线性代数期末复习知识点参考
线性代数复习要点

线性代数复习要点线性代数是数学中的一个分支,其研究对象包括向量空间、线性变换、矩阵、线性方程组等。
线性代数广泛应用于各个领域,如物理学、计算机科学、工程学等。
下面是线性代数复习的要点:1.向量和向量空间-向量是指具有大小和方向的量,用箭头表示。
-向量空间是指由一组向量生成的集合,满足加法和数乘运算的封闭性。
-基是一个向量空间中独立且能够生成该向量空间的向量组。
-向量组的线性组合是指对向量组中的向量进行加法和数乘运算的结果。
-向量组的生成子空间是指向量组的所有线性组合所形成的空间。
2.矩阵和线性变换-矩阵是一个按照矩形排列的数。
矩阵的大小由行数和列数确定。
-矩阵的加法和数乘运算定义为对应元素的运算。
-矩阵的转置是指行变为列,列变为行的操作。
-矩阵的乘法是指矩阵的行与列的对应元素相乘后求和的运算。
-线性变换是指将一个向量空间映射到另一个向量空间的变换,保持线性关系。
3.行列式和特征值特征向量-行列式是一个与矩阵相关的数,用于描述矩阵的性质。
-二阶和三阶矩阵的行列式可以通过对应元素相乘后求和的方式计算。
-行列式的值为0表示矩阵不可逆,即不存在逆矩阵。
-特征值是指矩阵对一些向量进行线性变换后,仍然与原向量方向相同的结果。
-特征向量是指通过线性变换后,与其特征值对应的向量。
4.线性方程组的求解-线性方程组是一组线性方程的集合,其中未知量的次数等于方程的个数。
-列向量和矩阵可以表示线性方程组的系数和常数项。
-线性方程组的解可以通过高斯消元法、矩阵的逆等方法进行求解。
-高斯消元法是将方程组化为行阶梯形式,再通过回代求解。
-线性方程组的解可以有唯一解、无解或者无穷多解。
5.特殊矩阵和矩阵的分解-单位矩阵是指主对角线上的元素为1,其余元素为0的矩阵。
-零矩阵是指所有元素均为0的矩阵。
-对角矩阵是指主对角线以外的元素均为0的矩阵。
-逆矩阵是指一个矩阵与其逆矩阵相乘得到单位矩阵。
-矩阵的分解包括LU分解、QR分解、特征值分解等。
线性代数复习提纲

线性代数复习提纲线性代数是数学中的一个基础课程,涵盖了向量空间、线性变换、矩阵理论等内容。
它在计算机科学、物理学、经济学和工程学等领域都有广泛的应用。
下面是线性代数的复习提纲,帮助你回顾相关的知识点。
一、向量空间1.向量的定义和性质2.向量空间的定义和性质3.子空间的定义和判断条件4.向量的线性相关性与线性无关性5.基和维数的概念二、线性变换1.线性变换的定义和性质2.线性变换的矩阵表示3.线性变换的核与像空间4.线性变换的维数公式5.线性变换的复合与逆变换三、矩阵理论1.矩阵的定义和性质2.矩阵的运算:加法、数乘、乘法3.矩阵的逆与转置运算4.矩阵的秩和行列式5.矩阵的特征值与特征向量四、特殊矩阵和特征值问题1.对称矩阵的性质和对角化2.可逆矩阵与相似矩阵3.正交矩阵与正交对角化4.特征值问题的求解方法五、解线性方程组1.线性方程组的矩阵表示2.高斯消元法与矩阵的初等变换3.初等矩阵的性质与应用4.齐次线性方程组和非齐次线性方程组的解的结构六、向量空间的基变换1.基变换的定义和性质2.过渡矩阵的求解3.变换矩阵的求解与应用4.基变换下的坐标表示和坐标变换公式七、内积空间和正交性1.内积的定义和性质2.内积空间的定义和性质3.正交基和正交投影4.标准正交基和正交矩阵的定义和性质八、二次型与正定性1.二次型的定义和性质2.二次型的矩阵表示和标准化3.正定二次型和半正定二次型的定义和性质4.二次型的规范形和合同变换以上是线性代数的复习提纲,可以通过对每个知识点的回顾、理解和练习来复习线性代数。
在复习过程中,可以结合教材、习题和课堂笔记,通过解题和思考来巩固知识点的掌握。
另外,可以参考相关的教学视频或在线课程来帮助理解和学习线性代数的概念和方法。
最重要的是多做习题,加深对知识点的理解和应用。
《线性代数》知识点-归纳整理

《线性代数》知识点归纳整理诚毅学生编01、余子式与代数余子式 .................................................................. 2-02、主对角线............................................................................ 2-03、转置行列式.......................................................................... 2-04、行列式的性质........................................................................ 3-05、计算行列式.......................................................................... 3-06、矩阵中未写出的元素 .................................................................. 4-07、几类特殊的方阵...................................................................... 4-08、矩阵的运算规则...................................................................... 4-09、矩阵多项式.......................................................................... 6-10、对称矩阵............................................................................ 6-11、矩阵的分块.......................................................................... 6-12、矩阵的初等变换...................................................................... 6-13、矩阵等价............................................................................ 6-14、初等矩阵............................................................................ 7-15、行阶梯形矩阵与行最简形矩阵......................................................... 7-16、逆矩阵 ............................................................................. 7-17、充分性与必要性的证明题 .............................................................. 8-18、伴随矩阵............................................................................ 8-19、矩阵的标准形:........................................................................ 9-20、矩阵的秩:........................................................................... 9-21、矩阵的秩的一些定理、推论............................................................. 9-22、线性方程组概念..................................................................... 10-23、齐次线性方程组与非齐次线性方程组(不含向量) .......................................... 10-24、行向量、列向量、零向量、负向量的概念................................................ 11-25、线性方程组的向量形式 ............................................................... 11-26、线性相关与线性无关的概念......................................................... 12-27、向量个数大于向量维数的向量组必然线性相关 ........................................... 12-28、线性相关、线性无关;齐次线性方程组的解;矩阵的秩这三者的关系及其例题................. 12-29、线性表示与线性组合的概念......................................................... 12-30、线性表示;非齐次线性方程组的解;矩阵的秩这三者的关系其例题........................... 12-31、线性相关(无关)与线性表示的3个定理................................................ 12-32、最大线性无关组与向量组的秩.......................................................... 12-33、线性方程组解的结构…………………………………………………………………………………………12-01、余子式与代数余子式(1)设三阶行列式, 则①元素an,ai,au的余子式分别为:对Mi的解释:划掉第1行、第1列,剩下的就是一个二阶行列式,这个行列式即元素au的余子式Mi。
大一线代知识点总结期末

大一线代知识点总结期末线性代数是大一学生必修的一门数学课程,它是现代数学与应用数学的基础,对于学习后续的高等数学和相关专业课程非常重要。
本文将对大一线代的知识点进行总结,希望能够帮助同学们更加深入地理解和掌握这门课程。
一、向量与矩阵1. 向量的概念:向量是有方向和大小的量,用于表示空间或其他数学领域中的物理量。
向量可以用坐标表示,也可以用箭头或斜体字母表示。
2. 向量的运算:向量的加法、减法、数乘和内积是线性代数中常见的运算。
加法满足交换律和结合律,数乘满足分配律。
3. 矩阵的概念:矩阵是有着固定大小的矩形阵列,由行和列组成。
矩阵可以表示向量和线性变换。
4. 矩阵的运算:矩阵的加法和数乘运算与向量类似,矩阵乘法则需要满足形状相容性的条件。
二、线性方程组与矩阵的应用1. 线性方程组的概念:线性方程组是由一组线性方程组成的方程集合。
其中的未知数称为变量。
2. 线性方程组的求解:通过高斯消元法或矩阵的逆矩阵求解线性方程组,可以得到该方程组的解集。
3. 线性方程组的应用:线性方程组广泛应用于物理、经济等领域中的实际问题,如平衡力的计算、投资组合的优化等。
4. 矩阵的逆矩阵与矩阵的行列式:当矩阵存在逆矩阵时,可以通过逆矩阵来求解线性方程组。
行列式是用于判断矩阵是否可逆的工具。
三、向量空间与线性相关性1. 向量空间的概念:向量空间是由一组向量构成的集合,满足特定的运算规则。
向量空间具有加法封闭性和数乘封闭性。
2. 线性相关性与线性无关性:线性相关的向量能够通过线性组合得到零向量,而线性无关的向量之间不能通过线性组合得到零向量。
3. 基与维数:向量空间的基是指能够线性表示该空间中所有向量的最小向量组,基向量线性无关且生成整个空间。
向量空间的维数等于其基向量的个数。
四、线性变换与特征值特征向量1. 线性变换的概念:线性变换是指将一个向量空间映射到另一个向量空间的运算。
线性变换具有保持加法和数乘运算的性质。
2. 线性变换的矩阵表示:线性变换可以用矩阵表示,通过将元空间中的向量映射到像空间中的向量来实现。
大学数学线性代数知识点归纳总结

大学数学线性代数知识点归纳总结线性代数是数学的一个重要分支,广泛应用于各个领域。
作为大学数学的一门核心课程,线性代数为我们提供了一种处理线性方程组、矩阵运算和向量空间等数学工具和理论。
在这篇文章中,我将对大学数学线性代数的知识点进行归纳总结。
1. 向量与向量空间- 向量的定义和性质- 向量的线性组合与线性相关性- 向量空间的定义和基本性质- 子空间与超平面- 线性无关与基2. 线性方程组- 线性方程组的概念与解的存在唯一性- 矩阵形式与增广矩阵- 初等行变换与线性方程组的等价性- 齐次线性方程组与非齐次线性方程组- 线性方程组的解的结构3. 矩阵与矩阵运算- 矩阵的定义和性质- 矩阵的加法与数乘- 矩阵的转置与对称矩阵- 矩阵乘法与矩阵的秩- 逆矩阵与可逆矩阵4. 特征值与特征向量- 特征值与特征向量的定义 - 特征多项式与特征方程- 对角化与可对角化条件- 特征值与矩阵的相似性5. 线性变换与线性映射- 线性变换的基本性质- 线性变换矩阵与基变换- 线性变换的零空间与像空间 - 线性变换的维数定理6. 内积空间与正交性- 内积空间的定义和性质- 正交向量与正交补空间- 正交投影与最小二乘法- 施密特正交化过程7. 特殊矩阵与应用- 对角矩阵与对角化- 正交矩阵与正交对角化- 幂零矩阵与Jordan标准形- 应用:图像处理、数据压缩、网络分析等通过对以上知识点的整理和总结,我们对大学数学线性代数的学习有了更加清晰的认识。
线性代数的理论和方法在计算机科学、物理学、工程学等领域都有广泛的应用,了解和掌握线性代数知识对于我们的学术研究和职业发展都具有重要意义。
希望本文能帮助读者对线性代数有更深入的了解,并在实际应用中发挥作用。
线性代数期末知识点总结

线性代数期末知识点总结1、行列式1.行列式共有个元素,展开后有项,可分解为行列式;2.代数余子式的性质:①、和的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0;③、某行(列)的元素乘以该行(列)元素的代数余子式为;3.代数余子式和余子式的关系:4.设行列式:将上、下翻转或左右翻转,所得行列式为,则;将顺时针或逆时针旋转,所得行列式为,则;将主对角线翻转后(转置),所得行列式为,则;将主副角线翻转后,所得行列式为,则;5.行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积;③、上、下三角行列式():主对角元素的乘积;④、和:副对角元素的乘积;⑤、拉普拉斯展开式:、⑥、范德蒙行列式:大指标减小指标的连乘积;⑦、特征值;6.对于阶行列式,恒有:,其中为阶主子式;7.证明的方法:①、;②、反证法;③、构造齐次方程组,证明其有非零解;④、利用秩,证明;⑤、证明0是其特征值;2、矩阵1.是阶可逆矩阵:(是非奇异矩阵);(是满秩矩阵)的行(列)向量组线性无关;齐次方程组有非零解;,总有唯一解;与等价;可表示成若干个初等矩阵的乘积;的特征值全不为0;是正定矩阵;的行(列)向量组是的一组基;是中某两组基的过渡矩阵;2.对于阶矩阵:无条件恒成立;3.4.矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5.关于分块矩阵的重要结论,其中均、可逆:若,则:Ⅰ、;Ⅱ、;②、;(主对角分块)③、;(副对角分块)④、;(拉普拉斯)⑤、;(拉普拉斯)3、矩阵的初等变换与线性方程组1.一个矩阵,总可经过初等变换化为标准形,其标准形是唯一确定的:;等价类:所有与等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;对于同型矩阵、,若;2.行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3.初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、若,则可逆,且;②、对矩阵做初等行变化,当变为时,就变成,即:;③、求解线形方程组:对于个未知数个方程,如果,则可逆,且;4.初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、,左乘矩阵,乘的各行元素;右乘,乘的各列元素;③、对调两行或两列,符号,且,例如:;④、倍乘某行或某列,符号,且,例如:;⑤、倍加某行或某列,符号,且,如:;5.矩阵秩的基本性质:①、;②、;③、若,则;④、若、可逆,则;(可逆矩阵不影响矩阵的秩)⑤、;(※)⑥、;(※)⑦、;(※)⑧、如果是矩阵,是矩阵,且,则:(※)Ⅰ、的列向量全部是齐次方程组解(转置运算后的结论);Ⅱ、⑨、若、均为阶方阵,则;6.三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)行矩阵(向量)的形式,再采用结合律;②、型如的矩阵:利用二项展开式;二项展开式:;注:Ⅰ、展开后有项;Ⅱ、Ⅲ、组合的性质:;③、利用特征值和相似对角化:7.伴随矩阵:①、伴随矩阵的秩:;②、伴随矩阵的特征值:;③、、8.关于矩阵秩的描述:①、,中有阶子式不为0,阶子式全部为0;(两句话)②、,中有阶子式全部为0;③、,中有阶子式不为0;9.线性方程组:,其中为矩阵,则:①、与方程的个数相同,即方程组有个方程;②、与方程组得未知数个数相同,方程组为元方程;10.线性方程组的求解:①、对增广矩阵进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解;③、特解:自由变量赋初值后求得;11.由个未知数个方程的方程组构成元线性方程:①、;②、(向量方程,为矩阵,个方程,个未知数)③、(全部按列分块,其中);④、(线性表出)⑤、有解的充要条件:(为未知数的个数或维数)4、向量组的线性相关性1.个维列向量所组成的向量组:构成矩阵;个维行向量所组成的向量组:构成矩阵;含有有限个向量的有序向量组与矩阵一一对应;2.①、向量组的线性相关、无关有、无非零解;(齐次线性方程组)②、向量的线性表出是否有解;(线性方程组)③、向量组的相互线性表示是否有解;(矩阵方程)3.矩阵与行向量组等价的充分必要条件是:齐次方程组和同解;(例14)4.;(例15)5.维向量线性相关的几何意义:①、线性相关;②、线性相关坐标成比例或共线(平行);③、线性相关共面;6.线性相关与无关的两套定理:若线性相关,则必线性相关;若线性无关,则必线性无关;(向量的个数加加减减,二者为对偶)若维向量组的每个向量上添上个分量,构成维向量组:若线性无关,则也线性无关;反之若线性相关,则也线性相关;(向量组的维数加加减减)简言之:无关组延长后仍无关,反之,不确定;7.向量组(个数为)能由向量组(个数为)线性表示,且线性无关,则(二版定理7);向量组能由向量组线性表示,则;(定理3)向量组能由向量组线性表示有解;(定理2)向量组能由向量组等价(定理2推论)8.方阵可逆存在有限个初等矩阵,使;①、矩阵行等价:(左乘,可逆)与同解②、矩阵列等价:(右乘,可逆);③、矩阵等价:(、可逆);9.对于矩阵与:①、若与行等价,则与的行秩相等;②、若与行等价,则与同解,且与的任何对应的列向量组具有相同的线性相关性;③、矩阵的初等变换不改变矩阵的秩;④、矩阵的行秩等于列秩;10.若,则:①、的列向量组能由的列向量组线性表示,为系数矩阵;②、的行向量组能由的行向量组线性表示,为系数矩阵;(转置)11.齐次方程组的解一定是的解,考试中可以直接作为定理使用,而无需证明;①、只有零解只有零解;②、有非零解一定存在非零解;12.设向量组可由向量组线性表示为:(题19结论)()其中为,且线性无关,则组线性无关;(与的列向量组具有相同线性相关性)(必要性:;充分性:反证法)注:当时,为方阵,可当作定理使用;13.①、对矩阵,存在,、的列向量线性无关;()②、对矩阵,存在,、的行向量线性无关;14.线性相关存在一组不全为0的数,使得成立;(定义)有非零解,即有非零解;,系数矩阵的秩小于未知数的个数;15.设的矩阵的秩为,则元齐次线性方程组的解集的秩为:;16.若为的一个解,为的一个基础解系,则线性无关;(题33结论)5、相似矩阵和二次型1.正交矩阵或(定义),性质:①、的列向量都是单位向量,且两两正交,即;②、若为正交矩阵,则也为正交阵,且;③、若、正交阵,则也是正交阵;注意:求解正交阵,千万不要忘记施密特正交化和单位化;2.施密特正交化:;;3.对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交;4.①、与等价经过初等变换得到;,、可逆;,、同型;②、与合同,其中可逆;与有相同的正、负惯性指数;③、与相似;5.相似一定合同、合同未必相似;若为正交矩阵,则,(合同、相似的约束条件不同,相似的更严格);6.为对称阵,则为二次型矩阵;7.元二次型为正定:的正惯性指数为;与合同,即存在可逆矩阵,使;的所有特征值均为正数;的各阶顺序主子式均大于0;;(必要条件)。
《线性代数》知识点归纳整理

《线性代数》知识点归纳整理线性代数是一门重要的数学学科,在许多领域都有广泛的应用,如计算机科学、物理学、工程学等。
下面将对线性代数的一些关键知识点进行归纳整理。
一、行列式行列式是线性代数中的一个基本概念。
它是一个数值,可以通过特定的计算规则得到。
对于二阶行列式,其计算公式为:\\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad bc \对于三阶行列式,计算相对复杂些,可通过按行(列)展开来计算。
行列式具有一些重要的性质,例如:1、行列式转置后其值不变。
2、某行(列)元素乘以一个数加到另一行(列)的对应元素上,行列式的值不变。
行列式的应用包括求解线性方程组、判断矩阵是否可逆等。
二、矩阵矩阵是线性代数中的核心概念之一。
矩阵的定义:由\(m×n\)个数排成的\(m\)行\(n\)列的数表称为\(m×n\)矩阵。
矩阵的运算包括加法、减法、数乘、乘法等。
1、矩阵加法和减法要求两个矩阵具有相同的行数和列数,对应元素相加减。
2、数乘矩阵是将矩阵中的每个元素乘以一个数。
3、矩阵乘法需要前一个矩阵的列数等于后一个矩阵的行数,乘法运算不满足交换律。
矩阵的转置是将矩阵的行和列互换得到的新矩阵。
逆矩阵是一个重要概念,若矩阵\(A\)可逆,则存在矩阵\(B\),使得\(AB = BA = I\),其中\(I\)为单位矩阵。
三、向量向量可以看作是一组有序的数。
行向量是一行数,列向量是一列数。
向量的运算包括加法、减法、数乘。
向量组的线性相关性是一个重要内容。
如果存在一组不全为零的数,使得向量组的线性组合等于零向量,则称该向量组线性相关;否则称线性无关。
四、线性方程组线性方程组可以表示为矩阵形式\(Ax = b\)。
线性方程组的解分为有解和无解的情况。
1、有解时,可能有唯一解或无穷多解。
2、无解时,方程组矛盾。
通过高斯消元法可以求解线性方程组。
五、特征值与特征向量对于矩阵\(A\),如果存在非零向量\(x\)和数\(\lambda\),使得\(Ax =\lambda x\),则\(\lambda\)称为矩阵\(A\)的特征值,\(x\)称为对应于特征值\(\lambda\)的特征向量。
线性代数知识点归纳,超详细

线性代数知识点归纳,超详细线性代数复习要点第⼀部分⾏列式1. 排列的逆序数2. ⾏列式按⾏(列)展开法则3. ⾏列式的性质及⾏列式的计算⾏列式的定义1.⾏列式的计算:①(定义法)②(降阶法)⾏列式按⾏(列)展开定理:⾏列式等于它的任⼀⾏(列)的各元素与其对应的代数余⼦式的乘积之和.推论:⾏列式某⼀⾏(列)的元素与另⼀⾏(列)的对应元素的代数余⼦式乘积之和等于零.③(化为三⾓型⾏列式)上三⾓、下三⾓、主对⾓⾏列式等于主对⾓线上元素的乘积.④若都是⽅阵(不必同阶),则⑤关于副对⾓线:⑥范德蒙德⾏列式:证明⽤从第n⾏开始,⾃下⽽上依次的由下⼀⾏减去它上⼀⾏的倍,按第⼀列展开,重复上述操作即可。
⑦型公式:⑧(升阶法)在原⾏列式中增加⼀⾏⼀列,保持原⾏列式不变的⽅法.⑨(递推公式法) 对阶⾏列式找出与或,之间的⼀种关系——称为递推公式,其中,,等结构相同,再由递推公式求出的⽅法称为递推公式法.(拆分法) 把某⼀⾏(或列)的元素写成两数和的形式,再利⽤⾏列式的性质将原⾏列式写成两⾏列式之和,使问题简化以例计算.⑩(数学归纳法)2. 对于阶⾏列式,恒有:,其中为阶主⼦式;3. 证明的⽅法:①、;②、反证法;③、构造齐次⽅程组,证明其有⾮零解;④、利⽤秩,证明;⑤、证明0是其特征值.4. 代数余⼦式和余⼦式的关系:第⼆部分矩阵1.矩阵的运算性质2.矩阵求逆3.矩阵的秩的性质4.矩阵⽅程的求解1.矩阵的定义由个数排成的⾏列的表称为矩阵.记作:或①同型矩阵:两个矩阵的⾏数相等、列数也相等.②矩阵相等: 两个矩阵同型,且对应元素相等.③矩阵运算a. 矩阵加(减)法:两个同型矩阵,对应元素相加(减).b. 数与矩阵相乘:数与矩阵的乘积记作或,规定为.c. 矩阵与矩阵相乘:设, ,则,其中注:矩阵乘法不满⾜:交换律、消去律, 即公式不成⽴.a. 分块对⾓阵相乘:,b. ⽤对⾓矩阵○左乘⼀个矩阵,相当于⽤的对⾓线上的各元素依次乘此矩阵的○⾏向量;c. ⽤对⾓矩阵○右乘⼀个矩阵,相当于⽤的对⾓线上的各元素依次乘此矩阵的○列向量.d. 两个同阶对⾓矩阵相乘只⽤把对⾓线上的对应元素相乘.④⽅阵的幂的性质:,⑤矩阵的转置:把矩阵的⾏换成同序数的列得到的新矩阵,叫做的转置矩阵,记作.a. 对称矩阵和反对称矩阵:是对称矩阵.是反对称矩阵.b. 分块矩阵的转置矩阵:⑥伴随矩阵:,为中各个元素的代数余⼦式.,, .分块对⾓阵的伴随矩阵:,矩阵转置的性质:矩阵可逆的性质:伴随矩阵的性质:r(A)与r(A*)的关系若r(A)=n,则不等于0,A*=可逆,推出r(A*)=n。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
行列式1. 行列式的性质性质1 行列式与它的转置行列式相等T D D =.性质2 互换行列式的两行(列),行列式变号.推论1 如果行列式有两行(列)的对应元素完全相同,则此行列式的值为零.性质3 行列式的某一行(列)中所有的元素都乘以同一数k ,等于用数k 乘此行列式.如111213111213212223212223313233313233a a a a a a ka ka ka k a a a a a a a a a = 推论2 如果行列式中有两行(列)元素成比例,则此行列式的值为零.性质4 若行列式的某一行(列)的元素都是两数之和,则这个行列式等于两个行列式之和.如111213111213111213212122222323212223212223313233313233313233a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a ''''''+++=+ 性质5 把行列式的某一行(列)的各元素乘以同一数然后加到另一行(列)对应的元素上去,行列式的值不变.如111213111213212223212223313233311132123313a a a a a a a a a a a a a a a a ka a ka a ka =+++例1 已知,那么( )A.-24B.-12C.-6D.12 答案 B解析2. 余子式与代数余子式在n 阶行列式中,把元素ij a 所在的第i 行和第j 列划去后,留下来的n-1阶行列式叫做元素ij a 的余子式,记作ij M ,i jij ij A (1)M +=-叫做元素ij a 的代数余子式.3. 行列式按行(列)展开法则定理1 行列式的值等于它的任一行(列)的各元素与其对应的代数余子式乘积之和,即1122i i i i in in D a A a A a A =+++或 1122j j j j nj nj D a A a A a A =+++()1,2,,;1,2i n j n ==定理2 行列式任一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零,即12120,j j i i jn i n a A a A a A +++=或,11220.j j j j nj nj a A a A a A i j +++=≠()1,2,,;1,2i n j n ==例.设3阶矩阵()ij A a =的行列式12A =,ij A 为ij a 的代数余子式.那么313132323333a A a A a A ++=___12____; 213122322333a A a A a A ++=___0___.4. 行列式的计算(1)二阶行列式1112112212212122a a a a a a a a =- (3)对角行列式1212n nλλλλλλ=,n(m 1)21212n n(1)λλλλλλ-=-(4)三角行列式1111121n 2122222n 1122nn n1n2nnnna a a a a a a a a a a a a a a ==(5)消元法:利用行列式的性质,将行列式化成三角行列式,从而求出行列式的值.(6)降阶法:利用行列式的性质,化某行(列)(一般选择有0元素的行或列)只有一个非零元素,再按该行(列)展开,通过降低行列式的阶数求出行列式的值.(7)加边法:行列式每行(列)所有元素的和相等,将各行(列)元素加到第一列(行),再提出公因式,进而求出行列式的值.例:思路:将有0的第三行化为只有一个非0元素a 33=1,按该行展开,D=a 33A 33,不用忘记a 33。
矩阵1. 常见矩阵1)对角矩阵:主对角线以外的元素全为0的方阵,称为对角矩阵.记作Λ. 2)单位矩阵:主对角线上的元素全为1的对角矩阵,称为单位矩阵.记作E. 5)对称矩阵:设A 为n阶方阵,若T A A =,即ij ji a a =,则称A 为对称矩阵. 6)反对称矩阵:设A 为n阶方阵,若T A A =-,即ij ji a a =- ,则称A 为反对称矩阵. 2. 矩阵的加法、数乘、乘法运算 (1)矩阵的加法如a b c a b c a a b b c c d e f d e f d d e e f f ''''''+++⎛⎫⎛⎫⎛⎫+=⎪⎪⎪''''''+++⎝⎭⎝⎭⎝⎭注:① 只有同型矩阵(行数和列数分别相等)才能进行加减运算;② 矩阵相加减就是对应元素相加减.(2)数乘矩阵:数乘矩阵就是数乘矩阵中的每个元素. 如a b c ka kb kc k d e f kd ke kf ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭(3)矩阵的乘法:设ij m ij n s s A (a ),B (b )⨯⨯==,规定ij m n AB C (c ),⨯== 其中sij i11j i22j is sj ik kj k 1c a b a b a b a b ==+++=∑(i 1,2,,m,j 1,2,,n.)==注:①左矩阵A 的列数等于右矩阵B 的行数;②矩阵乘积C 的元素ij c =左矩阵A 的第i 行与右矩阵B 的第j 列对应元素乘积的和. ③左矩阵A 的行数为乘积C 的行数,右矩阵B 的列数为乘积C 的列数. 例 设矩阵求AB 。
解:=3、逆矩阵设n 阶方阵A 、B ,若AB=E 或BA=E ,则A ,B 都可逆,且11A B,B A --==.1) n 阶方阵A 可逆(也称非异,非奇异,满秩)⟺⟺R (A )=n .(2)二阶方阵求逆,设a b A c d ⎛⎫=⎪⎝⎭,则1*d b 11A A c a A ad bc --⎛⎫== ⎪--⎝⎭(两调一除法).(3)对角矩阵的逆11111221n n a a a a a a ----⎛⎫⎛⎫⎪⎪⎪⎪= ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭,(4)求逆矩阵的方法:1、伴随矩阵:当A 可逆时,.方阵A 的伴随阵的定义,A ij 为|A |中a ij 的代数余子式。
2、初等变换法:一般矩阵求逆,初等行变换的方法:()()ERT1AE EA -−−−→.具体方法:用初等行变换把n×2n 矩阵(A ,E n )化为(E n ,A -1),当(A ,E n )的左半部分化为单位矩阵E n 时,右半部分就是A -1了,如果前n 列不可能化为单位矩阵,则说明A 不是可逆矩阵。
例.求的逆矩阵。
(5)逆矩阵的性质:; ; .例 已知A 2+A -E =0,则矩阵A -1=A+E. (A(A+E)=E)例 设C B A ,,为同阶可逆方阵,则=-1)(ABC ( 111---A B C ) 3、方阵的行列式由n阶方阵A 的元素所构成的行列式(各元素的位置不变)叫做方阵A 的行列式.记作A 或det (A ).例 设A 为3阶方阵,且已知则( )测试点 方阵行列式的性质 解 所以.例 设A 是3阶方阵,且则(-2 )例.设A,B 都是3阶矩阵,且|A|=2,B=-2E,则|A -1B|=_____-4____.(|B|=-8)3. 矩阵的初等变换下面三种变换称为矩阵的初等行(列)变换: (1) 互换两行(列);(2)数乘某行(列);(3)某行(列)的倍数加到另一行(列). 阶梯形矩阵:如果矩阵自上而下的各行中每一非零行的第一个非零元素的下方全是零; 元素全为零的行(如果有的话)都在非零行的下边。
行最简型矩阵: 如果阶梯形矩阵的每一非零行的第一个非零元素为1,且它所在列的其他元素全是04. 初等矩阵单位矩阵经过一次初等变换得到的矩阵,称为初等矩阵.如001100100010,0k 0,010100001k 01⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭都是初等矩阵. 5. 矩阵的秩矩阵A 的非零子式的最高阶数,称为矩阵A 的秩.记作R (A )或r (A ). 求矩阵的秩的方法:(1)定义法:找出A 中最高阶的非零子式, 它的阶数即为A 的秩.(2)初等行变换法:ERTA −−−→行阶梯形矩阵,R (A )=R (行阶梯形矩阵)=非零行的行数.例 设A 是4×5矩阵,,则(D )A. A 中的4阶子式都不为0B. A 中存在不为0的4阶子式C. A 中的3阶子式都不为0D. A 中存在不为0的3阶子式 6. 重要公式及结论(1)矩阵运算的公式及结论()()()()()()T TTT T T T T T TTT nT n n A A,(A B )A B ,A A ,AB B A A A ,AB B A ,AA A A A EA A ,A A ,AB A B BA ,A A ,A B A Bλλλλ*******=+=+===========+≠+矩阵乘法不满足交换律,即一般地A B ≠AB;矩阵乘法不满足消去律,即一般地若AB=AC ,无B=C ;只有当A 可逆时,有B=C.一般地若AB=O ,则无A=O 或B=O..(2)逆矩阵的公式及定理()()()()()()()()11111111n 11111k1k 1T11T 1A A ,A A ,,A A 1A A ,A A,A A ,A A AB B A1A A A A AA A ,A λλ----------*-**--**-----===========A 可逆⇔|A |≠0⇔A ~E (即A 与单位矩阵E 等价) (3)矩阵秩的公式及结论()()()T m n R(O )0,R(A )min{m,n },R(A )R(A ),R(kA )R(A ),k 0A 0R(A )n ,R A B R A R B ⨯=≤==≠≠⇔=+≤+R ( AB ) ≤R ( A ), R ( AB ) ≤R ( B ).特别地,当A 可逆时,R(AB)=R(B);当B 可逆时,R(AB)=R(A).()()ET A B A ~B R A R B −−→⇔⇒= 即等价矩阵的秩相等或初等变换不改变矩阵的秩.7. 矩阵方程(1)设 A 为n 阶可逆矩阵,B 为n ×m 矩阵,则矩阵方程AX=B 的解为1X A B -=;解法:① 求出1A -,再计算1A B -; ② ()()ERTAB E X −−−→ . 例 .设矩阵A ,B ,C ,X 为同阶方阵,且A ,B 可逆,AXB=C ,则矩阵X= A −1CB −18. 矩阵间的关系(1)等价矩阵:如果矩阵A 经过有限次初等变换变成矩阵B ,那么称矩阵A 与B 等价.即存在可逆矩阵P ,Q ,使得PAQ=B.性质:等价矩阵的秩相等.向量组的线性相关性1.线性组合(1)若α=kβ,则称向量α与β成比例.2.线性相关与线性无关(1)单独一个向量线性相关当且仅当它是零向量;单独一个向量线性无关当且仅当它是非零向量.(3)两向量线性相关当且仅当两向量对应成比例.(4)两向量线性无关当且仅当两向量不对应成比例.例问向量组α1=(2,3,1), α2=(1,2,1), α3=(3,2,1)是否线性相关?R(A)=3,这说明α1, α2, α3线性无关。