决策树分类算法
数据挖掘中的分类与回归算法

数据挖掘中的分类与回归算法数据挖掘是一门从大量数据中提取有用信息的学科。
其中分类和回归算法是数据挖掘中非常常用的方法。
分类算法是通过将数据集中的数据按照某种规则分成不同的类别,从而确定数据的类别或标签,而回归算法则是预测一个连续值的过程。
一、分类算法1.1 决策树分类算法决策树分类算法是一种基于树型结构的算法,通过对样本特征的判断,不断划分样本空间,最终得到一系列的叶子节点,每个叶子节点都表示一个类别。
决策树分类算法的优点是易于理解、计算成本低,但是在分类时容易出现过拟合的情况。
1.2 支持向量机分类算法支持向量机分类算法是一种基于数据结构的算法,通过将样本映射到高维空间,然后找到样本空间中的最大超平面来进行分类。
支持向量机分类算法的优点是鲁棒性好、适用于高维数据和非线性分类问题,但是需要进行特征选择和调参。
1.3 朴素贝叶斯分类算法朴素贝叶斯分类算法是一种基于贝叶斯定理的算法,它假设样本的各个属性是相互独立的,从而对每个样本进行分类。
朴素贝叶斯分类算法的优点是计算速度快、对缺失数据适应性好,但是需要做出属性独立性的假设。
二、回归算法2.1 线性回归算法线性回归算法是一种通过建立线性模型来预测连续变量的方法。
该方法建立一个线性方程,通过拟合样本数据求解未知的系数,从而得到预测结果。
线性回归算法的优点是计算简单、容易解释结果,但是对非线性数据的拟合效果差。
2.2 非线性回归算法非线性回归算法是一种通过建立非线性模型来预测连续变量的方法。
该方法可以更好地拟合非线性数据,但是计算成本较高,需要用到复杂的优化算法。
2.3 回归树算法回归树算法是一种基于树形结构建立回归模型的方法。
它与决策树分类算法类似,通过不断将样本空间划分成更小的子空间来预测连续变量,从而得到预测结果。
回归树算法的优点是易于理解、计算成本低,但是容易出现过拟合的情况。
总之,数据挖掘中的分类和回归算法都是非常重要的方法,根据不同的数据和任务需求可以选择适当的算法进行分析和预测。
数据挖掘中的数据分类算法综述

分析Technology AnalysisI G I T C W 技术136DIGITCW2021.021 决策树分类算法1.1 C 4.5分类算法的简介及分析C4.5分类算法在我国是应用相对较早的分类算法之一,并且应用非常广泛,所以为了确保其能够满足在对规模相对较大的数据集进行处理的过程中有更好的实用性能,对C4.5分类算法也进行了相应的改进。
C4.5分类算法是假如设一个训练集为T ,在对这个训练集建造相应的决策树的过程中,则可以根据In-formation Gain 值选择合理的分裂节点,并且根据分裂节点的具体属性和标准,可以将训练集分为多个子级,然后分别用不同的字母代替,每一个字母中所含有的元组的类别一致。
而分裂节点就成为了整个决策树的叶子节点,因而将会停止再进行分裂过程,对于不满足训练集中要求条件的其他子集来说,仍然需要按照以上方法继续进行分裂,直到子集所有的元组都属于一个类别,停止分裂流程。
决策树分类算法与统计方法和神经网络分类算法相比较具备以下优点:首先,通过决策树分类算法进行分类,出现的分类规则相对较容易理解,并且在决策树中由于每一个分支都对应不同的分类规则,所以在最终进行分类的过程中,能够说出一个更加便于了解的规则集。
其次,在使用决策树分类算法对数据挖掘中的数据进行相应的分类过程中,与其他分类方法相比,速率更快,效率更高。
最后,决策树分类算法还具有较高的准确度,从而确保在分类的过程中能够提高工作效率和工作质量。
决策树分类算法与其他分类算法相比,虽然具备很多优点,但是也存在一定的缺点,其缺点主要体现在以下几个方面:首先,在进行决策树的构造过程中,由于需要对数据集进行多次的排序和扫描,因此导致在实际工作过程中工作量相对较大,从而可能会使分类算法出现较低能效的问题。
其次,在使用C4.5进行数据集分类的过程中,由于只是用于驻留于内存的数据集进行使用,所以当出现规模相对较大或者不在内存的程序及数据即时无法进行运行和使用,因此,C4.5决策树分类算法具备一定的局限性。
决策树算法公式

决策树算法公式
决策树算法公式是机器学习中常用的分类算法,通过构建一个树形结构来实现对数据集的分类。
决策树的主要思路是将数据集分成若干个小部分,每个小部分对应一条分支,直到达到预定的终止条件。
根据数据集的属性特征,决策树算法会选择最优的属性来进行划分,从而得到最优的分类效果。
决策树算法的主要公式包括:
1.信息增益公式:$IG(D, A) = H(D) - H(D|A)$
其中,$H(D)$表示数据集$D$的经验熵,$H(D|A)$表示在属性$A$的条件下,数据集$D$的经验条件熵。
信息增益越大,说明使用属性$A$进行划分能够得到更好的分类效果。
2.基尼系数公式:$Gini(D) =
sum_{k=1}^{|mathcal{Y}|}sum_{k'
eq k}p_kp_{k'} = 1 - sum_{k=1}^{|mathcal{Y}|}p_k^2$ 其中,$|mathcal{Y}|$表示数据集$D$中不同类别的个数,
$p_k$表示数据集$D$中属于第$k$个类别的样本占总样本数的比例。
基尼系数越小,说明使用属性$A$进行划分能够得到更好的分类效果。
通过使用信息增益或基尼系数等公式,决策树算法可以自动选择最优的属性进行划分,从而得到最优的分类效果。
- 1 -。
分类算法综述

分类算法综述分类算法综述分类算法是一种机器学习技术,它的目标是将输入数据分成不同的类别。
分类算法广泛应用于数据挖掘、自然语言处理、计算机视觉等领域。
本文将对常见的分类算法进行综述。
1. 朴素贝叶斯分类算法朴素贝叶斯分类算法是一种基于贝叶斯定理和特征条件独立假设的分类算法。
该算法的核心思想是通过先验概率和条件概率来计算后验概率,从而确定每个类别的概率。
朴素贝叶斯分类算法的优点是简单易懂,适用于大规模数据集。
2. 决策树分类算法决策树分类算法是一种基于树形结构的分类算法。
该算法通过对训练数据进行分析,构建一棵决策树,用于对新数据进行分类。
决策树分类算法的优点是易于理解和实现,同时可以处理具有非线性关系的数据。
3. 支持向量机分类算法支持向量机分类算法是一种基于间隔最大化的分类算法。
该算法通过将数据映射到高维空间,使得数据在该空间中可以被线性分割,从而实现分类。
支持向量机分类算法的优点是对于高维数据具有很好的分类效果。
4. 最近邻分类算法最近邻分类算法是一种基于距离度量的分类算法。
该算法的核心思想是找到离待分类数据最近的K个已知分类的数据,通过它们的类别来确定待分类数据的类别。
最近邻分类算法的优点是简单易懂,适用于多分类问题。
5. 随机森林分类算法随机森林分类算法是一种基于决策树的集成学习算法。
该算法通过对训练数据随机采样,并对每个采样数据构建一棵决策树,最终将这些决策树集成起来进行分类。
随机森林分类算法的优点是对于噪声数据具有很好的分类效果。
总的来说,不同的分类算法在处理不同类型的数据和问题时具有各自的优缺点。
选择合适的分类算法需要考虑数据的特点、算法的性能以及应用场景等因素。
决策树的三种算法

决策树的三种算法一、决策树算法的简单介绍决策树算法就像是一个超级智能的树状决策指南。
你可以把它想象成一棵倒着长的树,树根在上面,树枝和树叶在下面。
它的任务呢,就是根据不同的条件来做出各种决策。
比如说,你想决定今天穿什么衣服,天气就是一个条件,如果天气冷,你可能就选择穿厚衣服;如果天气热,那薄衣服就比较合适啦。
决策树算法在很多地方都超级有用,像预测一个人会不会买某个商品,或者判断一个邮件是不是垃圾邮件之类的。
二、决策树的三种算法1. ID3算法这个算法就像是一个很会找重点的小机灵鬼。
它主要是根据信息增益来构建决策树的。
啥是信息增益呢?就是通过计算某个属性带来的信息量的增加。
比如说,在判断一个水果是苹果还是香蕉的时候,颜色这个属性可能就有很大的信息增益。
如果一个水果是红色的,那它是苹果的可能性就比较大。
ID3算法会优先选择信息增益大的属性来作为树的节点,这样就能更快更准地做出决策啦。
不过呢,这个算法也有个小缺点,就是它比较容易对噪声数据敏感,就像一个很敏感的小娃娃,稍微有点风吹草动就可能受到影响。
2. C4.5算法C4.5算法就像是ID3算法的升级版。
它在ID3算法的基础上做了一些改进。
它不仅仅考虑信息增益,还考虑了信息增益率。
这就好比是一个更加全面考虑的智者。
通过考虑信息增益率,它能够更好地处理那些属性值比较多的情况。
比如说,在一个数据集中有一个属性有很多很多不同的值,C4.5算法就能比ID3算法更好地处理这种情况,不会轻易地被这种复杂情况给弄晕。
而且C4.5算法还能够处理连续的属性值,这就像是它多了一项特殊的技能,让它在更多的情况下都能发挥作用。
3. CART算法CART算法又有自己的特点。
它使用的是基尼系数来选择属性进行划分。
基尼系数就像是一个衡量公平性的小尺子,在决策树这里,它是用来衡量数据的纯度的。
如果基尼系数越小,说明数据越纯,就越容易做出准确的决策。
CART算法既可以用于分类问题,就像前面说的判断水果是苹果还是香蕉这种,也可以用于回归问题,比如预测房价之类的。
常见决策树分类算法都有哪些?

在机器学习中,有一个体系叫做决策树,决策树能够解决很多问题。
在决策树中,也有很多需要我们去学习的算法,要知道,在决策树中,每一个算法都是实用的算法,所以了解决策树中的算法对我们是有很大的帮助的。
在这篇文章中我们就给大家介绍一下关于决策树分类的算法,希望能够帮助大家更好地去理解决策树。
1.C4.5算法C4.5算法就是基于ID3算法的改进,这种算法主要包括的内容就是使用信息增益率替换了信息增益下降度作为属性选择的标准;在决策树构造的同时进行剪枝操作;避免了树的过度拟合情况;可以对不完整属性和连续型数据进行处理;使用k交叉验证降低了计算复杂度;针对数据构成形式,提升了算法的普适性等内容,这种算法是一个十分使用的算法。
2.CLS算法CLS算法就是最原始的决策树分类算法,基本流程是,从一棵空数出发,不断的从决策表选取属性加入数的生长过程中,直到决策树可以满足分类要求为止。
CLS算法存在的主要问题是在新增属性选取时有很大的随机性。
3.ID3算法ID3算法就是对CLS算法的最大改进是摒弃了属性选择的随机性,利用信息熵的下降速度作为属性选择的度量。
ID3是一种基于信息熵的决策树分类学习算法,以信息增益和信息熵,作为对象分类的衡量标准。
ID3算法结构简单、学习能力强、分类速度快适合大规模数据分类。
但同时由于信息增益的不稳定性,容易倾向于众数属性导致过度拟合,算法抗干扰能力差。
3.1.ID3算法的优缺点ID3算法的优点就是方法简单、计算量小、理论清晰、学习能力较强、比较适用于处理规模较大的学习问题。
缺点就是倾向于选择那些属性取值比较多的属性,在实际的应用中往往取值比较多的属性对分类没有太大价值、不能对连续属性进行处理、对噪声数据比较敏感、需计算每一个属性的信息增益值、计算代价较高。
3.2.ID3算法的核心思想根据样本子集属性取值的信息增益值的大小来选择决策属性,并根据该属性的不同取值生成决策树的分支,再对子集进行递归调用该方法,当所有子集的数据都只包含于同一个类别时结束。
分类和回归树算法

分类和回归树算法分类和回归树(CART)是一种常用的决策树算法,用于解决分类和回归问题。
它可以根据给定的特征将数据集划分为不同的区域,并在每个区域内预测目标变量的取值。
在本文中,我将详细介绍CART算法的原理、构建过程和优缺点。
一、CART算法原理CART算法是一种基于特征划分的贪心算法,它通过递归地划分数据集来构建决策树。
算法的核心思想是选择一个最优特征和最优切分点,使得划分后的子集尽可能纯净。
具体来说,CART算法构建决策树的过程如下:1.选择最优特征和最优切分点:遍历所有特征和所有可能的切分点,计算每个切分点的基尼指数(用于分类)或均方差(用于回归),选择使得切分后子集纯度最大或方差最小的特征和切分点。
2.划分数据集:将数据集根据选定特征和切分点划分为两个子集,一个子集包含特征值小于等于切分点的样本,另一个子集包含特征值大于切分点的样本。
3.递归构建子树:对于每个子集,重复上述步骤,直到满足停止条件。
停止条件可以是:达到最大深度、子集中样本数量小于一些阈值、子集中样本类别完全相同等。
4.构建决策树:重复上述步骤,不断构建子树,将所有子树连接起来形成一棵完整的决策树。
5.剪枝:在构建完整的决策树后,通过剪枝来减小过拟合。
剪枝是通过判断在进行划分后树的整体性能是否有所提升,如果没有提升,则将该子树转化为叶节点。
二、CART算法构建过程下面以分类问题为例,详细描述CART算法的构建过程。
1. 输入:训练集D = {(x1, y1), (x2, y2), ..., (xn, yn)},特征集A = {a1, a2, ..., am}。
2.输出:决策树T。
3.若D中所有样本都属于同一类别C,则将T设为单节点树,并标记为C类,返回T。
4.若A为空集,即无法再选择特征进行划分,则将T设为单节点树,并将D中样本数量最多的类别标记为C类,返回T。
5. 选择最优特征a*和最优切分点v*:遍历特征集A中的每个特征ai和每个可能的切分点vi,计算切分后子集的基尼指数或均方差,选择使得基尼指数或均方差最小的特征和切分点a*和v*。
二分类决策树算法

二分类决策树算法
二分类决策树算法是一种监督学习算法,常用于分类问题。
它通过构建一棵树状结构来对数据进行分类。
二分类决策树的基本思想是通过对数据的特征进行分析,选择最能区分不同类别的特征,然后根据该特征将数据划分成两个子节点。
这个过程不断递归,直到子节点中只包含同一类别的数据或者达到某个停止条件。
在构建决策树的过程中,需要选择合适的特征来划分数据。
通常使用信息增益、增益率或基尼系数等指标来衡量特征的重要性。
选择具有最大信息增益或最小基尼系数的特征作为当前节点的划分依据。
决策树的构建过程可以通过递归实现。
首先将整个数据集作为根节点,然后对每个特征计算其信息增益或基尼系数,选择最优特征进行划分,创建子节点。
接着,对子节点重复上述过程,直到满足停止条件。
一旦决策树构建完成,就可以使用它来对新的数据进行分类。
根据输入数据的特征值,从根节点开始,沿着决策树的路径到达叶子节点,最终确定数据所属的类别。
二分类决策树算法的优点是简单易懂、易于实现,并且在处理小型数据集时效果较好。
然而,它可能容易过拟合,对于大型数据集和复杂问题可能效果不佳。
因此,在实际应用中,通常需要结合其他技术如剪枝、集成学习等来提高决策树的性能和泛化能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
决策树分类算法
决策树是一种用来表示人们为了做出某个决策而进行的一系列判断过程的树形图。
决策树方法的基本思想是:利用训练集数据自动地构造决策树,然后根据这个决策树对任意实例进行判定。
1.决策树的组成
决策树的基本组成部分有:决策节点、分支和叶,树中每个内部节点表示一个属性上的测试,每个叶节点代表一个类。
图1就是一棵典型的决策树。
图1 决策树
决策树的每个节点的子节点的个数与决策树所使用的算法有关。
例如,CART算法得到的决策树每个节点有两个分支,这种树称为二叉树。
允许节点含有多于两个子节点的树称为多叉树。
下面介绍一个具体的构造决策树的过程,该方法
是以信息论原理为基础,利用信息论中信息增益寻找数据库中具有最大信息量的字段,建立决策树的一个节点,然后再根据字段的不同取值建立树的分支,在每个分支中重复建立树的下层节点和分支。
ID3算法的特点就是在对当前例子集中对象进行分类时,利用求最大熵的方法,找出例子集中信息量(熵)最大的对象属性,用该属性实现对节点的划分,从而构成一棵判定树。
首先,假设训练集C 中含有P 类对象的数量为p ,N 类对象的数量为n ,则利用判定树分类训练集中的对象后,任何对象属于类P 的概率为p/(p+n),属于类N 的概率为n/(p+n)。
当用判定树进行分类时,作为消息源“P ”或“N ”有关的判定树,产生这些消息所需的期望信息为:
n
p n
log n p n n p p log n p p )n ,p (I 22++-++-
= 如果判定树根的属性A 具有m 个值{A 1, A 2, …, A m },它将训练集C 划分成{C 1, C 2, …, C m },其中A i 包括C 中属性A 的值为A i 的那些对象。
设C i 包括p i 个类P 对象和n i 个类N 对象,子树C i 所需的期望信息是I(p i , n i )。
以属性A 作为树根所要求的期望信息可以通过加权平均得到
)n ,p (I n
p n p )A (E i i m
1
i i
i ∑
=++=
(p i +n i )/(p+n)就是第i 个分支的权值,显然,它与训练集C 中属于C i 的对象数量成比例。
所以按A 分支的信息增益为:
Gain(A)=I(p, n)-E(A) ID3算法在构造树的过程中,选择增益最大的属性A k 作为根节点。
然后,对子树C 1, C 2, …, C m 做同样处理,递归形成判定树。
1假设表1是一个天气情况的气候数据,描述气候的特征属性有四个:outlook 、temperature 、humidity 、windy ,而每个特征属性的可取值为:outlook={sunny ,overcast ,rain},temperature={cool ,mild ,hot},humidity={high ,normal},windy={true ,false}。
如果某天早晨的天气描述为:
Outlook (天象) :overcast (阴) Temperature (温度) :cool Humidity (湿度) :normal Windy (风) :false 那么,它属于哪种类型的气候呢?
下面介绍用ID3算法如何从表1所给的训练集中
构造出一棵能对训练集进行正确分类的判定树。
表1 气候训练集
在表1所示的训练集中,总共有14个对象,其中9个正例(P类),5个反例(N类)。
分类要求的信息是
I(p, n)=-(9/14)log(9/14)-(5/14)log(5/14)=0.94bit
下面分别计算四个属性A1=outlook,A2=temperature,A3=humidity,A4=windy的信息增益,选择信息增益最大的属性作为判定树的树根。
A1=outlook的取值为{sunny,overcast,rain}。
训练集C中14个对象有5个是sunny,2个是正例P,3个是反例N,即
p1=2 n1=3
I(p1, n1)=0.97
同理可得:
p2=4 n2=0 I(p2, n2)=0
p3=3 n3=2 I(p3, n3)=0.971 则属性A1=outlook的期望信息要求为:
E(A1)=(5/14) I(p1, n1)+(4/14) I(p2, n2)+(5/14) I(p3, n3) =0.694bit
属性outlook的信息增益为:
Gain(outlook)=I(p, n)-E(A1)=0.940-0.694=0.246bit 类似分析可得:
Gain (temperature)=0.029 bit
Gain (humidity) =0.151 bit
Gain (windy) =0.048 bit
①构建判定树的树根和分枝
ID3算法将选择信息增益最大的属性outlook作为判定
树的根节点,在14个例子中对outlook的3个取值进行分枝,3个分枝对应3个子集,分别是:
F1={1,2,8,9,11},F2={3,7,12,13},
F3={4,5,6,10,14}
其中F2中的例子全属于P类,因此对应分枝标记为P,其余两个子集既含有正例又含有反例,将递归调用建树算法。
②递归建树算法
分别对F1和F3子集利用ID3算法,在每个子集中对各特征(仍为四个特征)求信息增益。
(a)F1中的outlook全取sunny值,则I(p, n)= E(outlook),
有Gain(outlook)=0,在余下三个特征属性中求出
humidity的信息增益最大,以它为该分枝的根结点,
再向下分枝。
Humidity取high全为N类,该分枝标
记N,取值normal全为P类,该分枝标记P。
(b)在F3中,对四个特征属性求信息增益,得到windy特
征属性的信息增益最大,则以它为该分枝根结点,再
向下分枝,它取ture时全为N类,该分枝标记为N,
取false时全为P类,该分枝标记P。
这样就得到如图2所示的判定树。
图2 用ID3算法得到的有关气候的判定树。