有限差分法求解偏微分方程
有限差分法解偏微分方程式

有限差分法解偏微分方程式第一節偏微分方程已知二階偏微分方程0,,,,22222=⎪⎭⎫ ⎝⎛∂∂∂∂+∂∂+∂∂∂+∂∂t u x u u t x f t u C t x u B x u A 若042=-AC B ,則稱上式為拋物線型偏微分方程。
若042>-AC B ,則稱上式為雙曲線型偏微分方程。
若042<-AC B ,則稱上式為橢圓型偏微分方程。
第二節Heat conduction 偏微分方程之數值解Heat Conduction Equation :t u x u ∂∂=∂∂2221α,L x <<0,0>t 邊界條件與初始條件必須給定。
將x 分成n 段n L h x ==∆,並取t 方向增量tk ∆=【方法一】顯性近似法:考慮節點()j i ,處之差分公式:grid points:()j i t x ,,()ji ij t x u u ,=二階偏微分為中央差分近似2,1,,12,1,,12222h u u u x u u u x u j i j i j i j i j i j i +-+-+-≈∆+-≈∂∂一階偏微分為前向差分近似ku u t u u t u j i j i j i j i ,1,,1,-≈∆-≈∂∂++代入熱傳方程t u x u ∂∂=∂∂2221α,得k u u h u u u j i j i j i j i j i ,1,22,1,,112-=+-++-α移項整理得()j i j i j i j i j i u u u u u hk ,1,,1,,1222-=+-++-α令22*hk αα=代入,得節點()j i ,之有限差分近似公式()j i j i j i j i j i u u u u u ,1,,1,1,2*+-++-+=α,n i ,,2,1,0 =, ,2,1,0=j 其中0=j 為初始條件,0,i u 為給定。
移項得PDE finite difference formula for the heat equation:()ji j i j i j i u u u u ,1,,11,**21*+-++-+=ααα0=i 及n i =為邊界條件,j u ,0,j n u ,為給定。
有限差分法的原理与计算步骤

有限差分法的原理与计算步骤有限差分法(Finite Difference Method)是一种常用的数值计算方法,用于求解偏微分方程的数值解。
其基本原理是将连续的偏微分方程转化为差分方程,通过逼近导数,使用离散的点代替连续的点,从而将问题转化为代数问题。
下面将详细介绍有限差分法的原理和计算步骤:一、基本原理:有限差分法基于Taylor级数展开,通过利用函数在其中一点附近的导数信息来逼近函数在该点处的值。
该方法将连续的偏微分方程转化为差分方程,使用离散的点代替连续的点,从而将问题转化为代数问题。
在有限差分法中,常用的差分逼近方式有前向差分、后向差分和中心差分。
二、计算步骤:1.网格划分:将求解区域划分为有限个离散点,并定义网格上的节点和网格尺寸。
通常使用等距离网格,即每个网格点之间的间距相等。
2.离散化:将偏微分方程中的各个导数项进行逼近,利用差分近似来替代和求解。
一般采用中心差分逼近方式,即通过函数值在两侧点的差来逼近导数。
3.代数方程系统:利用离散化的差分方程,将偏微分方程转化为代数方程系统。
根据问题的边界条件和初值条件,构建代数方程系统的系数矩阵和常数向量。
4. 求解代数方程:利用求解线性方程组的方法求解代数方程系统,常用的方法有直接法(如高斯消元法、LU分解法)和迭代法(如Jacobi迭代法、Gauss-Seidel迭代法)。
求解得到各个离散点的解。
5.后处理:根据求解结果进行后处理,包括结果的插值和可视化。
将离散点的解通过插值方法进行平滑处理,并进行可视化展示,以得到连续的函数解。
三、优缺点:1.直观:有限差分法基于网格划分,易于理解和实现。
2.精度可控:可通过调整网格大小和差分逼近方式来控制计算的精度。
3.广泛适用性:可用于求解各种偏微分方程,适用于不同的边界条件和初值条件。
然而,有限差分法也存在一些缺点:1.精度依赖网格:计算结果的精度受到网格划分的影响,因此需要谨慎选择网格大小。
2.限制条件:有限差分法适用于边界对应点处导数有定义的问题,不适用于奇异点和非线性问题。
偏微分方程的数值方法

偏微分方程的数值方法偏微分方程(Partial Differential Equations,简称PDEs)是数学中研究的重要分支,广泛应用于物理学、工程学等领域中。
由于一些复杂的PDEs难以找到解析解,因此需要借助数值方法进行求解。
本文将介绍偏微分方程的数值解法,包括有限差分法、有限元法和谱方法等。
一、有限差分法(Finite Difference Method)有限差分法是解偏微分方程最常用的数值方法之一。
它将偏微分方程中的导数用差商来近似,将空间离散成若干个小区间和时间离散成若干个小时间步长。
通过求解离散化后的代数方程,可以得到原偏微分方程的数值解。
以二维的泊松方程为例,偏微分方程可以表示为:∂²u/∂x² + ∂²u/∂y² = f(x, y)其中,u(x, y)为未知函数,f(x, y)为已知函数。
我们可以将空间离散成Nx × Ny个小区间,时间离散成Nt个小时间步长。
利用中心差分法可以近似表示导数,我们可以得到离散化的代数方程组。
二、有限元法(Finite Element Method)有限元法是一种重要的数值解PDEs的方法。
它将求解区域离散化成一系列的单元,再通过插值函数将每个单元上的未知函数近似表达。
然后,利用加权残差方法,将PDEs转化成代数方程组。
在有限元法中,采用形函数来近似未知函数。
将偏微分方程转化为弱形式,通过选取适当的形函数和权函数,可以得到离散化后的代数方程组。
有限元法适用于求解各种各样的偏微分方程,包括静态和动态、线性和非线性、自由边界和固定边界等问题。
三、谱方法(Spectral Method)谱方法是一种基于特殊函数(如正交多项式)的数值方法,用于解PDEs。
谱方法在求解偏微分方程时,利用高阶连续函数拟合初始条件和边界条件,通过调整特殊函数的系数来近似求解解析解。
谱方法具有高精度和快速收敛的特点,适用于各种偏微分方程求解。
偏微分方程数值求解方法

偏微分方程数值求解方法偏微分方程数值求解方法是使用计算机算法来近似求解偏微分方程的过程。
偏微分方程是描述物理现象和自然现象的主要工具,但大多数偏微分方程不能通过解析方式求解,因此需要使用数值方法进行近似求解。
常用的偏微分方程数值求解方法包括有限差分法、有限元法、谱方法、边界元法和逆时空方法等。
1. 有限差分法有限差分法是一种最简单的数值求解方法,它将偏微分方程中的导数离散化为差分的形式,然后通过有限差分公式求解。
在有限差分法中,将求解区域离散化为网格,然后在每个节点上求解方程,通过节点之间的连通关系建立系数矩阵,最终利用线性代数方法求解线性方程组。
2. 有限元法有限元法是一种广泛运用的数值求解方法,它将求解区域离散化为有限个子域,然后在每个子域内近似求解方程。
有限元法是一种基于变分原理的方法,通过将偏微分方程转化为变分问题,然后在有限维的函数空间中建立逼近函数,最终利用变分方法求解方程。
3. 谱方法谱方法是一种基于傅里叶变换的数值求解方法,它将求解域上的函数表示为傅里叶级数的形式,然后通过求解系数来近似求解方程。
谱方法具有高精度、高效率的优点,但对于非周期边界和奇异性问题可能不适用。
4. 边界元法边界元法是一种基于积分方程的数值求解方法,它将偏微分方程转化为边界积分方程,然后在求解区域表面上求解方程。
边界元法不需要离散化求解区域,仅需在求解区域表面上采集节点,并通过节点之间的关系建立系数矩阵。
5. 逆时空方法逆时空方法是一种利用观测数据反演偏微分方程的数值求解方法,它通过最优化算法将观测数据反演为偏微分方程的参数。
逆时空方法对模型假设和观测数据的噪声较为敏感,但可以应用于各种偏微分方程的求解。
偏微分方程的数值求解方法

偏微分方程的数值求解方法偏微分方程是描述自然现象的重要工具,例如描述热传导、电磁波传播、流体运动等。
然而大多数情况下,这些方程很难通过解析方式求解,因此需要数值求解方法。
本文将介绍偏微分方程的数值求解方法及其应用。
一、有限差分法有限差分法是一种常见的偏微分方程数值求解方法。
它将原本连续的区域离散化,将偏微分方程转化为差分方程。
例如对于一维热传导方程:$$\frac{\partial u}{\partial t} = \alpha\frac{\partial^2 u}{\partial x^2} $$其中 $u(x, t)$ 是温度,$\alpha$ 是热扩散系数。
我们可以选择将空间分成 $N$ 个网格,时间分成 $M$ 个步骤。
则有:$$u_i^{m+1} = u_i^m + \frac{\alpha\Delta t}{\Deltax^2}(u_{i+1}^m - 2u_i^m + u_{i-1}^m)$$其中 $u_i^m$ 表示在位置 $i\Delta x$,时间 $m\Delta t$ 时的温度值。
这是一个显式求解方程,可以直接按照时间步骤迭代计算。
不过由于它的误差可能会增长,因此需要小心选择时间步长和空间步长,以保证误差不会过大。
二、有限元法有限元法是一种更加通用的偏微分方程数值求解方法。
它将连续区域离散化成一些小段,称为单元。
然后针对每个单元,将其上的偏微分方程转化为局部插值函数的方程求解。
例如对于一维波动方程:$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partialx^2}$$我们可以选择将空间分成 $N$ 个网格,用有限元方法将每个网格分成若干个单元。
则对于每个单元 $i$,我们可以得到一个局部插值函数 $u^i(x, t)$ 来近似解该单元上的偏微分方程。
这里不再赘述该函数的形式。
另外,我们还需要满足界面上的连续性和斜率匹配条件,以保证整体解是连续的。
科学计算中的偏微分方程有限差分法

科学计算中的偏微分方程有限差分法
偏微分方程是描述自然界中许多现象的重要工具,例如流体力学、电磁学和量子力学等。
然而,解析解通常只能得到一些简单的特例,因此需要使用数值方法来求解偏微分方程。
有限差分法是求解偏微分方程的一种常用数值方法。
它的主要思想是将偏微分方程中的连续空间变量离散化为有限个离散点,然后使用差分近似求解。
这样得到的数值解与真实解的误差随着离散化的细度逐渐减小,可以得到足够精确的近似解。
有限差分法的基本步骤包括网格生成、差分近似、边界条件处理和迭代求解。
其中,网格生成是将空间变量离散化的过程,差分近似是将偏微分方程中的微分算子用有限差分算子替代的过程,边界条件处理是将问题的边界情况考虑进来的过程,迭代求解是使用差分方程求解数值解的过程。
有限差分法在科学计算中有着广泛的应用,例如在流体力学中求解Navier-Stokes方程、在地球物理学中求解地震波方程、在量子力学中求解薛定谔方程等。
通过有限差分法,科学家可以得到更加精确的数值解,进一步深入理解自然界的规律。
- 1 -。
有限差分法解偏微分方程

有限差分法解偏微分方程综述绪论有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。
在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。
有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。
该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。
有限差分法以Taylor 级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。
该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。
对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。
从差分的空间形式来考虑,可分为中心格式和逆风格式。
考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。
目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。
差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。
构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。
其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。
通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。
有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。
fdm有限差分法不能求解的方程

有限差分法(Finite Difference Method, FDM)是一种常见的数值方法,用于求解偏微分方程。
然而,并非所有的方程都可以通过有限差分法来求解。
本文将讨论有限差分法不能求解的方程,并探讨其原因。
一、有限差分法求解的方程类型有限差分法主要用于求解偏微分方程,尤其是常见的热传导方程、扩散方程和波动方程等。
这些方程通常可以通过有限差分法离散化空间和时间,从而转化为代数方程组,再通过迭代等方法求解。
二、有限差分法不能求解的方程类型然而,并非所有的偏微分方程都适合用有限差分法求解。
以下是一些有限差分法不能求解的方程类型:1. 非线性偏微分方程:有限差分法主要适用于线性偏微分方程,对于非线性偏微分方程,由于其复杂的性质和解的多样性,有限差分法往往难以适用。
2. 高阶偏微分方程:有限差分法通常只适用于一阶和二阶偏微分方程,对于高阶偏微分方程,需要进行更复杂的离散化处理,难以直接通过有限差分法求解。
3. 变系数偏微分方程:对于系数随空间或时间变化的偏微分方程,有限差分法往往难以准确描述其变化规律,因此难以求解。
4. 非线性边值问题:对于带有非线性边值条件的偏微分方程,有限差分法的稳定性和收敛性难以保证,因此难以求解。
三、原因分析有限差分法不能求解某些偏微分方程的原因主要包括以下几点:1. 离散化处理困难:一些复杂的方程很难通过简单的差分离散化处理转化为代数方程组,从而难以应用有限差分法求解。
2. 解的多样性:对于非线性偏微分方程和非线性边值条件,解的多样性导致有限差分法往往无法准确描述其解的特性。
3. 稳定性和收敛性难以保证:对于一些特殊的偏微分方程,由于有限差分法的稳定性和收敛性难以保证,因此难以求解。
四、解决方法针对有限差分法不能求解的方程,可以考虑以下解决方法:1. 使用其他数值方法:对于非线性偏微分方程和高阶偏微分方程,可以考虑使用有限元法、有限体积法等其他数值方法进行求解。
2. 手工推导精确解:对于一些特殊的偏微分方程,可以尝试手工推导其解析解,从而获得准确的解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
南京理工大学课程考核论文课程名称:高等数值分析论文题目:有限差分法求解偏微分方程姓名:罗晨学号:成绩:有限差分法求解偏微分方程一、主要内容1.有限差分法求解偏微分方程,偏微分方程如一般形式的一维抛物线型方程:22(,)()u uf x t t xαα∂∂-=∂∂其中为常数具体求解的偏微分方程如下:22001(,0)sin()(0,)(1,)00u u x t x u x x u t u t t π⎧∂∂-=≤≤⎪∂∂⎪⎪⎪=⎨⎪⎪==≥⎪⎪⎩2.推导五种差分格式、截断误差并分析其稳定性;3.编写MATLAB 程序实现五种差分格式对偏微分方程的求解及误差分析;4.结论及完成本次实验报告的感想。
二、推导几种差分格式的过程:有限差分法(finite-difference methods )是一种数值方法通过有限个微分方程近似求导从而寻求微分方程的近似解。
有限差分法的基本思想是把连续的定解区域用有限个离散点构成的网格来代替;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似,积分用积分和来近似,于是原微分方程和定解条件就近似地代之以代数方程组,即有限差分方程组,解此方程组就可以得到原问题在离散点上的近似解。
推导差分方程的过程中需要用到的泰勒展开公式如下:()2100000000()()()()()()()......()(())1!2!!n n n f x f x f x f x f x x x x x x x o x x n +'''=+-+-++-+-(2-1)求解区域的网格划分步长参数如下:11k k k kt t x x h τ++-=⎧⎨-=⎩ (2-2)古典显格式2.1.1 古典显格式的推导由泰勒展开公式将(,)u x t 对时间展开得2,(,)(,)()()(())i i k i k k k uu x t u x t t t o t t t∂=+-+-∂ (2-3)当1k t t +=时有21,112,(,)(,)()()(())(,)()()i k i k i k k k k k i k i k uu x t u x t t t o t t tuu x t o tττ+++∂=+-+-∂∂=+⋅+∂ (2-4)得到对时间的一阶偏导数1,(,)(,)()=()i k i k i k u x t u x t uo t ττ+-∂+∂ (2-5) 由泰勒展开公式将(,)u x t 对位置展开得223,,21(,)(,)()()()()(())2!k i k i k i i k i i u uu x t u x t x x x x o x x x x∂∂=+-+-+-∂∂(2-6)当11i i x x x x +-==和时,代入式(2-6)得2231,1,1122231,1,1121(,)(,)()()()()(())2!1(,)(,)()()()()(())2!i k i k i k i i i k i i i i i k i k i k i i i k i i i iu uu x t u x t x x x x o x x x x u u u x t u x t x x x x o x x x x ++++----⎧∂∂=+-+-+-⎪⎪∂∂⎨∂∂⎪=+-+-+-⎪∂∂⎩(2-7)因为1k k x x h +-=,代入上式得2231,,22231,,21(,)(,)()()()2!1(,)(,)()()()2!i k i k i k i k i k i k i k i ku uu x t u x t h h o h x xu u u x t u x t h h o h x x +-⎧∂∂=+⋅+⋅+⎪⎪∂∂⎨∂∂⎪=-⋅+⋅+⎪∂∂⎩(2-8)得到对位置的二阶偏导数2211,22(,)2(,)(,)()()i k i k i k i k u x t u x t u x t u o h x h+--+∂=+∂ (2-9)将式(2-5)、(2-9)代入一般形式的抛物线型偏微分方程得21112(,)(,)(,)2(,)(,)(,)()i k i k i k i k i k i k u x t u x t u x t u x t u x t f x t o h h αττ++---+⎡⎤-=++⎢⎥⎣⎦(2-10)为了方便我们可以将式(2-10)写成11122k kk k k k i i i i i i u u u u u f h ατ++-⎡⎤--+-=⎢⎥⎣⎦(2-11) ()11122k k k k k k i i i i i i u u uu u f hτατ++----+=(2-12)最后得到古典显格式的差分格式为()111(12)k k k k k i i i i i u ra u r u u f ατ++-=-+++(2-13)2r h τ=其中,古典显格式的差分格式的截断误差是2()o h τ+。
2.1.2 古典显格式稳定性分析古典显格式(2-13)写成矩阵形式为()112k k k h hh u ra I raC u f τ+=-++⎡⎤⎣⎦ (2-14)12212,(,,......,,)k k k k kh N N r u u u u u h τ--==其中。
(1)(1)01010*********N N C -⨯-⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦L L MM L 上面的C 矩阵的特征值是:2cos()1,2,......,1C j h j N λπ==-()12H ra I raC =-+()()()212=122cos()121cos()14sin 1,2,......,12H j C ra ra ra ra j h ra j h j hra j N λλπππ=-+-+=--=-=-(2-15)使()1H ρ≤,即2114sin 12j hra π-≤-≤ 102ra ≤≤结论:当102ra ≤≤时,所以古典显格式是稳定的。
古典隐格式2.2.1 古典隐格式的推导 将1k t t -=代入式 (2-3)得21,11(,)(,)()()(())j k j k j k k k k k uu x t u x t t t o t t t---∂=+-+-∂ (2-16) 21,(,)(,)()()j k j k j k uu x t u x t o tττ-∂=-⋅+∂ (2-17)得到对时间的一阶偏导数1,(,)(,)()=()j k j k j k u x t u x t u o t ττ--∂+∂ (2-18) 将式(2-9)、(2-18)原方程得到11122(,)(,)(,)2(,)(,)(,)()j k j k j k j k j k j k u x t u x t u x t u x t u x t f x t o h h αττ-+---+⎡⎤-=++⎢⎥⎣⎦(2-19)为了方便把(2-19)写成11122k k k k kj jj j j k j u u u u u f h ατ-+-⎡⎤--+-=⎢⎥⎢⎥⎣⎦(2-20) ()11122k k kk k kj jj j j j u u uu u f hτατ-+----+= (2-21)最后得到古典隐格式的差分格式为()111(12)k k k k k j j j jj ra u r u u u f ατ-+-+-+=+ (2-22)2r h τ=其中,古典隐格式的差分格式的截断误差是2()o h τ+。
2.2.2 古典隐格式稳定性分析将古典隐格式(2-22)写成矩阵形式如下()1212()k k kh h hra I raC u u f r h ττ++-=+=⎡⎤⎣⎦(2-23)误差传播方程()112k k h h ra I raC v v ++-=⎡⎤⎣⎦(2-24) ()12,A ra I raC B I=+-=所以误差方程的系数矩阵为()1112H A ra I raC --==+-⎡⎤⎣⎦()11,2,......,1122cos H j j N ra ra j hλπ==-+-使()1H ρ≤,显然()21122cos()112(1cos())114sin 2H j ra ra j h ra j h j h ra λπππ=+-=+-=+1H j λ≤恒成立。
结论:对于0r ∀>,即任意网格比下,古典隐格式是绝对稳定的。
Richardson 格式2.3.1 Richardson 格式的推导 将11k k t t t t +-==和,代入式(2-3)得21,1121,11(,)(,)()()(())(,)(,)()()(())i k i k i k k k k k i k i k i k k k k ku u x t u x t t t o t t t u u x t u x t t t o t t t +++---∂⎧=+-+-⎪⎪∂⎨∂⎪=+-+-⎪∂⎩(2-25) 即21,21,(,)(,)()()(,)(,)()()i k i k i k i k i k i ku u x t u x t o t u u x t u x t o t ττττ+-∂⎧=+⋅+⎪⎪∂⎨∂⎪=-⋅+⎪∂⎩(2-26) 由此得到可得 211,(,)(,)()()2i k i k i k u x t u x t uo t ττ++-∂=+∂ (2-27)将式(2-9) 、(2-27)代入原方程得到下式2211112(,)(,)(,)2(,)(,)(,)()2i k i k i k i k i k i k u x t u x t u x t u x t u x t f x t o h h αττ+-+---+⎡⎤-=++⎢⎥⎣⎦(2-28)为了方便可以把式(2-28)写成1111222k k k k k ki i i i i i u u u u u f h ατ+-+-⎡⎤--+-=⎢⎥⎣⎦(2-29) 即()111122k k kk k k i i i i i i u u uu u f hτατ+-+----+= (2-30)最后得到Richardson 显格式的差分格式为()1111222k k k k k k i i i i i i u r u u u u f ατ+-+-=-+++(2-31)2r h τ=其中,古典显格式的差分格式的截断误差是22()o h τ+。
2.3.2 Richardson 稳定性分析将Richardson 显格式(2-31)写成如下矩阵形式()11222k k k k h h h h u r C I u u f ατ+-=-++ (2-32)误差传播方程矩阵形式()1122k k k h h hkkh hv r C I v v v v α+-⎧=-+⎪⎨=⎪⎩ (2-33) 再将上面的方程组写成矩阵形式112(2)0k k k hk ra C I I v ww I v ++-⎛⎫⎡⎤== ⎪⎢⎥⎣⎦⎝⎭ (2-34) 系数矩阵的特征值是4cos()4110j ra j h ra π-⎡⎤∧=⎢⎥⎣⎦228sin 102j hra πλλ+-= (2-35) 解得特征值为1,2λ=(2-36){}212,=4sin 12j h Max ra πλλ> (恒成立)(2-37)结论:上式对任意的网比都恒成立,即Richardson 格式是绝对不稳定的。