偏微分方程求解-有限差分法解析

合集下载

有限差分法的原理与计算步骤

有限差分法的原理与计算步骤

有限差分法的原理与计算步骤有限差分法(Finite Difference Method)是一种常用的数值计算方法,用于求解偏微分方程的数值解。

其基本原理是将连续的偏微分方程转化为差分方程,通过逼近导数,使用离散的点代替连续的点,从而将问题转化为代数问题。

下面将详细介绍有限差分法的原理和计算步骤:一、基本原理:有限差分法基于Taylor级数展开,通过利用函数在其中一点附近的导数信息来逼近函数在该点处的值。

该方法将连续的偏微分方程转化为差分方程,使用离散的点代替连续的点,从而将问题转化为代数问题。

在有限差分法中,常用的差分逼近方式有前向差分、后向差分和中心差分。

二、计算步骤:1.网格划分:将求解区域划分为有限个离散点,并定义网格上的节点和网格尺寸。

通常使用等距离网格,即每个网格点之间的间距相等。

2.离散化:将偏微分方程中的各个导数项进行逼近,利用差分近似来替代和求解。

一般采用中心差分逼近方式,即通过函数值在两侧点的差来逼近导数。

3.代数方程系统:利用离散化的差分方程,将偏微分方程转化为代数方程系统。

根据问题的边界条件和初值条件,构建代数方程系统的系数矩阵和常数向量。

4. 求解代数方程:利用求解线性方程组的方法求解代数方程系统,常用的方法有直接法(如高斯消元法、LU分解法)和迭代法(如Jacobi迭代法、Gauss-Seidel迭代法)。

求解得到各个离散点的解。

5.后处理:根据求解结果进行后处理,包括结果的插值和可视化。

将离散点的解通过插值方法进行平滑处理,并进行可视化展示,以得到连续的函数解。

三、优缺点:1.直观:有限差分法基于网格划分,易于理解和实现。

2.精度可控:可通过调整网格大小和差分逼近方式来控制计算的精度。

3.广泛适用性:可用于求解各种偏微分方程,适用于不同的边界条件和初值条件。

然而,有限差分法也存在一些缺点:1.精度依赖网格:计算结果的精度受到网格划分的影响,因此需要谨慎选择网格大小。

2.限制条件:有限差分法适用于边界对应点处导数有定义的问题,不适用于奇异点和非线性问题。

偏微分方程的数值方法

偏微分方程的数值方法

偏微分方程的数值方法偏微分方程(Partial Differential Equations,简称PDEs)是数学中研究的重要分支,广泛应用于物理学、工程学等领域中。

由于一些复杂的PDEs难以找到解析解,因此需要借助数值方法进行求解。

本文将介绍偏微分方程的数值解法,包括有限差分法、有限元法和谱方法等。

一、有限差分法(Finite Difference Method)有限差分法是解偏微分方程最常用的数值方法之一。

它将偏微分方程中的导数用差商来近似,将空间离散成若干个小区间和时间离散成若干个小时间步长。

通过求解离散化后的代数方程,可以得到原偏微分方程的数值解。

以二维的泊松方程为例,偏微分方程可以表示为:∂²u/∂x² + ∂²u/∂y² = f(x, y)其中,u(x, y)为未知函数,f(x, y)为已知函数。

我们可以将空间离散成Nx × Ny个小区间,时间离散成Nt个小时间步长。

利用中心差分法可以近似表示导数,我们可以得到离散化的代数方程组。

二、有限元法(Finite Element Method)有限元法是一种重要的数值解PDEs的方法。

它将求解区域离散化成一系列的单元,再通过插值函数将每个单元上的未知函数近似表达。

然后,利用加权残差方法,将PDEs转化成代数方程组。

在有限元法中,采用形函数来近似未知函数。

将偏微分方程转化为弱形式,通过选取适当的形函数和权函数,可以得到离散化后的代数方程组。

有限元法适用于求解各种各样的偏微分方程,包括静态和动态、线性和非线性、自由边界和固定边界等问题。

三、谱方法(Spectral Method)谱方法是一种基于特殊函数(如正交多项式)的数值方法,用于解PDEs。

谱方法在求解偏微分方程时,利用高阶连续函数拟合初始条件和边界条件,通过调整特殊函数的系数来近似求解解析解。

谱方法具有高精度和快速收敛的特点,适用于各种偏微分方程求解。

二阶偏微分方程组的有限差分解法

二阶偏微分方程组的有限差分解法

二阶偏微分方程组的有限差分解法下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by the editor. I hope that after you download them, they can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!二阶偏微分方程组的有限差分解法引言在科学与工程领域中,二阶偏微分方程组的求解是一项重要而又具有挑战性的任务。

偏微分方程的数值求解方法

偏微分方程的数值求解方法

偏微分方程的数值求解方法偏微分方程是描述自然现象的重要工具,例如描述热传导、电磁波传播、流体运动等。

然而大多数情况下,这些方程很难通过解析方式求解,因此需要数值求解方法。

本文将介绍偏微分方程的数值求解方法及其应用。

一、有限差分法有限差分法是一种常见的偏微分方程数值求解方法。

它将原本连续的区域离散化,将偏微分方程转化为差分方程。

例如对于一维热传导方程:$$\frac{\partial u}{\partial t} = \alpha\frac{\partial^2 u}{\partial x^2} $$其中 $u(x, t)$ 是温度,$\alpha$ 是热扩散系数。

我们可以选择将空间分成 $N$ 个网格,时间分成 $M$ 个步骤。

则有:$$u_i^{m+1} = u_i^m + \frac{\alpha\Delta t}{\Deltax^2}(u_{i+1}^m - 2u_i^m + u_{i-1}^m)$$其中 $u_i^m$ 表示在位置 $i\Delta x$,时间 $m\Delta t$ 时的温度值。

这是一个显式求解方程,可以直接按照时间步骤迭代计算。

不过由于它的误差可能会增长,因此需要小心选择时间步长和空间步长,以保证误差不会过大。

二、有限元法有限元法是一种更加通用的偏微分方程数值求解方法。

它将连续区域离散化成一些小段,称为单元。

然后针对每个单元,将其上的偏微分方程转化为局部插值函数的方程求解。

例如对于一维波动方程:$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partialx^2}$$我们可以选择将空间分成 $N$ 个网格,用有限元方法将每个网格分成若干个单元。

则对于每个单元 $i$,我们可以得到一个局部插值函数 $u^i(x, t)$ 来近似解该单元上的偏微分方程。

这里不再赘述该函数的形式。

另外,我们还需要满足界面上的连续性和斜率匹配条件,以保证整体解是连续的。

偏微分方程数值解法

偏微分方程数值解法

偏微分方程数值解法偏微分方程(Partial Differential Equations,简称PDE)是数学中重要的研究对象,其在物理学、工程学、经济学等领域有广泛的应用。

然而,对于大多数偏微分方程而言,很难通过解析方法得到精确解,因此需要借助数值解法来求解。

本文将介绍几种常见的偏微分方程数值解法。

一、有限差分法(Finite Difference Method)有限差分法是一种常见且直观的偏微分方程数值解法。

其基本思想是将偏微分方程中的导数通过差分近似来表示,然后通过离散化的方式转化为代数方程组进行求解。

对于一维偏微分方程,可以通过将空间坐标离散化成一系列有限的格点,并使用中心差分格式来近似原方程中的导数项。

然后,将时间坐标离散化,利用差分格式逐步计算每个时间步的解。

最后,通过迭代计算所有时间步,可以得到整个时间域上的解。

对于二维或高维的偏微分方程,可以将空间坐标进行多重离散化,利用多维的中心差分格式进行近似,然后通过迭代计算得到整个空间域上的解。

二、有限元法(Finite Element Method)有限元法是另一种重要的偏微分方程数值解法。

其基本思想是将求解区域分割成有限数量的子区域(单元),然后通过求解子区域上的局部问题来逼近整个求解区域上的解。

在有限元法中,首先选择适当的形状函数,在每个单元上构建近似函数空间。

然后,通过构建变分问题,将原偏微分方程转化为一系列代数方程。

最后,通过求解这些代数方程,可以得到整个求解区域上的解。

有限元法适用于各种复杂的边界条件和几何构型,因此在实际工程问题中被广泛应用。

三、谱方法(Spectral Methods)谱方法是一种基于特定基函数(如切比雪夫多项式、勒让德多项式等)展开解的偏微分方程数值解法。

与有限差分法和有限元法不同,谱方法在整个求解区域上都具有高精度和快速收敛的特性。

在谱方法中,通过选择适当的基函数,并利用其正交性质,可以将解在整个求解区域上展开为基函数系数的线性组合。

科学计算中的偏微分方程有限差分法

科学计算中的偏微分方程有限差分法

科学计算中的偏微分方程有限差分法
偏微分方程是描述自然界中许多现象的重要工具,例如流体力学、电磁学和量子力学等。

然而,解析解通常只能得到一些简单的特例,因此需要使用数值方法来求解偏微分方程。

有限差分法是求解偏微分方程的一种常用数值方法。

它的主要思想是将偏微分方程中的连续空间变量离散化为有限个离散点,然后使用差分近似求解。

这样得到的数值解与真实解的误差随着离散化的细度逐渐减小,可以得到足够精确的近似解。

有限差分法的基本步骤包括网格生成、差分近似、边界条件处理和迭代求解。

其中,网格生成是将空间变量离散化的过程,差分近似是将偏微分方程中的微分算子用有限差分算子替代的过程,边界条件处理是将问题的边界情况考虑进来的过程,迭代求解是使用差分方程求解数值解的过程。

有限差分法在科学计算中有着广泛的应用,例如在流体力学中求解Navier-Stokes方程、在地球物理学中求解地震波方程、在量子力学中求解薛定谔方程等。

通过有限差分法,科学家可以得到更加精确的数值解,进一步深入理解自然界的规律。

- 1 -。

有限差分法解偏微分方程

有限差分法解偏微分方程

有限差分法解偏微分方程综述绪论有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。

在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。

有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。

该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。

有限差分法以Taylor 级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。

该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。

对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。

从差分的空间形式来考虑,可分为中心格式和逆风格式。

考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。

目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。

差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。

构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。

其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。

通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。

有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。

偏微分方程数值求解方法

偏微分方程数值求解方法

偏微分方程数值求解方法引言偏微分方程是数学中研究复杂现象的重要工具之一,它在许多领域都有广泛的应用,例如物理学、工程学和生物学等。

通过求解偏微分方程,我们可以获得系统的解析解或数值解,从而揭示底层的物理规律或实现工程设计。

在本文中,我们将介绍偏微分方程数值求解的常见方法,包括有限差分法、有限元法和谱方法等。

我们将详细介绍这些方法的基本原理、数值算法和实际应用。

有限差分法基本原理有限差分法是偏微分方程数值求解中最常用的方法之一。

它将连续的偏微分方程离散化为差分方程,通过计算差分方程的解来近似原方程的解。

有限差分法的基本思想是将求解域划分为离散的网格,然后在网格点上近似表示原方程。

数值算法有限差分法的数值算法主要包括离散化、边界条件处理和迭代求解三个步骤。

首先,我们将连续的偏微分方程在空间和时间上进行离散化,将其转化为差分方程。

然后,我们需要确定边界条件,即在边界上如何近似表示原方程。

最后,通过迭代计算差分方程的解,直到满足收敛条件。

实际应用有限差分法在许多领域都有广泛的应用。

例如,在流体力学中,它可以用来模拟气体或液体的流动。

在热传导方程中,它可以用来求解物体的温度分布。

此外,有限差分法还可以用来模拟结构力学中的弹性变形和振动问题等。

有限元法基本原理有限元法是一种基于分片线性函数空间的数值方法,用于求解偏微分方程。

它将求解域划分为离散的小单元,然后在每个单元上构造局部基函数,通过组合这些基函数来近似表示原方程的解。

数值算法有限元法的数值算法主要包括离散化、单元刚度矩阵的计算和全局方程的组装三个步骤。

首先,我们将连续的偏微分方程在空间上进行离散化,将其转化为离散的代数方程。

然后,针对每个单元,我们需要计算其对应的刚度矩阵和载荷向量。

最后,通过组装所有单元的刚度矩阵和载荷向量,得到全局方程,并通过求解全局方程来计算原方程的近似解。

实际应用有限元法在结构力学、固体力学和流体力学等领域有广泛的应用。

例如,在结构力学中,它可以用来计算材料的应力和变形分布。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

--以有限差分法为例偏微分方程数值求解1. 偏微分方程求解问题的描述教材P653[12.1.1]椭圆型教材P653[12.1.2]教材P664[12.2.1]双曲型教材P665[12.2.4]拉普拉斯泊松对流波动教材P684[12.3.1]抛物型教材P685[12.3.6]扩散对流扩散教材P686[12.3.8]二维扩散教材P678[12.2.23]二维对流⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥≤≤==≥≤≤==≤≤=>≥≤≤≤≤⎪⎪⎭⎫ ⎝⎛∂∂+∂∂=∂∂0,0, ),(),,(),(),0,(0,0,),(),,(),(),,0(,0,),()0,,(0,0 , 0 , 0 21212222t L x t x v t L x u t x v t x u t L y t y t y L u t y t y u L y x y x y x u b t L y L x y u x u b t u μμϕΩ求解域初值条件边值条件),,(t y x u 未知函数⎪⎪⎪⎪⎪⎭⎪⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧≥<<-==≥<<==≥≤≤-==≥≤≤==≤≤==≤≤≤≤≤≤⎪⎪⎭⎫ ⎝⎛∂∂+∂∂=∂∂0 , 50 , sin 255sin ),(),5,(0 , 50 , 0),(),0,(0 , 50 , 5sin sin 25),(),,5(0 , 50 , 0),(),,0(5,0,0),()0,,( 10000 , 50 , 50 001.022********t x x x t x v t x u t x t x v t x u t y y y t y t y u t y t y t y u y x y x y x u t y x y u x u t u μμϕΩ求解域初值条件边值条件以具体问题为例演示具体的求解过程),,(t y x u 未知函数0x 1x 2x 3x 4x 0y 1y 2y 3y 4y 0t 1t 2t 3t 4t x j jh x =y k kh y =τn t n =xh x 区间的剖分步长τ区间的剖分步长t y h y 区间的剖分步长y x h h h ==0x 1x 2x 3x 4x 0y 1y 2y 3y 4y 0t 1t 2t 3t 4t jh x j =khy k =τn t n =xh x 区间的剖分步长τ区间的剖分步长t y h y 区间的剖分步长y x h h h ==1x 2x 3x 4x 0y 1y 2y 3y 4y 0t 1t 2t 3t 4t 0x),,(n k j t y x ⎩⎨⎧===4..0 , 4..04..0j k n 0x 1x 2x 3x 4x 0y 1y 2y 3y 4y 0t 1t 2t 3t 4t ),,(211t y x ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤≤≤≤≤≤=Ω100005050),,(t y x t y x ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧====Ω4..04..04..0),,(j k n t y x n k j n kj0x 1x 2x 3x 4x 0y 1y 2y 3y 4y 0t 1t 2t 3t 4t ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤≤≤≤≤≤=Ω100005050),,(t y x t y x ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧====Ω4..04..04..0),,(j k n t y x n k j n kj ?),,(),,(=Ω∈t y x t y x u ?),,(),,(=Ω∈nkjn k j t y x n k j t y x u 求解目标求解目标离散化n kju4040====k k j j 或或或边界点:1x 2x 3x 4x 0y 1y 2y 3y4y 0t 1t 2t 3t 4t 0x4040≠≠≠≠k k j j 且且且内点:1x 2x 3x 4x 0y 1y 2y 3y4y 0t 1t 2t 3t 4t 0x1x 2x 3x 4x 0y 1y 2y 3y 4y 0t 1t 2t 3t 4t 0x 5,0,0)0,,(≤≤=y x y x u 初值条件0),,(04..04..00====t y x u uk j k j kj 0kju000u001u002u003u004u1x 2x 3x 4x 0y 1y 2y 3y 4y 0t 1t 2t 3t 4t 0x000u001u002u003u004u1x 2x 3x 4x 0y 1y 2y 3y 4y 0t 1t 2t 3t 4t 0x 010u011u012u013u014u000u 001u002u003u 004u1x 2x 3x 4x 0y 1y 2y 3y 4y 0t 1t 2t 3t 4t 0x 010u011u 012u 013u014u 020u021u022u023u024u000u 001u 002u 003u 004u 1x 2x 3x 4x 0y 1y 2y 3y 4y 0t 1t 2t 3t 4t 0x 010u 011u 012u 013u 014u 020u 021u 022u 023u 024u 030u031u032u033u034u000u 001u 002u 003u 004u 1x 2x 3x 4x 0y 1y 2y 3y 4y 0t 1t 2t 3t 4t 0x 010u 011u 012u 013u 014u 020u 021u 022u 023u 024u 030u 031u 032u033u 034u040u041u042u043u044u的存储设计计算数据0kju 1x 2x 3x 4x 0y 1y 2y 3y 4y 0t 1t 2t 3t 4t 0x 000u 001u 002u 003u 004u 010u 011u 012u 013u 014u 020u 021u 022u 023u 024u 030u 031u 032u033u 034u040u041u042u043u044u1234512345行号列号MATLAB矩阵U0的存储设计计算数据0kju 1x 2x 3x 4x 0y 1y 2y 3y 4y 0t 1t 2t 3t 4t 0x 000u 001u 002u 003u 004u 010u 011u 012u 013u 014u 020u 021u 022u 023u 024u 030u 031u 032u033u 034u040u041u042u043u044u012341234行号列号C 语言矩阵U0的图像计算结果可视化)0,,( :y x u 1x 2x 3x 4x 0y 1y 2y 3y 4y 0t 1t 2t 3t 4t 0x 000u 001u 002u 003u 004u 010u 011u 012u 013u 014u 020u 021u 022u 023u 024u 030u031u 032u 033u034u 040u041u042u043u044u1234512345行号列号MATLAB 矩阵U00kju),,()0,,(0kjk j u y x y x u 上的点4..0,4..0 ),,( :211===k j t y x u u k j kj求步第边值条件11104t x 103t x y 102t x y 101t x y 100t x y 0,50 , 0),,0(≥≤≤=t y t y u 0),,(104..00===t y x u uk k k边值条件1104tx 103t x y 102tx y 101tx y 10t x y 140u 130u 120u 110u 100u 0),,(104..010===t y x u uk k k 0,50 , 0),,0(≥≤≤=t y t y u边值条件25sin )()sin(25),,(2144..014k k k k k y y t y x u u-===14t 14t 14t x 141t x 140t x y 0,50 , 5sin sin 25),,5(2≥≤≤-=t y y y t y u边值条件25sin )()sin(25),,(2144..014k k k k k y y t y x u u-===14t 14t 14tx 141t x 14t x y 144u134u124u 114u104u 0,50 , 5sin sin 25),,5(2≥≤≤-=t y y y t y u边值条件3),,(103..110===t y x u uj j j 0,50 , 0),0,(≥<<=t x t x u 110t x y 120t x y 130t x y边值条件3),,(103..110===t y x u uj j j 110t x y 120tx y 130t x y 101u102u 103u 0,50 , 0),0,(≥<<=t x t x u边值条件411t x 12t x 13t x )sin(255sin )(),,(2143..114j j j j j x x t y x u u-===0,50 , sin 255sin ),5,(2≥<<-=t x x x t x u边值条件411t x 12t x 13t x )sin(255sin )(),,(2143..114j j j j j x x t y x u u-===0,50 , sin 255sin ),5,(2≥<<-=t x x x t x u 141u 142u143u141u 142u 143u 101u 102u 103u 144u 134u 124u 114u 104u 140u 130u 120u 110u 100u1,,+n j k t x y nj k t x y ,,1+nj k t x y ,,1-nj k t x y ,,1-nj k t x y ,,1+nj k t x y ,,策略”1,,+n jk t x y nj k t xy ,,1+n j k tx y ,,1-njk t x y ,,1-nj k t x y,,1+nj kt x y ,,2,1,121,1,22hu u ubhu u ubuujk kj jk j k kj j k kjkj-+-++-++-=-τ策略”1+n kj u nkj u nj k u 1,-nj k u 1,+nj u ,njk u ,1+策略”1+n kjun kjun j k u1,-n j k u 1,+n jk u,1-n jk u,1+2,1,121,1,22hu u ubhu u ubuujk kj jk j k kj j k kjkj-+-++-++-=-τ策略”1+n kjun kjun j k u1,-n j k u 1,+n jk u,1-n jk u,1+2,1,121,1,22hu u ubhu u ubuujk kj jk j k kj j k kjkj-+-++-++-=-τ策略”1+n kjun kjun j k u1,-n j k u 1,+n jk u,1-n jk u,1+2,1,121,1,22hu u ubhu u ubuujk kj jk j k kj j k kjkj-+-++-++-=-τ)(, 22.3.12,41:22h PDE h b +O =−−−→−≤ττ误差估计的解原偏微分方程求出的近似解按显式差分格式当可证收敛并稳定{}1..1,1-=+M j k n kj u {}Mj k nkj u ..0,=目标{}Mj M k n kju 或或或001==+“隐式差1,,+n j k t x y 11,,++n j k t x y 11,,+-n j k t x y 11,,+-n j k t x y 11,,++n j k t x y nj k t x y ,,“隐式差1,,+n jk t x y 11,,++n j k t xy 11,,+-n j k t x y 11,,+-n j k t x y 11,,++n j k t x yn j k t x y ,,“隐式差11,+-n j k u11,++n j k u 1,1++n jk u 1,1+-n jk unjk u ,1+n kj u“隐式差11,+-n j k u11,++n j k u 1,1++n jk u 1,1+-n jk unjk u,1+n kjuτn kjn kjuu-+1=211,1,11,2h uuub n j k n j k n j k +-++++-21,11,1,12h uuub n j k n j k n jk +-++++-+2hbc τ=标准化nj k n j k n j k n j k n j k n j k u u c u c u c u c u c ,1,111,1,11,1,1)41(=•-•-++•-•-++++++-+-“隐式差11,+-n j k u11,++n j k u 1,1++n jk u 1,1+-n jk un jk u,1+n kjun jk n jk n j k n jk n j k n jk uuc uc uc uc uc ,1,111,1,11,1,1)41(=•-•-++•-•-++++++-+-2hbc τ=“隐式差11,+-n j k u11,++n j k u 1,1++n jk u 1,1+-n jk un jk u,1+n kjun jk n jk n j k n jk n j k n jk uuc uc uc uc uc ,1,111,1,11,1,1)41(=•-•-++•-•-++++++-+-2hbc τ=+1kjn“隐式差+1kjn n n n n n n uuc uc uc uc uc 11111)41(=•-•-++•-•-+++++111+n u110+n u112+n u 121+n u 101+n unu11列差分方程层的内点值基于例如111:+n u t n n n n n n uuc uc uc uc uc 11121112111110101)41(=•-•-++•-•-+++++列差分方程基于内点值111+n u “隐式差n n n n n n uuc uc uc uc uc 11111)41(=•-•-++•-•-+++++112+n u 111+n u113+n u122+n u102+n u n u 12列差分方程层的内点值基于例如121:+n u t n n n n n n uuc uc uc uc uc 12122113112111102)41(=•-•-++•-•-+++++列差分方程基于内点值112+n u “隐式差n n n n n n uuc uc uc uc uc 11111)41(=•-•-++•-•-+++++112+n u111+n u113+n u 122+n u 132+n u 121+n u131+n u123+n u133+n un 12un 11un 13un 22un 32u n 21un 31un 23un 33u线性方程组“隐式差n n n n n n uuc uc uc uc uc 11111)41(=•-•-++•-•-+++++红色标志方程组的未知量绿色标志方程组的已知量个差分方程列出个内点值层的基于9)3..1,3..1(911==++j k ut n kjn112+n u111+n u113+n u 122+n u 132+n u 121+n u131+n u123+n u133+n un12u n 11u n 13u n 22u n 32un 21u n 31u n 23u n 33u线性方程组“隐式差n n n n n n uuc uc uc uc uc 11111)41(=•-•-++•-•-+++++红色标志方程组的未知量绿色标志方程组的已知量个差分方程列出个内点值层的基于9)3..1,3..1(911==++j k ut n kjn )( 32.3.12:2h PDE +O =−−−−→−τ误差估计的解原偏微分方程求出的近似解按隐式差分格式可证收敛并绝对稳定。

相关文档
最新文档