高一数学第6章知识点

合集下载

6.1 任意角的正弦、余弦、正切、余切(第3课时)(课件)高一数学(沪教版2020必修第二册)

6.1 任意角的正弦、余弦、正切、余切(第3课时)(课件)高一数学(沪教版2020必修第二册)
第 6 章 三角
6.1 任意角的正弦、余弦、正切、余切(第3课时)
学习目标
1.借助单位圆理解任意角 (正弦、余弦、正切)的定义.
(重点、难点)
2.掌握任意角 (正弦、余弦、正切)在各象限的符号.
(易错点)
情境导入
在初中,我们通过直角三角形的边角关系,学习了锐角的正弦、余弦、正切这三个三角函数,如图所示.
所以角所在的象限是第三象限.
).
【变式】(1)若三角形的两内角,满足 ∙ < 0,则此三角形必为(
A.锐角三角形
B.钝角三角形
C.直角三角形
).
D.以上三种情况都有可能
答案:B.三角形的两内角,的终边一定落在第一、第二象限或轴正半轴上,
∙ < 0,所以 > 0, < 0 ,


例7. 已知角 α 的终边经过点 P( 1 , -2 ), 求角 α 的
正弦 、余弦 、 正切及余切值
解 : 由 x 1, y 2 , 有 r =
12 ( 2 ) 2
y
2 5
x
5
s in a

, cos a

,
r
5
r
5
y
x
1
ta n a
2, cot a





【解析】解:由题意可得,x=4

故答案为:- .
3.已知角α的终边经过点P(3,4),则cosa=

【解析】解:由题意得角α的终边经过点P(3,4),则|OP|=5,
所以cosa=

||




= ,

高中数学第6章幂函数、指数函数和对数函数6.1幂函数高一第一册数学

高中数学第6章幂函数、指数函数和对数函数6.1幂函数高一第一册数学

堂 小


(1)求幂函数的定义域,再判定奇偶性;
结 提

新 知
(2)先研究第一象限的图象与性质,再根据奇偶性(对称性)研究
素 养
其它象限的图象.




2.幂函数在第一象限的图象与性质



究 释
(1)α>0,幂函数的图象恒经过(0,0),(1,1),在[0,+∞)是增函
作 业

难 数.


12/9/2021
课 堂 小


学 探 新 知
∴1312>1412.
提 素 养
(2)∵y=x-1是(-∞,0)上的减函数, 课
合 作 探
且-23<-35,
时 分 层


释 疑 难
∴-23-1>-53-1.



12/9/2021

第二十一页,共五十五页。

情 景 导 学
(3)0.25-14=14-14=212,
堂 小 结 提
返 首 页
第五页,共五十五页。
2.幂函数的图象和性质





























12/9/2021

第六页,共五十五页。








高一数学第6章知识点汇总

高一数学第6章知识点汇总

高一数学第6章知识点汇总在高一学习数学的过程中,第6章是一个非常重要的章节。

这一章主要涉及到了数学中的一些重要概念和运算规则,例如集合的性质与运算、二次函数与一元二次方程、指数与对数等。

下面将针对这些知识点进行汇总和总结。

1. 集合的性质与运算集合是数学中的一个基本概念,它是由一些确定的对象组成的整体。

在集合的定义中,我们需要了解集合的元素以及集合的性质。

集合的元素可以是数字、字母、符号等,而集合的性质可以是包含关系、相等关系、交集、并集等。

2. 二次函数与一元二次方程二次函数是一个非常重要的函数形式,在高中数学中经常会遇到。

一元二次方程则是由二次函数所导出的方程形式。

对于二次函数,我们需要了解其图像的特征,包括顶点、对称轴、开口方向等。

而在求解一元二次方程时,我们需要掌握配方法和公式法等求根的方法。

3. 指数与对数指数与对数是数学中的一对互逆运算,它们可以互相转换。

指数运算是将一个数按照指数的次数进行重复相乘,而对数运算则是指数运算的逆运算。

在学习指数与对数时,我们需要熟悉它们的基本性质和运算规则,例如指数的乘法法则、对数的换底公式等。

4. 几何向量几何向量是数学中的一个重要概念,它具有大小和方向两个属性。

在研究几何向量时,我们需要了解向量的表示方法、向量的加减法、数量积与向量积等基本运算规则。

通过学习几何向量,我们可以更好地理解平面几何和立体几何中的一些基本概念和定理。

5. 概率与统计概率与统计是数学中的一门应用性较强的学科,它主要研究的是事件的可能性和数据的收集与处理方法。

在学习概率与统计时,我们需要掌握事件的概率计算方法、随机变量的期望和方差等基本概念,以及样本调查和统计推断等基本方法。

通过对以上知识点的学习和总结,我们可以更好地掌握高一数学第6章的内容。

在学习过程中,我们应该注重理论的学习和实际应用的联系,通过解题的方式不断巩固和加深对知识点的理解。

此外,数学的学习需要注重提高解题能力和思维能力,要善于运用已有的知识和方法解决实际问题。

高一数学讲义 第六章 三角函数

高一数学讲义 第六章 三角函数

高一数学讲义 第六章 三角函数6.1 正弦函数和余弦函数的性质与图像每一个实数x 都有唯一确定的角与之对应,而这个角又可以与它的三角比sin x (或cos x )对应,即每个实数x 都可以与唯一确定的值sin x (或cos x )对应.按这样的对应法则建立起来的函数,表示为sin y x =(或cos y x =),叫做自变量为x 的正弦函数(或余弦函数).sin y x =和cos y x =的定义域都是R ,值域都是[]11-,. ()()sin cos y x x y x x =∈=∈R R ,的性质:1.奇偶性根据诱导公式,对x ∀∈R ,有()sin sin x x -=-,()cos cos x x -=, ()sin y x x ∴=∈R 是奇函数,()cos y x x =∈R 是偶函数.2.周期性对于()()sin 2πsin k x x k +=∈Z ,当0k ≠时,2πk 是()sin f x x =的周期,2π是不是()sin f x x =的最小正周期呢?假设存在T ,满足02πT <<,且是函数()sin f x x =的周期,即()()f x T f x +=,令π2x =,得ππ1sinsin cos 22T T ⎛⎫==+= ⎪⎝⎭,与02πT <<时,cos 1T <矛盾. 3.函数图像 若把角x 的顶点置于坐标系uOv 的原点,角x 的始边与Ou 轴重合,终边与单位圆的交点为()P u v ,则sin cos x v x u ==,.当x 在区间[)02π,上连续变化的时候,都有单位圆上点()P u v ,与之对应.相应地在坐标系xOy 中,描绘出点()Q x v ,和点()R x u ,.点Q 便勾画出正弦函数sin y x =一个周期的图像(见图6-1),点R便勾画出余弦函数cos y x =一个周期的图像(见图6-2).然后再利用函数的周期性将图像向左右延伸,便得到正弦函数和余弦函数的图像(见图6-3).图6-34.单调性当ππ22x ⎡⎤∈-⎢⎥⎣⎦,时,角x 的始边与单位圆的交点的纵坐标随x 的递增而递增,∴函数sin y x =在ππ22⎡⎤-⎢⎥⎣⎦,上单调增.当π3π22x ⎡⎤∈⎢⎥⎣⎦,时,角x 的始边与单位圆的交点的纵坐标随x 的递增而递减,∴函数sin y x =在π3π22⎡⎤⎢⎥⎣⎦,上单调减.同理可得,函数cos y x =在[]0π,上单调减,在[]π2π,上单调增.拓展:函数sin y x =在ππ2ππ2π22k k ⎡⎤-+⎢⎥⎣⎦,上单调增,在π3π2π2π22k k ⎡⎤++⎢⎥⎣⎦,上单调减,其中k ∈Z . 函数cos y x =在[]2π2ππk k +,上单调减,在[]2ππ2π2πk k ++,上单调增,其中k ∈Z . 说明:若()y f x =是定义在实数集R 上的周期函数,最小正周期是T ,[]a b ,是()y f x =的单调区间,则对任意整数k ,[]kT a kT b ++,均是()y f x =的单调区间. 5.最值回顾:函数sin y x =在ππ2π2π22k k ⎡⎤-+⎢⎥⎣⎦,上单调增,在π3π2π2π22k k ⎡⎤++⎢⎥⎣⎦,上单调减,其中k ∈Z . 函数cos y x =在[]2π2ππk k +,上单调减,在[]2ππ2π2πk k ++,上单调增,其中k ∈Z . 结论:当()π2π2x k k =+∈Z 时,函数sin y x =取最大值1; 当()π2π2x k k =-∈Z 时,函数sin y x =取最小值1-; 当()2πx k k =∈Z 时,函数cos y x =取最大值1; 当()2ππx k k =+∈Z 时,函数cos y x =取最小值1-.例1.求证:()sin f x x =是偶函数.证明:对x ∀∈R ,有()()()sin sin f x x x f x -=-==, ()sin f x x ∴=是偶函数.例2.研究函数()sin cos f x x x =+的奇偶性. 解:πππsin cos 0444f ⎛⎫⎛⎫⎛⎫-=-+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, πππsin cos 444f ⎛⎫⎛⎫⎛⎫=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()sin cos f x x x ∴=+既不是奇函数,也不是偶函数.另解:若()()f x f x -=,即()()sin cos sin cos x x x x -+-=+, 则sin 0x =,即πx k =,k ∈Z .若()()f x f x -=-,即()()sin cos sin cos x x x x -+-=--, 则cos 0x =,即ππ2x k =+,k ∈Z . ()sin cos f x x x ∴=+既不是奇函数,也不是偶函数.说明:对于()sin cos f x x x =+,虽然有无数多个实数x ,满足()()f x f x -=,但是()f x 并不是偶函数.同理()f x 也不是奇函数.函数的奇偶性是函数的整体性质.若()f x 是奇函数,则()()f x f x -=-对于定义域内的每一个x 恒成立; 若()f x 是偶函数,则()()f x f x -=对于定义域内的每一个x 恒成立.例3.已知A ωϕ、、都是常数,且0A >,ω>0,求证:函数()()sin f x A x ωϕ=+的最小正周期是2πω.解:对于任何实数x ,()2π2πsin sin 2πf x A x A x ωϕωϕωω⎡⎤⎛⎫⎛⎫+=++=++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦()()sin A x f x ωϕ=+=,2πω∴是函数()()sin f x A x ωϕ=+的周期.可以证明2πω是函数()()sin f x A x ωϕ=+的最小正周期.例4.作出函数sin cos y x x =+在[]02π,上的图像.解:πsin cos 4y x x x ⎛⎫=+=+ ⎪⎝⎭.描点作图,见图6-4.图6-4例5.求函数sin cos y x x =+的单调增区间. 解:πsin cos 4y x x x ⎛⎫=+=+ ⎪⎝⎭.πππ2π2π242k x k k -++∈Z ,≤≤,3ππ2π2π44k x k k ∴-+∈Z ,≤≤. ∴函数sin cos y x x =+的单调增区间是()3ππ2π2π44k k k ⎡⎤-+∈⎢⎥⎣⎦Z ,.例6.求函数π2cos 33y x ⎛⎫=- ⎪⎝⎭的单调减区间.解:π2π32ππ3k xk k -+∈Z ,≤≤,2ππ2π4π3939k k x k ∴++∈Z ,≤≤.∴函数π2cos 33y x ⎛⎫=- ⎪⎝⎭的单调减区间是()2ππ2π4π3939k k k ⎡⎤++∈⎢⎥⎣⎦Z ,.例7.求函数()sin cos 0y a x b x ab =+≠的最值. 解:()sin cos y a x b x x ϕ=++,其中tan baϕ=, max min y y ∴==.例8.求下列函数的最值: (1)2sin 2cos y x x =+;(2)()22sin cos y a x b x a b =+≠; (3)()()3sin 2105sin 270y x x =+︒++︒;(4)66sin cos y x x =+.解:(1)()2111sin 2cos sin 2cos22222y x x x x x ϕ=+=++=++,max y ∴min y =. (2)()222sin cos sin y a x b x a b x b =+=-+,∴若a b >,则2sin 1x =时,max y a =;2sin 0x =时,min y b =.若a b <,则2sin 0x =时,max y b =;2sin 1x =时,min y a =. {}max max y a b ∴=,,{}min min y a b =,.另解:221cos21cos2sin cos cos22222x x b a a by a x b x ab x -+-+=+=+=+, ∴若a b >,则cos21x =-时,max y a =;cos21x =时,min y b =.若a b <,则cos21x =时,max y b =;cos21x =-时,min y a =. {}max max y a b ∴=,,{}min min y a b =,.(3)()()3sin 2105sin 270y x x =+︒++︒3cos10sin23sin10cos25cos70sin25sin70cos2x x x x =︒+︒+︒+︒()()3cos105cos70sin 23sin105sin 70cos2x x =︒+︒+︒+︒ ()7sin 2x ϕ=+,其中3sin105sin 70tan 3cos105cos70ϕ︒+︒=︒+︒,max 7y ∴=,min 7y =-.(4)664224sin cos sin sin cos cos y x x x x x x =+=-+()2222223sin cos 3sin cos 1sin 24x x x x x =+-=-,max 1y ∴=,min 14y =. 说明:在求函数的最值过程中,始终要贯彻“统一名称统一角”的观点. 基础练习1.判断下列函数的奇偶性,并求最小正周期: (1)()sin sin 2f x x x =+; (2)()sin f x x x =; (3)()πsin πf x x =;(4)()2sin sin 2f x x x =+;(5)()ππcos cos 33f x x x ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭;(6)()22sin 2sin cos 3cos f x x x x x =++; (7)()66sin cos f x x x =+;(8)()()2222sin cos 0f x a x b x a b =++≠.2.用五点法分别作出下列各函数的图像,并说明这些函数的图像和sin y x =图像的区别.(1)2sin 1y x =-;(2)12sin 2y x =.3.观察正弦曲线和余弦曲线.写出满足下列条件的区间: (1)sin 0x >; (2)cos 0x <; (3)1sin 2x >; (4)cos x <. 4.求下列函数的单调区间:(1)πcos 27y x ⎛⎫=-- ⎪⎝⎭;(2)π2sin 34y x ⎛⎫=-- ⎪⎝⎭;(3)lg cos 13xy ⎛⎫= ⎪⎝⎭.5.求下列函数的最值,及取得相应最值的x 值.(1)π32sin 3y x ⎛⎫=-- ⎪⎝⎭; (2)23cos 4sin 2y x x =--;(3)22sin 3sin 1y x x =-+,π2π33x ⎡⎤∈⎢⎥⎣⎦,.6.确定函数131log 4y x ⎤⎛⎫=- ⎪⎥⎝⎭⎦的定义域、值域、单调区间、奇偶性、周期性.能力提高7.设π02αβγ⎛⎫∈ ⎪⎝⎭、、,,满足:()()cos cos sin sin cos ααββγγ===,,,则αβγ,,的大小关系为__________.8.求下列函数的周期: (1)sin3cos y x x =+;(2)1sin cos 1sin cos 1sin cos 1sin cos x x x xy x x x x+++-=++-++; (3)()2cos 325y x =-+.9.求5sin 2π2y x ⎛⎫=+ ⎪⎝⎭的图像的对称轴方程.10.(1)求函数()2sin sin f x a x x =-的最大值()g a ,并画出()g a 的图像.(2)若函数()2cos sin f x x a x b =-+的最大值为0,最小值为4-,实数0a >,求a b ,的值.6.2 正切函数的性质与图像定义:对于ππ2x x x k k ⎧⎫∀∈≠+∈⎨⎬⎩⎭Z ,都有唯一确定的值tan x 与之对应,按照此对应法则建立的函数tan y x =,叫做正切函数. 正切函数的性质:1.周期性ππ2x x x k k ⎧⎫∀∈≠+∈⎨⎬⎩⎭Z ,,有()tan πtan k x x k +=∈Z ,, tan t x ∴=是周期函数.可以证明函数tan y x =的最小正周期是π(见图6-5).图6-52.奇偶性ππ2x x x k k ⎧⎫∀∈≠+∈⎨⎬⎩⎭Z ,,有()tan tan x x -=-,tan y x ∴=是奇函数. 3.单调性12π02x x ⎡⎫∀∈⎪⎢⎣⎭、,,且12x x <,()121212sin tan tan cos cos x x x x x x --=12π02x x -<-<, ()12sin 0x x ∴-<. 1cos 0x >,2cos 0x >,()121212sin tan tan 0cos cos x x x x x x -∴-=>,即tan y x =在π0,2⎡⎫⎪⎢⎣⎭上单调增.tan y x =是奇函数, tan y x =在ππ22⎛⎫- ⎪⎝⎭,上单调增.tan y x =是周期为π的函数,∴函数tan y x =的单调增区间是()ππππ22k k k ⎛⎫-+∈ ⎪⎝⎭Z ,.4.值域函数tan y x =的值域是R .正切函数tan y x =在ππ22⎛⎫- ⎪⎝⎭,的图像如图6-6:图6-6利用正切函数的周期性,得到正切函数的图像. 例1.判断函数()tan 1lgtan 1x f x x +=-的奇偶性.解:函数的定义域应满足tan 10tan 1x x +>-,即tan 1x <-,或tan 1x >.于是定义域是()ππππππππ2442k k k k k ⎛⎫⎛⎫--++∈ ⎪ ⎪⎝⎭⎝⎭Z ,,,定义域是关于原点对称的. ()()()1tan 11tan 1tan lg lg lg tan 1tan 1tan 1x x x f x x x --+-+⎛⎫-=== ⎪-----⎝⎭()tan 1lgtan 1x f x x +=-=--.所以,tan 1lgtan 1x y x +=-是奇函数.例2.解不等式:tan21x -≤.解:在ππ22⎛⎫- ⎪⎝⎭,内,πtan 14⎛⎫-=- ⎪⎝⎭.∴不等式tan21x -≤的解集由不等式()πππ2π24k x k k -<-∈Z ≤确定,解得()ππππ22428k k x k -<-∈Z ≤, ∴不等式tan21x -≤的解集为ππππ22428k k x x k ⎧⎫-<-∈⎨⎬⎩⎭Z ,≤.基础练习 1.有人说:“正切函数在整个定义域内是单调递增的函数.”这句话对吗?为什么? 2.求下列函数的周期: (1)()()tan 0y ax b a =+≠; (2)tan cot y x x =-. 3.求函数11tan 2y x=+五的定义域.4.求函数22tan tan 1tan tan 1x x y x x -+=++的最大值、最小值,并求函数取得最大值或最小值时自变量x 的集合.5.求下列函数的最大值和最小值:(1)sin 2sin 3x y x -=-;(2)sin 2cos 3x y x -=-.能力提高6.求函数sin cos π0,sin cos 2x x y x x x ⎛⎫⎡⎤=∈ ⎪⎢⎥+⎣⎦⎝⎭的最值.7.根据条件比较下列各组数的大小: (1)已知ππ32θ<<,比较sin θ,cot θ,cos θ的大小; (2)已知π04θ<<,比较sin θ,()sin sin θ,()sin tan θ的大小; (3)已知π02θ<<,比较cos θ,()cos sin θ,()sin cos θ的大小. 6.3 函数()sin y A x d ωϕ=++的图像与性质例1.对下列函数与函数()sin y x x =∈R 进行比较研究(最好利用几何画板进行动态的研究): (1)()sin 01y A x x A A =∈>≠R ,,;(2)()sin 01y x x ωωω=∈>≠R ,,; (3)()()sin 0y x x ϕϕϕ=+∈∈≠R R ,,; (4)()sin 0y x d x d d =+∈∈≠R R ,,; (5)()()sin 01100y A x d x A A d d ωϕωωϕϕ=++∈>≠>0≠∈≠∈≠R R R ,,,,,,,,. 解:(1)函数sin y A x =与sin y x =都是奇函数,具有相同的周期和单调区间,但值域不同.当1A >时,函数sin y A x =的图像可以看成由函数sin y x =的图像纵向拉伸得到;当01A <<时,函数sin y A x =的图像可以看成由函数sin y x =的图像纵向压缩得到(见图6-7).图6-7(2)函数sin y x ω=与sin y x =都是奇函数,值域相同,但函数sin y x ω=与sin y x =的周期和单调区间都不同.当ω>1时,函数sin y x ω=的图像可以看成由函数sin y x =的图像横向压缩得到;当0ω<<1时.函数sin y x ω=的图像可以看成由函数sin y x =的图像横向拉伸得到(见图6-8).图6-8(3)当()πk k ϕ-+=∈Z Z 时,函数()sin y x ϕ=+是奇函数;当()ππ2k k ϕ=+∈Z ,函数()sin y x ϕ=+偶函数;函数()sin y x ϕ=+与sin y x =具有相同的周期和值域;当()2πk k ϕ-+=∈Z Z 时,函数()sin y x ϕ=+与sin y x =具有相同的单调区间.当ϕ>0时,函数()sin y x ϕ=+的图像可以看成由函数sin y x =的图像向左平移得到;当ϕ<0时,函数()sin y x ϕ=+的图像可以看成由函数sin y x =的图像向右平移得到(见图6-9).图6-9(4)函数sin y x d =+既不是奇函数,也不是偶函数;函数sin y x d =+与sin y x =具有相同的周期和单调区间,但值域不同.当0d >时,函数sin y x d =+的图像可以看成由函数sin y x =的图像向上平移得到;当0d <时,函数sin y x d =+的图像可以看成由函数sin y x =的图像向下平移得到(见图6-10).图6-10(5)函数()sin y A x d ωϕ=++的图像可以由函数sin y x =的图像经过一系列的变换得到.首先把函数sin y x =的图像进行纵向的变化,让函数sin y x =的图像上点的横坐标保持不变,让点的纵坐标变为原来的A 倍,得到函数sin y A x =的图像(见图6-11).图6-11其次把函数sin y A x =的图像进行横向的变化,让函数sin y A x =的图像七点的纵坐标保持不变,让点的横坐标变为原来的1ω倍,得到函数sin y A x ω=。

高一数学第6章知识点总结

高一数学第6章知识点总结

高一数学第6章知识点总结第一节直线方程的表示及其应用直线的斜率公式:两点A(x1,y1)和B(x2,y2)确定的直线的斜率为k=(y2-y1)/(x2-x1)直线的截距式方程:已知直线的斜率k和截距b,直线的方程可表示为y=kx+b直线的点斜式方程:已知直线的斜率k和直线上的一点(x1,y1),直线的方程可表示为y-y1=k(x-x1)直线的一般式方程:直线的方程可表示为Ax+By+C=0,其中A、B、C为实数且A和B不同时为0应用:直线方程的表示及其应用在解决平行线、垂直线和过定点直线等问题中起到重要作用。

第二节直线与圆的位置关系直线与圆的位置关系包括以下几种情况:1. 直线与圆相交:当且仅当直线与圆的方程组有实数解时,直线与圆相交。

2. 直线与圆相切:当直线与圆的切点为唯一点时,直线与圆相切。

3. 直线位于圆内:当直线与圆的方程组无实数解时,直线位于圆内。

4. 直线位于圆外:当直线与圆的方程组有两个实数解时,直线位于圆外。

第三节二次函数二次函数的标准式:f(x)=ax^2+bx+c(a≠0)二次函数的图像特征:1. 抛物线开口向上或向下,取决于二次函数的系数a的正负性。

2. 顶点表示二次函数的最值点。

3. 零点为二次函数与x轴的交点,也即方程f(x)=0的解。

二次函数的性质及应用:1. 利用二次函数求最值:对于开口向上的二次函数,最小值为顶点的纵坐标;对于开口向下的二次函数,最大值为顶点的纵坐标。

2. 利用二次函数求零点:解二次方程ax^2+bx+c=0,其中a、b、c为常数。

3. 利用二次函数解决实际问题:二次函数在建模和物理问题中有广泛应用,如求最优解、研究抛物线的形状等。

第四节空间几何空间几何涉及点、线、面等物体在三维空间中的形状和位置关系。

1. 平面方程的表示:平面的方程可表示为Ax+By+Cz+D=0,其中A、B、C、D为实数且A、B、C不同时为0。

2. 直线与平面的位置关系:a) 直线在平面上:直线的方程与平面的方程满足相容方程组。

高一数学每一章知识点梳理

高一数学每一章知识点梳理

高一数学每一章知识点梳理【高一数学每一章知识点梳理】第一章:数列与数学归纳法数列的概念和性质- 数列的定义与表示方法- 等差数列与等差中项- 等比数列及其性质- 数列的求和公式- 等差数列与等比数列的和的性质- 斐波那契数列数学归纳法- 数学归纳法的基本思想与原理- 数学归纳法的应用第二章:函数基本概念函数的定义与表示- 自变量与因变量- 函数的定义及表示方法- 函数的值域与定义域- 函数的图像与性质函数的基本性质- 函数的奇偶性- 奇偶函数的性质- 函数的单调性与最值- 函数的周期性- 函数的反函数线性函数与二次函数- 线性函数的概念与性质- 线性函数的图像与应用- 二次函数的概念与性质- 二次函数的图像与应用第三章:三角函数单位圆与三角函数的定义- 单位圆的坐标体系- 弧度与角度的互换- 正弦、余弦、正切函数的定义- 三角函数的周期性与奇偶性三角函数的诱导公式- 诱导公式的概念与推导- 角和差公式- 二倍角公式与半角公式三角函数的图像性质与变换- 正弦、余弦、正切函数的图像性质- 幅值、周期、相位的变化- 三角函数的平移与反转第四章:平面向量向量的概念与表示- 向量的定义与表示方法- 向量的模、方向与共线性- 零向量与相反向量向量的运算- 向量的加法与减法- 数乘与向量的数量积- 向量的数量积与夹角- 向量的向量积及其性质平面向量的应用- 平面向量的共线性、共面性- 利用平面向量解决几何问题第五章:解直角三角形勾股定理与三角函数- 直角三角形的性质与定义- 勾股定理的概念与应用- 单位圆上的三角函数与直角三角形的关系解直角三角形- 已知两边求夹角- 已知一边一角求其他边与角度解决初等几何问题- 利用三角函数解决初等几何问题第六章:平面几何向量向量的基本运算法则- 向量的加法、减法与数量积- 向量运算的几何意义- 平面向量与坐标的转换向量的线性相关与线性无关- 向量的线性组合- 向量的线性相关性与线性无关性平面向量的数量积- 数量积的概念与性质- 向量夹角的数量表示- 零向量与向量垂直的判定平面向量的应用- 平面向量解决几何问题- 向量平行和垂直的判定第七章:不等式与不等式组一元一次不等式- 一元一次不等式的概念与解法- 一元一次不等式的综合应用一元二次不等式- 一元二次不等式的概念与解法- 一元二次不等式的综合应用一元函数不等式- 一元函数不等式的概念与解法- 一元函数不等式的综合应用多元函数不等式组- 多元函数不等式组的概念与解法- 多元函数不等式组的应用第八章:平面几何直线与圆直线的方程与性质- 直线的斜截式与截距式- 直线的点斜式与两点式- 直线的平行与垂直关系- 直线的夹角与交点性质圆的方程与性质- 圆的一般方程与特殊方程- 圆的位置关系- 切线与切点的性质圆的切线方程- 切线的定义与判定条件- 切线方程的推导与应用- 切线长度的求解【总结】以上是高一数学每一章的知识点梳理,通过系统的学习与掌握这些知识点,可以帮助同学们打下牢固的数学基础,为后续学习提供有力支持。

高一上册数学知识点

高一上册数学知识点

高一上册数学知识点高一上册数学知识点第一章导数与函数1. 初步认识函数2. 数列与函数3. 函数的概念4. 初等函数的图象与性质5. 导数的概念6. 导数的简单应用7. 函数的单调性和极值8. 综合应用:函数的综合运用第二章三角函数1. 弧度制与角度制2. 正弦函数3. 余弦函数4. 正切函数5. 函数的性质与图象6. 诱导公式和倍角公式7. 三角函数的简单应用第三章概率初步1. 事件与概率2. 概率的基本规则3. 互斥事件与全概率公式4. 条件概率与乘法公式5. 贝叶斯公式6. 离散型随机变量7. 二项分布8. 正态分布第四章平面向量1. 向量的概念2. 向量的基本运算3. 向量的数量积4. 向量的向量积5. 平面向量的应用第五章常微分方程初步1. 常微分方程基本概念2. 初值问题与解的存在唯一性3. 一阶可分离变量微分方程4. 一阶线性微分方程5. 微分方程的应用第六章空间几何初步1. 空间点、直线和面2. 点、直线和面的位置关系3. 球与球面4. 空间中的方向角与方位角5. 空间向量的数量积与向量积6. 平面与直线的交点问题7. 空间几何的应用第七章解析几何初步1. 平面直角坐标系2. 直线的一般式方程3. 直线的截距式方程和点斜式方程4. 圆的一般式方程与标准式方程5. 解析几何的应用以上是高一上册数学知识点的简单介绍,希望能为同学们的学习提供帮助。

在学习过程中,同学们需要注重对基本概念的理解,同时也要善于运用所学知识进行综合运用。

同时,也要注重实际问题的应用,力求掌握知识点的实际应用能力。

高一数学必修第一册 第6章 第四节 课时4 百分位数(解析版)

高一数学必修第一册  第6章 第四节 课时4 百分位数(解析版)

第6章 第四节 课时4 百分位数一、单选题1.已知一组数据为4,5,67,8,8,,第40百分位数是( ) A .8B .7C .6D .5 【答案】C【解析】直接利用百分位数的定义求解.【详解】因为有6位数,所以640 2.4⨯=%,所以第40百分位数是第三个数6.故选:C2.已知100个数据的第75百分位数是9.3,则下列说法正确的是( )A .这100个数据中一定有75个数小于或等于9.3B .把这100个数据从小到大排列后,9.3是第75个数据C .把这100个数据从小到大排列后,9.3是第75个与第76个数据的平均数D .把这100个数据从小到大排列后,9.3是第75个与第74个数据的平均数【答案】C【分析】举反例否定选项AB ;依据第75百分位数的定义去判断选项CD.【详解】若100个数据全为9.3,满足题意,但不满足选项A ,故A 错误;当这100个数据均为9.3时,把这100个数据从小到大排列后,9.3不一定是第75个数据.选项B 判断错误;把这100个数据从小到大排列后,9.3是第75个与第76个数据的平均数. 则选项C 判断正确,选项D 判断错误.故选:C3.已知甲、乙两组数据(已按从小到大的顺序排列):甲组:27、28、39、40、m 、50;乙组:24、n 、34、43、48、52.若这两组数据的30百分位数、80百分位数分别相等,则m n 等于( ) A .127 B .107 C .43 D .74【答案】A【分析】根据百分位数的定义,求出30%6 1.8⨯=,故选取第2个数据为30百分位数,同理选取第5个数据作为80百分位数,求出48m =,28n =,进而求出结果.【详解】因为30%6 1.8⨯=,大于1.8的比邻整数为2,所以30百分位数为28n =,80%6 4.8⨯=,大于4.8的比邻整数为5,所以80百分位数为48m =,所以4812287m n ==. 故选:A二、填空题4.某市举行“中学生诗词大赛”,某校有1000名学生参加了比赛,从中抽取100名学生,统计他们的成绩(单位:分),并进行适当的分组(每组为左闭右开的区间),得到的频率分布直方图如图所示,则估计该校学生成绩的80%分位数为______.【答案】122.【解析】通过计算成绩在130分以下的学生和成绩在110分以下的学生所占比例,确定80%分位数所在位置,利用比例求解即可.【详解】根据频率分布直方图可知,成绩在130分以下的学生所占比例为10.0050200.9-⨯=,成绩在110分以下的学生所占比例为()10.01250.0050200.65-⨯⨯=,因此80%分位数一定位于[)110,130内,由0.80.65110201220.90.65-+⨯=-,故可估计该校学生成绩的80%分位数为122. 故答案为:122【点睛】本题主要考查频率分布直方图的应用和分位数的计算,考查学生分析数据的能力,属于中档题.三、解答题5.为了了解甲、乙两个工厂生产的轮胎的宽度是否达标,分别从两厂各随机选取了10个轮胎,将每个轮胎的宽度(单位:mm )记录下来并绘制出如下的折线图:分别求甲、乙两厂样本轮胎宽度的10%分位数与75%分位数.【答案】甲厂样本轮胎宽度的10%分位数193mm ;75%分位数为196mm ;乙厂样本轮胎宽度的10%分位数为193mm ,75%分位数为196mm .【分析】先由折线图得出数据,再将其从小到大排列,最后求出百分位数.【详解】甲厂轮胎宽度的数据为195,194,196,193,194,197,196,195,193,197, 从小到大排列,得193,193,194,194,195,195,196,196,197,197.又1010%1⨯=,10757.5%⨯=,所以甲厂样本轮胎宽度的10%分位数为第1项与第2项数据的平均数,即193mm ;75%分位数为第8项数据,即196mm .乙厂轮胎宽度的数据为196,197,194,193,196,195,196,193,196,194, 从小到大排列,得193,193,194,194,195,196,196,196,196,197, 所以乙厂样本轮胎宽度的10%分位数为193mm ,75%分位数为196mm .6.从某珍珠公司生产的产品中,随机抽取12颗珍珠,得到它们的质量(单位:g )如下:7.9,9.0,8.9,8.6,8.4,8.5,8.5,8.5,9.9,7.8,8.3,8.0.(1)求出这组数据的四分位数.(2)请你找出珍珠质量较小的前15%的珍珠质量.(3)若用25%,50%,95%分位数把该公司生产的珍珠划分为次品、合格品、优等品和特优品,依照这个样本数据,给出该公司珍珠等级的划分标准.【答案】(1)8.15,8.5,8.75(2)7.8g ,7.9g .(3)答案见解析【分析】(1)将所有数据从小到大排列,由四分位数的定义求解即可;(2)由1215% 1.8⨯=,得出产品质量较小的前15%的产品有2个;(3)先计算95%分位数,再根据25%,50%,95%分位数将珍珠等级进行划分.【详解】(1)将所有数据从小到大排列,得7.8,7.9,8.0,8.3,8.4,8.5,8.5,8.5,8.6,8.9,9.0,9.9,因为共有12个数据,1225%3⨯=,1250%6⨯=,1275%9⨯=,所以25%分位数是8.08.38.152+=, 50%分位数是8.58.58.52+=, 75%分位数是8.68.98.752+=. 故这组数据的四分位数分别为8.15,8.5,8.75.(2)因为共有12个数据,1215% 1.8⨯=,所以产品质量较小的前15%的产品有2个,它们的质量分别为7.8g ,7.9g .(3)由(1)可知样本数据的25%分位数是8.15,50%分位数是8.5因为1295%11.4⨯=,所以95%分位数是第12个数据,即9.9,所以质量小于等于8.15g 的珍珠为次品,质量大于8.15g 且小于等于8.5g 的珍珠为合格品,质量大于8.5g 且小于等于9.9g 的珍珠为优等品,质量大于9.9g 的珍珠为特优品.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学第6章知识点
第一节:函数与方程
函数与方程是高一数学中非常重要的概念。

在这一章中,我们将学习如何理解、运用和解决函数与方程的问题。

1. 什么是函数?
函数是一种特殊的关系,它将一个集合中的每个元素对应到另一个集合中的唯一元素上。

在数学中,我们可以用不同的方式来表示函数,如显式表达式、隐式表达式、图像等。

函数的定义域(输入)和值域(输出)是确定函数特性的重要因素。

2. 函数的性质
函数具有许多重要的性质,如有界性、单调性、奇偶性、周期性等。

通过研究函数的性质,我们可以更好地理解函数的行为和特点。

3. 方程与不等式
方程和不等式是表示数学关系的重要工具。

通过解方程和不等式,我们可以找到使其成立的未知数的值。

方程和不等式在解决
实际问题中起着重要的作用,例如确定最大值、最小值、等速率
等问题。

第二节:多项式函数
多项式函数是高中数学中的关键概念之一。

它是一种形式为
f(x) = a_nx^n + a_{n-1}x^{n-1} + ... + a_1x + a_0 的函数,其中 a_n
是非零常数,n 是非负整数。

1. 多项式的基本性质
多项式函数具有许多重要的性质,如奇次多项式和偶次多项式
的图像特点、多项式函数的极值、多项式函数与方程的关系等等。

2. 多项式的运算
多项式函数之间可以进行加法、减法、乘法和除法运算。

这些
运算在多项式函数的化简和计算中非常有用。

3. 多项式的根与因式分解
多项式的根是使多项式等于零的解。

通过寻找多项式函数的根,我们可以将其因式分解为不可再分解的因子。

第三节:指数与对数函数
指数与对数函数是高中数学中一个重要的研究对象,它们在科学、工程和经济学等领域有着广泛的应用。

1. 指数函数
指数函数可以用 f(x) = a^x 来表示,其中 a 是正实数且不等于1。

指数函数具有许多重要的性质,如单调性、连续性、收敛性等等。

2. 对数函数
对数函数是指数函数的反函数。

对数函数可以用 f(x) = log_a(x) 来表示,其中 a 是正实数且不等于1。

对数函数具有与指数函数相对应的性质,如增长速度、反函数性质等等。

3. 指数与对数的运算
指数与对数具有一系列重要的运算定理,如指数函数与对数函
数的互反性、指数函数与对数函数的乘法法则、幂函数的运算法
则等等。

结语
高一数学第6章的内容十分广泛且重要,掌握这些知识点对于
后续数学学习的深入和应用至关重要。

通过理解和运用函数与方程、多项式函数、指数与对数函数等概念,我们可以解决各种实
际问题,提高数学思维和解决问题的能力。

希望同学们能够认真
学习、理解和掌握这些知识点,为进一步的学习打下坚实的基础。

相关文档
最新文档