间无上述比例关系。
过渡部分以圆弧与平行部分光滑地连接,以保证试样断裂时的断口在平行部分。
夹持部分稍大,其形状和尺寸根据试样大小、材料特性、试验目的以及万能试验机的夹具结构进行设计。
对试样的形状、尺寸和加工的技术要求参见国家标准GB6397—86。
(a )(b )图1 拉伸试样(a )圆形截面试样;(b )矩形截面试样实验原理进行拉伸试验时,外力必须通过试样轴线,以确保材料处于单向应力状态。
低碳钢具有良好的塑性,低碳钢断裂前明显地分成四个阶段:弹性阶段:试件的变形是弹性的。
在这个范围内卸载,试样仍恢复原来的尺寸,没有任何残余变形。
屈服(流动)阶段:应力应变曲线上出现明显的屈服点。
这表明材料暂时丧失抵抗继续变形的能力。
这时,应力基本上不变化,而变形快速增长。
通常把下屈服点作为材料屈服极限(又称屈服强度),即AF ss =σ,是材料开始进入塑性的标志。
结构、零件的应力一旦超过屈服极限,材料就会屈服,零件就会因为过量变形而失效。
金属材料的拉伸与压缩实验_2
机械学基础实验指导书力学实验中心金属材料的拉伸与压缩实验1.1 金属材料的拉伸实验拉伸实验是材料力学实验中最重要的实验之一。
任何一种材料受力后都要产生变形,变形到一定程度就可能发生断裂破坏。
材料在受力——变形——断裂的这一破坏过程中,不仅有一定的变形能力,而且对变形和断裂有一定的抵抗能力,这些能力称为材料的力学机械性能。
通过拉伸实验,可以确定材料的许多重要而又最基本的力学机械性能。
例如:弹性模量E 、比例极限R p 、上和下屈服强度R eH 和R eL 、强度极限R m 、延伸率A 、收缩率Z 。
除此而外,通过拉伸实验的结果,往往还可以大致判定某种其它机械性能,如硬度等。
我们以两种材料——低碳钢,铸铁做拉伸试验,以便对于塑性材料和脆性材料的力学机械性能进行比较。
这个实验是研究材料在静载和常温条件下的拉断过程。
利用电子万能材料试验机自动绘出的载荷——变形图,及试验前后试件的尺寸来确定其机械性能。
试件的形式和尺寸对实验的结果有很大影响,就是同一材料由于试件的计算长度不同,其延伸率变动的范围就很大。
例如:对45#钢:当L 0=10d 0时(L 0为试件计算长度,d 0为直径),延伸率A 10=24~29%,当L 0=5d 0时,A 5=23~25%。
为了能够准确的比较材料的性质,对拉伸试件的尺寸有一定的标准规定。
按国标GB/T228-2002、GB/P7314-2005的要求,拉伸试件一般采用下面两种形式:图1-11. 10倍试件;圆形截面时,L 0=10d 0 矩形截面时,L 0=11.30S 2. 5倍试件圆形截面时,L 0=5d 矩形截面时, L 0=5.650S =45Sd 0——试验前试件计算部分的直径; S 0——试验前试件计算部分断面面积。
此外,试件的表面要求一定的光洁度。
光洁度对屈服点有影响。
因此,试件表面不应有刻痕、切口、翘曲及淬火裂纹痕迹等。
一、实验目的:1.研究低碳钢、铸铁的应力——应变曲线拉伸图。
材料拉伸实验(数据记录表格)
(一)低碳钢、铸铁和铝试件的拉伸实验
(1)试件决定
用游标卡尺测量标距两端及中间这三个横截面处的直径,在每一横截面内沿互相垂直的两个直径方向各测量一次取其平均值。
用所测得的三个平均值中最小的值计算试件的横截面面积A0。
计算A0时取三位有效数字。
图1 测量标距
(2)实验机决定
按照试件强度极限σb和横截面面积预计试件的最大载荷。
按照最大载荷的大小,决定好电脑和实验机,选好量程。
(3)安装试件
先将试件安装在实验机的上夹头内,再移动下夹头使其达到适当位置,并把试件下端夹紧。
(4)检查及试车
请教师检查以上步骤的完成情况,然后开动实验机,预加少量载荷(对应的应力不能超过材料的比例极限)后,卸载回“零”点,以检查实验机工作是否正常。
(5)举行实验
开动实验机使之缓慢匀速加载。
注重看见微机上显示的力的变化情况和相应的实验现象。
当力的变化异常小或基本不变时,说明材料开始屈服,记录屈服载荷P s。
试件断裂后停车,读出最大载荷P b,并记录下来。
(6)结束工作
取下试件,将断裂试件的两段对齐并尽量靠紧,用游标卡尺测量断裂后标距段的长度l1;测量断口(颈缩)处的直径d1,应在断口处沿两个互相垂直方向各测量d1一次,计算其平均值,取其中最小者计算断口处最小横截面面积A1。
电子万能实验机可用微机打印出拉伸曲线。
图2 测量断后标距
实验数据一律用表格形式记录,下面列出供参考的表格形式。
表1 测量低碳钢和铸铁试件的尺寸
表2 低碳钢和铸铁P s、P b记录
表3 试件断后尺寸记录。