移动电源设计讲解

合集下载

高效率移动电源设计与研究

高效率移动电源设计与研究

高效率移动电源设计与研究移动电源作为一种便携式充电设备,广泛应用于手机、平板电脑、音响等电子产品的充电。

随着科技的不断发展,人们对移动电源的需求也越来越高,要求它具有高效率,能够快速地为电子产品进行充电,同时也希望它本身的充电速度快,能够快速地存储电能。

因此,高效率移动电源的设计与研究具有重要意义。

首先,高效率移动电源的设计应该考虑到其内部电路的优化。

电源电路的设计采用高效率的开关电源技术,可以减少能量的损耗,提高充电效率。

同时,采用高效率的功率转换器,可以提高移动电源充放电的效率,减少能量的损失。

此外,高效率移动电源还应该具备过载保护、短路保护、电池过充过放保护等多重保护措施,确保其使用安全可靠。

其次,高效率移动电源的设计还需要考虑到电池的选用。

电池是移动电源的核心部件,对移动电源的性能有着决定性的影响。

目前市场上常见的电池有锂离子电池、聚合物锂离子电池等。

聚合物锂离子电池具有体积小、重量轻、充放电效率高等特点,是移动电源的理想选择。

在电池选用上,还需要注意其容量和放电率的匹配,以满足快速充电和高效率放电的需求。

此外,高效率移动电源的设计还需要考虑到充电接口的设计。

充电接口应该支持快速充电技术,例如USBPD快充技术,可以提高充电速度和效率。

此外,还应该考虑到充电线材质的选择和接口的稳定性,以降低充电线路的阻抗,提高充电效率。

最后,高效率移动电源的设计还应该关注产品的整体结构和散热设计。

优化产品的结构设计,可以提高电路的散热能力,减少温度的升高,提高移动电源的工作效率。

此外,还可以采用高导热材料和散热设计方法,提高散热效果,保持电源的稳定工作状态。

综上所述,高效率移动电源的设计与研究需要考虑到电源电路的优化、电池的选用、充电接口的设计以及产品的整体结构和散热设计等方面。

只有在这些方面做到合理优化,才能提高移动电源的工作效率,满足人们对充电速度和效率的需求。

移动电源系统电路的设计与原理分析

移动电源系统电路的设计与原理分析

移动电源系统电路的设计与原理分析
1.电池组选择:电池组是移动电源系统的核心部分,其容量和额定电
压直接影响移动电源的使用时间和输出能力。

根据应用需求的不同,可以
选择锂离子电池、聚合物锂电池等。

在设计过程中,需要考虑电池的重量、成本、性能和安全性等因素。

2.充放电管理电路:充放电管理电路主要用于对电池组进行管理,包
括电池充电、放电过程的控制和保护。

其中包括电池充电控制、过充保护、过放保护、温度保护等功能。

充放电管理电路通常使用专用集成电路或微
控制器完成。

3.DC-DC变换电路:DC-DC变换电路主要用于将电池组的直流电压转
换为移动设备所需的直流电压。

一般情况下,移动设备的电源需要 3.3V、5V、9V、12V等多种电压值。

因此,需要设计不同输出电压并具有高效转
换效率的DC-DC变换电路。

4.输入输出接口电路:输入接口电路用于接收外部电源供电或充电器
充电,输出接口电路用于为移动设备提供电力。

在设计过程中,需要考虑
电源充电、断电保护、供电稳定性、短路保护等问题。

在移动电源系统的设计过程中,需要考虑的因素还包括体积、重量、
散热、EMC(电磁兼容性)等。

为了满足这些要求,可以采用模块化设计,使用高效的电源管理芯片,选择高能量密度的电池等方式来提高整个系统
的性能和可靠性。

总结起来,移动电源系统的设计和原理分析主要涉及到电池组选择、
充放电管理电路设计、DC-DC变换电路设计以及输入输出接口电路设计等
方面。

在设计过程中需要综合考虑功率、效率、稳定性、成本和安全性等因素,以满足移动设备的电力需求。

单片机 移动电源方案

单片机 移动电源方案

单片机移动电源方案概述移动电源是现代人日常生活中必备的便携式充电设备。

在充电电力不足或无电源可用的情况下,移动电源提供了一种便捷的充电解决方案。

本文将介绍基于单片机的移动电源方案,包括硬件设计和软件实现。

硬件设计电池选择移动电源的核心部分是电池,它决定了电源的容量和使用时间。

在选择电池时,需要考虑电压和容量。

一般来说,选择锂离子电池作为电源是最常见的选择,因为它们具有较高的能量密度和较小的体积。

充电电路设计移动电源需要提供可靠的充电功能。

充电电路设计应具备以下功能:- 过电流保护:当充电电流超过设定阈值时,电路应能自动断开以防止损坏电池。

- 过压保护:当电池充电达到额定电压时,电路应能自动停止充电,以避免电池过充。

- 温度保护:当电池温度过高时,电路应能自动停止充电,以保护电池安全。

- 反向连接保护:当用户错误地连接正负极时,电路应能自动检测并断开连接,以避免损坏电路。

输出电路设计移动电源需要提供稳定可靠的输出电压。

输出电路设计应具备以下功能: - 电压稳定性:输出电压应保持在设定电压范围内,以满足不同设备的需求。

- 过载保护:当输出电流超过额定值时,电路应能自动断开以防止过载损坏电源或受充电设备。

- 短路保护:当输出端短路时,电路应能自动断开以避免损坏电源和受充电设备。

单片机选择根据移动电源的需求,选择适合的单片机是非常重要的。

单片机控制移动电源的充电和输出电路,需要具备以下功能: - 较高的计算能力:处理充电和输出电路控制所需的算法和逻辑运算。

- 多个IO引脚:用于与传感器、开关和显示屏等外部元件交互。

- 低功耗模式:在不使用时能进入低功耗模式以节省能量。

- 丰富的接口:支持与其他组件的通信,如USB接口、I2C接口等。

充电管理通过单片机控制充电电路,可以实现智能化的充电管理。

单片机可以检测电池电量,并根据需求决定是否开始充电。

同时,单片机可以监控充电过程中的电流、电压和温度等参数,并对异常情况进行保护。

移动电源小车的开发设计

移动电源小车的开发设计

移动电源小车的开发设计1. 引言1.1 背景介绍移动电源小车是一种结合移动电源和小车技术的新型产品,能够在无电源的环境下为电子设备提供充电服务。

随着人们对移动设备的依赖程度不断增加,移动电源小车成为满足人们日常生活需求的一种新型解决方案。

通过移动电源小车,用户无需担心电子设备在户外使用过程中因电量不足而无法正常工作的问题。

移动电源小车也能够为户外活动、野外探险等场景提供便利的充电服务。

移动电源小车的开发设计不仅能够满足人们对移动充电的需求,还可以为电子产品的智能化、便捷化使用提供技术支持。

通过对移动电源小车的研究和开发,可以不断提升其性能和功能,进一步满足人们对移动充电的需求,提高用户体验。

在当前移动互联网时代,移动电源小车有着广阔的应用前景和市场潜力,对其进行深入研究和开发具有重要的现实意义和市场价值。

1.2 研究意义移动电源小车是一种集移动、供电、通信于一体的智能设备,具有较强的实用性和普适性,可广泛应用于各类移动设备的供电及控制。

研究移动电源小车的意义在于提高移动设备的便携性和使用效率,为用户提供更加便捷的电源补给和控制操作,满足人们对便捷、高效的需求。

移动电源小车的研究还可以促进相关技术领域的发展和创新,推动智能设备向着更加智能化、自动化的方向发展。

深入研究移动电源小车的设计开发对于提升移动设备的整体性能和用户体验具有重要意义。

通过对移动电源小车的研究,不仅可以推动移动设备行业的发展,还可以为未来智能设备的发展和普及打下基础,具有重要的科研和应用价值。

1.3 目的移动电源小车是为了解决日常生活中电子设备充电困难的问题而设计的一种便携式充电设备。

其主要目的包括以下几个方面:1. 提供便携式充电解决方案:移动电源小车可以随时随地为用户的电子设备提供充电,无需依赖固定的电源插座,极大地提高了用户的充电便利性和灵活性。

2. 增强用户体验:移动电源小车具有智能化功能,可以根据用户的需求智能调节输出电流和电压,保护设备充电安全,提升用户体验。

创意移动电源设计方案

创意移动电源设计方案
PART TWO
总结与展望
3.1关键技术 3.2技术难点 3.3案例分析
技术难题攻克
在研发过程中,成功解决了多项技术难题,提高了产品的性能和稳定性。
团队协作能力提升
项目组成员在共同努力下,形成了高效的团队协作机制,为项目的顺利完成提供了有力保障。
创新设计实现
成功设计出一款具有创意和实用性的移动电源,满足市场需求。
项目成果总结
绿色环保趋势
环保意识的提高将推动移动电源向更环保的方向发展,如采用可降解材料、提高能源利用效率等。
多功能集成
未来的移动电源将不仅仅具备充电功能,还将集成更多实用功能,如照明、SOS求救等。
智能化发展
随着人工智能技术的不断进步,未来的移动电源将更加智能化,具备语音识别、自动充电等功能。
未来发展趋势预测
提供足够的输出功率,以满足不同设备的充电需求,同时保持稳定的电压和电流。包括充电速度和能量转换效率,以确保高效充电。
性能评估指标
设计过充保护电路,防止电池过充,延长电池使用寿命并确保安全。
过充保护
采用温度感应和过热保护机制,避免电源过热并降低火灾风险。
过热保护
在电路设计中加入短路保护功能,防止电源短路造成的损坏或危险。
02
多口输出
提供多个不同功率的输出口,支持同时为多台设备充电,提高充电效率。
实用性
个性化外观
提供多种颜色、图案、材质等个性化选择,满足不同用户的审美需求。
精致工艺
采用高精度注塑、金属压铸等精致工艺,提升产品质感和品质感。
环保材料
选用环保可降解的材料,如竹纤维、玉米塑料等,降低对环境的影响。
美观性
PART FOUR
智能化设计
引入智能芯片和APP控制,实现电量监测、远程控制等智能化功能,提升用户体验。

移动电源的设计方案草案

移动电源的设计方案草案

移动电源的设计方案草案
摘要:
移动电源是一种便携式电源设备,用于为移动设备如手机、平板电脑等充电。

本文旨在提出一种移动电源的设计方案草案,包括设计目标、结构设计、电路设计和安全性考虑等方面的内容。

一、设计目标
1. 高效充电:移动电源应能够高效地为移动设备充电,提供稳定的电流和电压输出。

2. 大容量电池:移动电源应配备高容量的电池,以提供更长的使用时间。

3. 多功能设计:移动电源应具备多种充电接口,能够兼容不同品牌和型号的移动设备。

4. 轻便设计:移动电源应采用轻巧的设计,方便携带和使用。

5. 安全可靠:移动电源应具备过充保护、短路保护、温度保护等安全功能,确保用户的使用安全。

二、结构设计
移动电源的结构设计主要包括外壳、电池、电路板和接口等部分。

1. 外壳设计:外壳应采用耐磨损、防污染的材料,具备良好的手感和外观。

2. 电池设计:电池应选择高品质的锂离子电池,具备大容量和长寿命。

电池安装应采用防震设计,以避免在移动过程中对电池的损坏。

3. 电路板设计:电路板应设计合理布局,确保电路的稳定性和可靠性。

板上应包括充电管理芯片、DC-DC转换器、电池保护芯片等关键元件。

4. 接口设计:移动电源应配备USB接口、Type-C接口等多种充电接口,以满足不同移动设备的充电需求。

三、电路设计
移动电源的电路设计主要涉及充电管理和电池保护。

Silicon Labs USB Type-C 移动电源参考设计说明书

Silicon Labs USB Type-C 移动电源参考设计说明书

新闻稿Silicon Labs参考设计简化USB Type-C移动电源充电宝开发针对智能手机、平板电脑、笔记本电脑和其他便携设备的USB双角色端口充电解决方案中国北京 - 2017年10月11日 - Silicon Labs(亦称“芯科科技”,NASDAQ:SLAB)日前推出简化USB Type-C™可充电锂离子电池组开发的完整参考设计,用于为智能手机、平板电脑、笔记本电脑、耳机和其他便携式设备提供电源。

该参考设计包括开发人员采用USB Type-C电能传输(PD)创建双角色端口(DRP)应用所需的所有资源,能够加速新型USB Type-C充电宝的开发或将现有USB Type-A充电宝设计迁移到USB Type-C。

Silicon Labs的USB Type-C充电宝参考设计包括开发板、USB Type-C PD协议栈、示例代码、原理图和硬件手册。

DRP充电宝参考设计利用Silicon Labs Simplicity Studio中包括的PD协议栈。

该协议栈使得开发人员能够通过调用API去协商和发送USB Type-C消息,从而实现传送或接收电能。

灵活的电路板设计使得开发人员能够完全控制电池应用,并且包括一个可在Sink和Source模式之间改变电能方向的按键。

开发板上的Silicon Labs EFM8 Busy Bee MCU作为PD控制器,通过协商各种电源模式提供卓越的设计灵活性。

该参考设计能够提供15W(3A@5V)的功率,并在1.8A下充电。

此外,PD协议栈仅仅使用了MCU部分功能,开发人员可以使用剩余的外设、内存和处理能力去控制稳压器和电源IC、检测方向、控制开关、更新其他主机状态等。

通过使用EFM8 Busy Bee MCU作为PD控制器,开发人员可以结合其他实用的功能,包括采用片内温度传感器和模数转换器(ADC)去监控电池组的温度和电压,防止过热或过充电等。

Silicon Labs物联网产品高级总监Tom Pannell表示:“我们正处于一个移动、互联的社会,用户需要为他们的手机、平板电脑和其他便携式设备提供方便的后备电源。

移动电源 方案

移动电源 方案

移动电源方案引言移动电源是一种便携式的充电设备,可以用来给手机、平板等移动设备充电。

移动电源具有小巧轻便、高容量、多功能等特点,在现代生活中得到广泛应用。

本文将介绍一种移动电源方案,包括硬件设计、软件开发和产品测试等方面的内容。

硬件设计在移动电源的硬件设计中,主要包括电池、充电管理电路、输出电路和保护电路等部分。

1.电池选择:移动电源的核心部件是电池,常见的电池类型有锂聚合物电池、锂离子电池等。

根据容量和使用情况的需求,选择合适的电池类型和规格。

2.充电管理电路:充电管理电路可以监测电池的电量和充电状态,控制充电电流和电压,以保证充电过程安全可靠。

可采用专用充电管理IC实现。

3.输出电路:输出电路将电池的直流电转换为合适的输出电压和电流,以供移动设备充电。

输出电路应具备稳定、高效率的特性。

可选择DC-DC转换芯片来实现。

4.保护电路:为了避免过充、过放、过流等情况对移动电源和移动设备造成损害,需要在电路中添加保护电路。

保护电路可包括过压保护、过流保护、短路保护等功能。

软件开发移动电源的软件开发包括控制充电、显示剩余电量、自动关机等功能的实现。

1.充电控制:利用充电管理电路的监测功能,可以实现对充电电流和电压的控制,以达到最佳的充电效果。

同时还需要考虑到充电过程中的温度控制,避免过热。

2.显示剩余电量:移动电源通常会配备显示器来显示剩余电量,用户可以根据剩余电量了解电源的使用情况。

通过软件开发,可以实现电量的准确显示。

3.自动关机:当移动电源的电量消耗完毕时,可以通过自动关机功能来节省电能。

在软件中设置合适的电量阈值,当电量低于阈值时触发关机操作。

产品测试在完成移动电源的硬件设计和软件开发后,还需要对产品进行测试和验证。

1.性能测试:对移动电源的容量、输出电压和电流进行测试,以验证其性能是否符合设计要求。

2.安全性测试:进行过充、过放、过流、短路等测试,验证保护电路的有效性和安全性。

3.兼容性测试:将移动电源连接至不同型号的移动设备上,测试其充电兼容性和充电效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

移动电源的讲解这段时间,关于移动电源的虚标以及各种安全问题,已经引起了消费者的强烈关注,作为设计师怎样才能设计出好的移动电源,而作为消费者我们又应该如何选择移动电源,请关注我们这篇关于移动电源的文章。

智能手机配置越来越高,耗电也越来越凶,像iPhone等部分手机电池更是不可更换,遇到缺电的情况下只有通过移动电源(也称作充电宝或外置电池等)来救急,因此造就了目前手机移动电源市场销售的火爆。

很多消费者在选择移动电源时,注意力只放在外观、容量以及价格上,往往很难了解到移动电源内部的状况,今天我们给大家介绍一下移动电源,首先从电源的电芯开始。

移动电源的内部构造首先简单了解一下移动电源的构成:1、外壳,主要是产品封装,以及实现造型美观、保护等作用,常见为塑胶和金属,一些较好的产品往往塑胶也是采用了防火材料;2、电芯,也就是我们常见的电池,是移动电源的电量储存仓库;3、电路板,主要用于实现电压、电流控制、输入和输出控制,以及实现其它各种功能。

电芯是移动电源中成本最高的组成部分,最常见的一种是18650电芯,另一种是聚合物电芯,这两种电芯统治了锂电池行业内绝大份额的市场。

18650电芯18650锂离子电池18650是行内叫法,指电池直径为18mm,长度为65mm,圆柱体型的电池,像国际大厂三洋,松下,三星、索尼等都有这块业务,而国内也有不少厂家在生产和销售18650电芯,市场上见到的移动电源,大多数采用18650电芯,而为了拼成本,基本都用的是国内产的产品,甚少有采用进口大厂的18650电芯。

采用18650电芯的移动电源18650的容量,一般最常见的有2200mAh、2400mAh和2600mAh三种规格,据介绍目前18650已可做到3400mAh最大单节容量。

采用18650电芯的移动电源,基本是以上几种规格并联实现。

18650一般采用圆柱钢壳包装,内部锂离子呈液态。

因为已经是行业标准规规格,18650只能为圆柱状,如果大家在购买移动电源看到又粗又大的造型,基本可确定采用的就是18650电芯。

18650电芯发生质量事故(图片来源于网络)说到安全性,电池都是能量体,在极端情况下可能会出现严重质量事故。

18650电芯因为采用钢壳包装,最严重的情况下会出现爆炸,像我们熟悉的笔记本电池也是采用18650电芯,早年索尼公司就出现过因为电池发生严重质量事故而批量召回。

目前市场上很多移动电源为了缩减成本拼低价,采用了劣质的18650电芯,叫人防不胜防。

移动电源是用户随身携带的产品,如果质量不过关,就像带个定时炸弹到处走,所以大家在购买产品时综合衡量产品的品牌和价格,不要一味追求最便宜。

聚合物电芯锂聚合物电芯锂聚合物电芯,原料一般采钴酸锂,锰酸锂,以及三元锂混合而成,外包装主要是使用铝塑膜,中间的锂物质为糊状,所以形状可以任意定制,如0.25mm这样的超薄电池,因此采用聚合物电芯的移动电源,在外观形态上也可以设计得更灵活。

例如市面上一些超薄的移动电源以及iPhone4手机背夹电,都是采用聚合物电芯。

采用聚合物的超薄移动电源聚合物电池封装灵活,不像18650一样有固定规格尺寸,它的容量直接取决于体积大小,同时采用何种原材料也有关系。

手机电池质量事故聚合物电池最大的安全性就是漏液,短路,导致涨包,最恶劣的情况会产生燃烧,与18650相比,聚合物电芯安全性相对好一些。

但是燃烧也会带来安全隐患,所以建议使用移动电源的用户,尽量不要把移动电源放置在易燃环境下。

目前高端的移动电源绝大多数都是使用聚合物电芯。

几类电芯循环次数用户们在选购移动电源时,通常会很注重产品的安全问题,而电芯品质就是移动电源品质最为核心的部分,代表了产品整体的使用安全。

目前市场上主流的电芯为以下几种:钴酸锂电芯,镍钴锰电芯和磷酸铁锂电芯。

多数圆柱形锂电池为锂离子电池钴酸锂电芯,也就是平时常见的18650电芯,形状类似放大版的5号电池,标准电压为3.7V,优点是技术成熟,成本低,体积小,容量大,广泛应用于笔记本电脑电池中。

缺点是电芯循环次数较低约为300次左右,安全性能相对较差,不适合高倍率充放电,采用钢制外壳,质量不合格的电芯有爆炸的可能性,废弃后对环境有污染。

聚合物电池镍钴锰电芯,就是指通常所说的聚合物电芯,使用寿命也较长,达到500次以上,目前应用范围很广泛,安全系数较高,不易爆炸,但是有可能会出现燃烧现象,所以在使用时不要放置在易燃环境中。

缺点是大电流充放电能力较弱,价格比18650电芯也略高一些,废弃后同样会污染环境。

磷酸铁锂电池内部结构磷酸铁锂电池工作原理磷酸铁锂电芯,是近几年新兴的电芯材料,号称加“铁”电芯,是目前位置市面上安全性能最好的产品,哪怕将电池对穿都不会发生爆炸,电芯循环寿命为其他产品的4倍以上,高达2000次,安全无污染,目前广泛用在电动车、小型储能电池、草坪灯、电动工具等方面,唯一的缺点就是价格比较高。

移动电源的电路部分移动电源内置的锂电池不支持对一般的手机,PSP,iphone等数码产品直接充电,需要经过专门的电路经电压转换实现稳压才能实现对专门产品的充电支持,现阶段一般移动电源做的最多的是支持5V左右的电压输出,因为一般的手机,PSP,iphone等数码产品设备都是5V充电电压的。

对移动电源内置电路来讲一般由四个功能构成:第一:保护作为现阶段移动电源理想的储能电池,锂电池相对于其他电池优势很多,比如能量密度比较大,重量轻等。

但也有缺点,其中最大的缺点就是容易过充或过放,如果一节锂电池电压放电放到2.7V以下那这个电池就属于过放了,同样的充电的时候要是锂电池充到4.2V以上那也属于过充了。

锂电池过度充电和放电,这将对锂离子电池的正负极造成永久的损坏。

从分子层面看,可以直观的理解,过度放电将导致负极碳过度释出锂离子而使得其片层结构出现塌陷,过度充电将把太多的锂离子硬塞进负极碳结构里去,而使得其中一些锂离子再也无法释放出来。

这也是锂离子电池为什么通常配有充放电的控制电路的原因。

第二:电量指示一般移动电源大家都是带出去临时给手机或PSP等数码产品没电时用或旅游时带出去当备用电源的,所以要无时无刻了解自己所带的移动电源还剩多少电量,现在一般移动电源的电量指示都是通过对电压的采集来粗步判断移动电源的剩余电量的,如果对锂电池有了解的人都知道随着锂电池的放电电压会慢慢从最高的 4.2V(也就是满电)到电压最低的2..7V(也就是没电),到2.7V的时候保护电路会起作用把电流掐断。

第三:充电一般锂电池都有专门的充电IC来充的,先恒压再恒流最后涓流充电。

但有些移动电源厂商为了节省成本,没用锂电池专门充电IC而是直接用保护板来实现这个功能,虽然用保护板可以做到不过充(因为电池到4.2V的时候保护板也会起作用把电流切断),但对电流的寿命却会有很大的影响,同时也不安全,因为一般锂电池充电IC里面不仅集成了充电保护功能还有温度监测,如果温度过高会保护起来的,这样充电的时候相对来说对电池有双保护作用,一是充电IC本来冲到 4.2V左右会切断电流的,同时保护IC也会起作用,当然在极端情况下,万一充电IC坏了或保护IC坏了,那这样的双保护措施就很重要了。

第四:升压因为移动电源要对5V手机,PSP,IPHONE等数码产品充电,所以内置锂电池要通过一个升压电路经稳压后才能支持对手机,PSP,IPHONE等数码产品的充电。

但升压的话会牵涉到一个效率问题,比如5000mah的锂电池经70%效率的升压那就相当于只有3500mah的容量电池了,当然升压板效率越高越好,综合型升压电路一般做到85%已经属于很高了,因为要集成保护板,指示灯等效率肯定就下降些的,毕竟现在还没发明出超导体电流不要说经过IC就算经过电线就有电量损耗,但太低肯定不行。

当然移动电源要对手机,PSP,iphone等数码产品充电对电流也有一定的要求,一般1000mah 就够了,因为现在很多智能手机,iphone,PSP等都支持电脑USB直接取电来充,而电脑USB口输出电流最大500mah也能正常充电。

所以一般移动电源升压电路部分做到1000mah的电流绝对够了,除了同时一拖三或一拖四充电。

小身板大功能和庞大的电芯相比,电路板在移动电源的组成部分中只能算是“小身板”的配件,但你可千万不要小看它(图9)。

就好似相同的发动机分别被奔驰和奇瑞的车型所配,但实际的驾驶性能肯定还是奔驰完胜于奇瑞,这就是汽车内部负责动力分配和转换的控制系统的功劳,而移动电源的电路板就在扮演着这种角色。

简单来说,无论是18650电芯还是锂聚合物电池,都有一个安全的充电截止电压和安全放电截止电压,以及标定的额定最大工作电流。

而电路板的基本功能就是,为电芯提供一个安全可靠的充电管理系统;在给手机充电(此时电芯是放电状态)时,将电芯提升到5V的升压系统。

目前市面上绝大多数移动电源的电路板都是由输入充电控制电路、输出DC/DC转换电路、电池电量检测显示电路、充电指示电路以及电池保护和智能管理电路等组成。

下面,我们就以航嘉HKP060为例,了解一下移动电源基本的工作流程:当电芯充电时当你给移动电源充电时,输入充电控制电路就开始发挥功效了。

它主要的工作就是根据电池电压的变化,对充电电流进行控制,也就是多段式的充电方案。

比如:当电池电压<3V时,充电电路将进行涓流充电,也就是依照100mA的电流对电芯充电(保护过度放电后的电池);当电池电压>3V时,充电电路将切换到恒流充电,用1A(移动电源最大的输入电流)的大电流对电芯充电;当电池电压≈4.2V时,充电电路将改为恒压充电,直至充电电流降到100mA左右时停止充电。

当电芯放电时锂电池的平均电压多在3.7V左右,但类似手机、iPad等移动设备的充电电压均以5V作为标准。

因此当移动电源与其它设备相连的一瞬间就会触发输出DC/DC转换电路启动,将电芯在3.0V~4.2V间浮动的电压转换成5V给这些设备充电。

移动电源的输出电流越大,意味着兼容性和通用性越强。

比如某些手机的额定充电电流为1A,但移动电源的输出电流最高只有500mA,此时充电时间会延长一倍,而航嘉HKP060的输出电流可达2.1A,意味着它可以为iPad等平板电脑进行快速充电。

需要注意的是,手机在充电时会自己控制输入的充电电流,比如iPhone的额定充电电流为1A,你用2.1A输出能力的HKP060给其充电,实际的充电电流也只有1A而已。

电池内部保护电路解析此篇文章主要介绍手机电池的保护电路。

我们大家在使用电池的时候总会发生各种误操作,而手机电池的电芯其实是比较脆弱的,因此完备的保护措施对一个合格的手机电池来讲是必不可少的。

下面是正文:1.镍氢电池的保护手机镍氢电池的保护器件非常简单,就是图中的哪个跨在两节电芯之间的扁扁的扁带一样的东西,称为可恢复式保险丝,又称PTC,即正温度系数热敏电阻的英文简写。

相关文档
最新文档