【风险管理】风险资产的定价——资本资产定价模型
资本资产定价模型[1]
![资本资产定价模型[1]](https://img.taocdn.com/s3/m/2553a6baa8114431b90dd8fa.png)
资本资产定价模型(CAPM)资本资产定价模型(CAPM)是近代金融学的奠基石。
1952年,马柯维茨(Herry M.Markowitz)在其博士论文《投资组合的选择》一文中首先提出建立现代资产组合管理的理论,12年后,威廉•夏普(William Sharpe)、约翰•林特纳(John Lintner)与简•莫辛(Jan Mossin)将其发展成资本资产定价模型。
马科维茨投资组合理论的中心是“分散原理”,他应用数学上的二维规划建立起一整套理论模型,系统地阐述了如何通过有效的分散化来选择最优投资组合的理论与方法。
马科维茨的理论有一定的局限性:偏重于质的分析而缺乏量的分析,无从知道证券该分散到何种程度才能达到风险和收益的最佳组合。
夏普在此基础上对证券市场价格机制进行了积极深入的研究,于1964年建立了资本资产定价模型,较好地描述了证券市场上人们的行为准则,使证券均衡价格、证券收益——风险处于一种清晰的状态。
该模型的重要意义是将数学引入了理性投资分析,为金融市场的发展和规范提供了依据。
它所涉及到的数学理论并不是很复杂的,用一些积分和概率论的基础知识就可以解决,但它后来的发展远远超过了这些。
一、资本市场线若不考虑无风险证券,符合正确投资策略的优化组合在有效组合边界上。
加入无风险证券后,新的最优化组合的点一定落在连接点和包含所有可能的有风险组合的双曲线所围区域及其边界的某一点的直线上。
如图1,效用值最大的半直线一定是和有效组合边界相切的那一条。
图11、资本市场线的定义与有效组合边界相切的那一条半直线构成了无风险证券和有风险资产组合的有效边界,这条半直线就被称为资本市场线(CAL—capital market line)。
因为有系统风险存在,最小方差组合A点不是无风险的,所以有结论:(1)有效组合边界和代表预期收益率大小的纵坐标轴不接触;(2)A点的预期收益率高于无风险利率,即A点要高于代表无风险证券收益、落在纵轴上的坐标点。
管理学投资学PPT第章资本资产定价模型

❖若某一个股票未包含在最优资产组合中,
会怎样?
2024/6/29
21
图 9.1 The Efficient Frontier and the
Capital Market Line
2024/6/29
22
9.1.2 消极策略的有效性
理由:
❖市场的有效性
❖投资于市场投资组合指数这样一个消极策略是有
26
▪ β系数。美国经济学家威廉·夏普提出的风险衡量
指标。
▪
用它反映资产组合波动性与市场波动性关系(
在一般情况下,将某个具有一定权威性的股指(
市场组合)作为测量股票β值的基准)。
▪ 如果β值为1.1,表明该股票波动性要比市场大盘
高10 %,说明该股票的风险大于整个市场的风险
,当然它的收益也应该大于市场收益,因此是进
则其收益 - 风险比率为:
wGE [ E (rGE ) rf ] E (rGE ) r f
wGE Cov(rGE , rM ) Cov(rGE , rM )
2024/6/29
25
9.1.4 单个证券的期望收益
市场组合M与CML相切,其收益风险比率为:
E (rM ) rf
2
M
(风险的市场价格)
率应该增加的数量。
▪ 在金融世界里,任何资产组合都不可能超越CML
。由于单个资产一般来说,并不是最优的资产组
合,因此,单个资产也位于该直线的下方。
2024/6/29
14
证券市场线
▪ 资本市场线描述了有效组合的预期收益率和标准
差之间的均衡关系―有效资产组合定价模型。
▪ 问题:
▪ (1) 单个风险资产的预期收益率和标准差之间
资本资产定价模型 (CAPM)

因素的确定
• APT没有明确指明这些因素是什么 • Chen, Roll and Ross(1986, JOB):
- 未预料到的工业产量的变动 - 未预料到的Baa级债券收益率和AAA级债券收 益率之间的价差变动 - 未预料到的长期利率和短期利率之间的价差
总计 +16,000
0
0
© 北京大学光华管理学院金融系 徐信忠 2002
APT的假设
• 证券的期望收益率是由多种因素线性决定 • 投资者对收益的产生过程有相同的信念 • 完全竞争和没有摩擦的资本市场
© 北京大学光华管理学院金融系 徐信忠 2002
APT(套利定价模型) (1)
• APT假设:
ri E(ri ) bi1F~1 biKF~K i
• a的变动对均值和标准差的影响为:
© 北京大学光华管理学院金融系 徐信忠 2002
CAPM的导出 (3)
rp a
ri
rM ( 3)
p
a
22[aa2i2i22(1M 2a)22aM 2M 22a2(1iMa)4aiM ]i1M /2
(4 )
•利用方程(3)、(4),当a=0时,我们可以得到
© 北京大学光华管理学院金融系 徐信忠 2002
ri
0.10 0.05
M
•
•B
• A SML
•
•
•
0.7 1.0
1.3
i
© 北京大学光华管理学院金融系 徐信忠 2002
在投资组合选择中运用CAPM
• CAPM提供了消极投资策略的依据 - 按市场投资组合的比例分散持有多种风险资产 - 该组合与无风险资产再组合,以获得所希望的风险 (标准差)-收益组合
风险资产的定价

6
Sharpe, then a Ph.D. candidate at the University of California, Los Angeles, needed a doctoral dissertation topic. He had read "Portfolio Selection," Markowitz's seminal work on risk and return—first published in 1952 and updated in 1959—that presented a so-called efficient frontier of optimal investment. While advocating a diversified portfolio to reduce risk, Markowitz stopped short of developing a practical means to assess how various holdings operate together, or correlate, though the question had occurred to him.
8
From this research, Sharpe independently developed a heretical notቤተ መጻሕፍቲ ባይዱon of investment risk and reward, a sophisticated reasoning that has become known as the Capital Asset Pricing Model, or the CAPM. The CAPM rattled investment professionals in the 1960s, and its commanding importance still reverberates today. In 1990, Sharpe's role in developing the CAPM was recognized by the Nobel Prize committee. Sharpe shared the Nobel Memorial Prize in Economic Sciences that year with Markowitz and Merton Miller, the University of Chicago economist.
资本资产定价模型

均值?
国家风险溢价 隐含的股票风险溢价
15
历史风险溢价
历史时期(年)
1928-2011 1962-2011 2002-2011
美国市场风险溢价历史数据
股票-短期政府债券
股票-长期政府债券
算术平均数(%) 几何平均数(%) 算术平均数(%) 几何平均数(%)
风险与收益
一 • 风险与收益的含义与分类 二 • 历史收益率与风险的衡量 三 • 投资组合收益与风险 四 • 资本市场线 五 • 资本资产定价模型
1
资本资产定价模型
1. 基本假设 2. 证券市场线 3. 无风险利率与风险溢价 4. β系数 5. 资产定价多因素模型
2
基本假设
① 所有的投资者都追求单期最终财富的效用最大化, 他们根据投资组合预期收益率和标准差来选择优化 投资组合
COV ( rmrm ) = Var( rm )
市场投资组合的β系数(或者说市场投资组合里的平均资产的β系数)等 于1 ;风险水平超过平均资产(按这种风险衡量方法)的资产的β系数大 于1,反之则小于1
无风险资产的β系数等于0。
7
Continue
任何一项资产自身的协方差就等于它的方差,市 场组合与自身的协方差等于市场组合收益率的方 差,即
7.55% 5.38% 3.12%
5.62% 4.02% 1.08%
5.79% 3.36% -1.92%
4.10% 2.35% -3.61%
几何平均数一般小于算术平均数
算术平均数与几何平均数的差别取决于所求平均数收益率的波动情况,收益率 波动越大,两种平均数的差距就越大。
对于一个给定的样本期间,算术平均数取决于每一期的长短,每一期的时间越 短,算术平均数就越大;但几何平均数与每期的长度无关
风险资产的定价-资本资产定价模型(ppt 86)

A 1T V 1r B r TV 1r C 1T V 11
30.12.2019
43
即所有N+1种资产的证券组合前沿为过点(0,rf),
斜率为 H 的半射线组成。有以下三种情况:
• 1、 rf
A C
M
A C
1.同时进行无风险借贷对有效集的影响
当既允许无风险借入又允许无风 险贷出时,有效集也将变成一条直线 (该直线经过无风险资产A点并与马 科维兹有效集相切),相应地降低了 系统风险。切点T是最优风险资产组合, 因为它是酬报波动比最大的风险资产 组合。
该直线上的任意一点所代表的投资组合,都可 以由一定比例的无风险资产和由T点所代表的 有风险资产组合生成。
D
0.75
E
1.00
F
1.25
G
1.50
H
1.75
I
2.00
X2 1.00 0.75 0.50 0.25 0.00 -0.25 -0.50 -0.75 -1.00
期 望 回 报 标准差
率
4.00% 0.00%
7.05
3.02
10.10 6.04
13.15 9.06
16.10 12.08
19.25 15.10
假设风险资产和无风险资产再投资组合中的比 例分别为X1和X2,它们的预期收益率分别为R1和 rf,标准差分别为σ1和σ2,它们之间的协方差为 σ12。根据X1和X2的定义可知X1+ X2=1,且X1和 X2>0。根据无风险资产的定义,有σ1和σ12都等 于0。那么,
该组合的预期收益率为:RP=X1R1+X2rf 组合的标准差为:σp=X1σ1
• 在前面的例子中,我们用X2表示投资于无 风险资产的比例,而且X2限定为从0到1之 间的非负值。现在,由于投资者有机会以 相同的利率借入贷款,X2便失去了这个限 制。如果投资者借入资金,X2可以被看作 是负值,然而比例的总和仍等于1。这意 味着,如果投资者借入了资金,那么投资 于风险资产各部分的比例总和将大于1。
资本资产定价模型计算公式
资本资产定价模型计算公式资本资产定价模型(Capital Asset Pricing Model, 简称 CAPM)是一种用来估算资产期望收益率的定量模型,也是金融学中最经典的定价模型之一。
CAPM模型在1964年由学者William Sharpe、John Lintner和Jan Mossin提出,并且获得了诺贝尔经济学奖。
CAPM模型基于以下几个假设:1. 假设市场是完全有效的,即所有信息都是公开的,投资者可以充分获取和利用这些信息。
2. 假设投资者对风险是敏感的,而且他们的投资决策是基于预期收益和风险之间的权衡关系。
3. 假设市场只有一个风险无风险资产,投资者可以选择在这两种资产之间进行投资,并可以根据其风险承受能力进行资产配置。
根据CAPM模型,一个资产的期望回报可以通过以下公式来估算:E(Ri) = Rf + βi * (E(Rm) - Rf)其中,E(Ri) 表示资产 i 的期望收益率;Rf 表示无风险资产的收益率;βi 表示资产 i 的系统性风险系数(也称为β系数);E(Rm) 表示市场的期望收益率。
公式中的(Rm - Rf) 表示市场风险溢价,即市场相对于无风险资产的超额收益;βi * (E(Rm) - Rf) 表示资产 i 的系统性风险溢价,即资产 i 相对于市场的超额收益。
β系数表示资产的系统性风险,其值代表着资产相对于市场的波动情况。
如果一个资产的β系数大于1,说明该资产波动性较市场更大,可能存在更高的风险;如果β系数小于1,则说明该资产波动性较市场更小,可能存在更低的风险。
在估算资产的期望收益率时,我们需要首先估算资产的β系数。
一种简单的估算方法是使用历史数据计算资产的β系数,公式如下:βi = Cov(Ri, Rm) / Var(Rm)其中,Cov(Ri, Rm) 表示资产 i 和市场的协方差;Var(Rm) 表示市场的方差。
通过计算上述公式,就可以估算出资产的β系数,进而计算出资产的期望收益率。
第11章资本资产定价模型
2 p ( 2 i2 (1 )2 m 2 (1 ) im )1/ 2
所有这样的投资组合都位于连接i和M的直线 上:
drp d
d p
ri rm
2 2 i2 m m im 2 im 2 2 2 d ( i (1 ) 2 m 2 (1 ) im )1/ 2
i
在CAPM理论中,之所以市场证券组合起着中心的作 用,是因为,当证券市场达到均衡时,市场证券组 合即为切点证券组合,从而,每个人的有效集都是 一样的:由通过无风险证券和市场证券组合的射线 构成。
2.3 证券市场均衡
市场均衡
货币市场均衡:借、贷量相等,从而,所有个 体的初始财富的 和等于所有风险证券的市场总 价值。 资本市场均衡:每种证券的供给等于需求。
假设7:所有投资者的投资周期相同。 假设8:对于所有投资者而言,无风险利率是相同的。 假设9:对于所有投资者而言,信息可以无偿自由地 获得。 假设10:投资者有相同的预期,即,他们对证券回 报率的期望、方差、以及相互之间的协方差的判断 是一致的。
2
CML和SML
分离定理 市场证券组合 市场均衡 定价方程
当证券市场达到均衡时,切点证券组合T就是市场 证券组合。 所有投资者都以 r f 借或者贷,然后投资到M上。
市场达到均衡的流程图
证券组合
P1
给定一 组价格
前沿
切点证券 组合
T1
市场证券 组合 M 1
T1 为 M1
均衡
新 价 格
M 1不为M 1 T1 T1
2.4 资本市场线
CAPM理论的思想是,假设已知市场证券组合的回
风险和报酬—资本资产定价模型
(3)β<1,说明该资产的系统风险程度小于整个市场组合的风险;
(4)β=0,说明该资产的系统风险程度等于0。
【提示】
(1)β系数反映了相对于市场组合的平均风险而言单项资产系统风险的大小。
(2)绝大多数资产的β系数是大于零的。如果β系数是负数,表明这类资产收益与市场平均收益的变化方向相反。
A.贝塔系数度量投资的系统风险
B.方差度量投资的系统风险和非系统风险
C.标准差度量投资的非系统风险
D.变异系数度量投资的单位期望报酬率承担的系统风险和非系统风险
【答案】ABD
【解析】方差、标准差、变异系数度量投资的总风险(包括系统风险和非系统风险),贝塔系数度量投资的系统风险,选项C错误。
(二)资本资产定价模型(CAPM)和证券市场线(SML)
【答案】C
【例题•计算题】假设资本资产定价模型成立,表中的数字是相互关联的。求出表中“?”位置的数字(请将结果填写在答题卷第9页给定的表格中,并列出计算过程)。(2003年)
证券名称
期望报酬率
标准差
与市场组合的相关系数
贝塔值
无风险资产
?
?
?
?
市场组合
?
0.10
?
?
A股票
0.22
?
0.65
1.3
B股票
2.市场利率的构成;
3.货币时间价值的系数之间的关系;
4.资金时间价值计算的灵活运用(内插法确定利率、期限;有效年利率、报价利率间的关系);
5.投资组合的风险和报酬的相关结论;
6.资本资产定价模型;
7.β系数的含义及结论;
8.证券市场线与资本市场线的比较。
风险资产的定价分析
风险资产的定价分析风险资产的定价分析是金融学领域中的重要研究内容之一。
在金融市场中,风险资产指的是那些具有不确定性和波动性的投资工具,如股票、债券、商品等。
对于投资者而言,理解风险资产的定价规律可以帮助他们做出更明智的投资决策。
风险资产的定价分析基于现代资产定价理论,其中最著名的一种模型是资本资产定价模型(Capital Asset Pricing Model,简称CAPM)。
根据CAPM模型,一个风险资产的预期收益率取决于其风险水平和市场整体风险水平之间的关系。
CAPM模型的基本假设是投资者是理性的、风险厌恶的,并且具有相同的信息。
这个模型认为投资者通过将自己的资金分散投资于不同的风险资产和无风险资产来最大化其预期收益。
根据CAPM模型,一个风险资产的预期收益率可以通过以下公式计算:ERi = RF + βi * (ERM - RF)在这个公式中,ERi表示资产i的预期收益率,RF表示无风险利率,βi表示资产i的市场风险系数,ERM表示市场整体的风险水平。
市场风险系数βi是CAPM模型中的关键参数,它衡量了一个资产相对于整个市场的系统性风险。
市场风险系数βi的值越大,表示资产对市场整体风险波动的敏感度越高,预期收益率也越高。
反之,如果资产的市场风险系数较小,那么其预期收益率也会相应减小。
除了CAPM模型,还有其他一些定价模型可以用于风险资产的定价分析,如多因素模型和期权定价模型等。
这些模型通过考虑更多的因素和变量,提供了对风险资产更准确的定价预测。
需要指出的是,虽然这些风险资产的定价模型是基于理性和相对完全的市场假设构建的,但现实市场并不总是符合这些假设。
因此,在实际投资中,投资者还应该综合考虑其他因素,如市场情绪、宏观经济环境和公司基本面等,以便做出更准确的投资决策。
风险资产的定价分析是金融学领域中的重要研究内容之一。
在现代金融市场中, 风险资产是指那些具有不确定性和波动性的投资工具, 如股票、债券、商品等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019/8/28
9
考虑以下5种组合:
组合A 组合B 组合C 组合D 组合E
X1
0.00 0.25 0.5
0.75 1.00
X2
1.00 0.75 0.5
0.25 0.00
假设风险资产的回报率为16.2%,无风险 资产的回报率为4%,那么根据上面的公式, 5种组合的回报率和标准差如下:
其次,无风险资产应当没有市场风险。
2019/8/28
8
二、允许无风险贷款下的投资组合
1.投资于一个无风险资产和一个风险资产的情形
假设风险资产和无风险资产再投资组合中的比 例分别为X1和X2,它们的预期收益率分别为R1和 rf,标准差分别为σ1和σ2,它们之间的协方差为 σ12。根据X1和X2的定义可知X1+ X2=1,且X1和 X2>0。根据无风险资产的定义,有σ1和σ12都等 于0。那么,
2019/8/28
14
E(RP)ABiblioteka 2019/8/28C
P
D
σ(RP)
15
3.无风险贷出对有效集的影响
如前所述,引入无风险贷款后,有效 集将发生重大变化。
图中,弧线CD代表马科维兹有效集, A点表示无风险资产。我们可以在马科维 兹有效集中找到一点T,使AT直线与弧 线CD相切于T点。T点所代表的组合称 为切点处的投资组合。
2019/8/28
18
E(RP) T
A
C
2019/8/28
D
σ(RP)
19
4.无风险贷出对投资组合选择的影响
对于不同的投资者而言,无风险贷款 的引入对他们的投资组合选择有不同的 影响。
对于风险厌恶程度较轻,从而其选择 的投资组合位于DT弧线上的投资者而言, 其投资组合的选择将不受影响。因为只 有DT弧线上的组合才能获得最大的满足 程度。对于该投资者而言,他仍将把所 有资金投资于风险资产,而不会把部分 资金投资于无风险资产。
• 1964-1966年夏普(William E sharp)林内特、莫辛分别独立提 出,CAPM实质上要解决的是,假定 所有投资者都运用前一章的马氏证 券组合选择方法,在有效边界上寻 求有效组合,从而在所有的投资者 都厌恶风险的情况,最终每个人都 投资于一个有效组合,那么将如何 测定组合中每单个证券的风险,以 及风险与投资者们的预期和要求的 收益率之间是什么关系。可见,该 模型是建立在一定理想化假设下, 研究风险的合理测定和定价问题。 并认为每种证券的收益率只与市场 收益率和无风险收益率有关。
2019/8/28
16
• T点代表马科维兹有效集中众多的有效组 合中的一个,但它却是一个很特殊的组合。
因为对于所有由风险资产构成的组合来说,
没有哪个点与无风险资产相连接形成的直 线会落在T点与无风险资产的连线的西北 方。换句话说,在所有从无风险资产出发
到风险资产或是风险资产组合的连线中, 没有哪一条线能比到T点的线更陡。由于 马科维兹有效集的一部分是由这条线所控 制,因而这条线就显得很重要。
6
一、无风险资产的定义
在单一投资期的情况下,无风险资产的回 报率是确定的
无风险资产的标准差为零
无风险资产的回报率与风险资产的回报率 之间的协方差也是零
2019/8/28
7
根据定义无风险资产具有确定的回 报率,因此:
首先,无风险资产必定是某种具有固 定收益,并且没有任何违约的可能的 证券。
2019/8/28
17
• 从图中可以看出,在引入AT线段之后,即投 资者可以投资于无风险资产时,CT弧将不再 是有效集。因为对于T点左边的有效集而言, 在预期收益率相等的情况下,AT线段上风险 均小于马科维兹有效集上的组合的风险,而 在风险相同的情况下,AT线段上的预期收益 率均大于马科维兹有效集上组合的预期收益 率。按照有效集的定义,CT弧线的有效集将 不再是有效集。由于AT线段上的组合是可行 的,因此引入无风险贷款后,新的有效集由 AT线段和TD弧线构成,其中直线段AT代表无 风险资产和T以各种比例结合形成的一些组合。
2019/8/28
William Sharpe, (1934-)资本资产 定价模型(CAPM)
5
第一节 无风险借贷对有马科维 兹有效集的影响
一、无风险资产的定义 二、允许无风险贷款下的投资组合 三、允许无风险借入下的投资组合 四、允许同时进行无风险借贷——无 风险借入和贷出对有效集的影响
2019/8/28
尽管这里仅对5个特定的组合进行了分析, 但可以证明:有无风险资产和风险资产构 成的任何一种组合都将落在连接它们的直 线上;其在直线上的确切位置将取决于投 资于这两种资产的相对比例。不仅如此, 这一结论还可以被推广到任意无风险资产 与风险资产的组合上。这意味着,对于任 意一个有无风险资产和风险资产所构成的 组合,其相应的预期回报率和标准差都将 落在连接无风险资产和风险资产的直线上。
2019/8/28
20
E(RP) T
A
I1
D
O
C
2019/8/28
σ(RP)
21
• 对于较厌恶风险的投资者而言,该投 资者将选择其无差异曲线与AT线段的 切点O’所代表的投资组合。如图所示, 对于该投资者而言,他将把部分资金
2019/8/28
12
E(RP)
r=4%
2019/8/28
σ(RP)
13
2.投资于一个无风险资产和一个风险组合的 情形
假设风险资产组合P是由风险资产C和D组 成的。经过前面的分析可知,P一定位于 经过C、D两点的向上凸出的弧线上。如果 我 期们收仍益然率用和R标1和准σ差1代,表用风X1险代资表产该组组合合的在预整 个投资组合中所占的比重,则前面的结论 同样适用于由无风险和风险资产组合构成 的投资组合的情形。这种投资组合的预期 收益率和标准差一定落在A、P线段上。
2019/8/28
10
组合 X1
X2
期望回 标准差
报率
A
0.00 1.00 4.00% 0.00%
B
0.25 0.75 7.05 3.02
C
0.50 0.50 10.10 6.04
D
0.75 0.25 13.15 9.06
E
1.00 0.00 16.10 12.08
2019/8/28
11
可以发现,这些点都位于连接代表无风险 资产和风险资产的两个点的直线上。