抛物线的切线与割弦的关系

合集下载

切割线定理课件

切割线定理课件

推论三:切线和切平面的性质
总结词
切线和切平面的性质
详细描述
切线和切平面的性质是切割线定理的最后一个重要推论。这个定理指出,过圆外一点作圆的切线,则 该点和圆心的连线与切点的连线垂直于过该点和圆心的平面。这个性质在三维几何中尤其重要,因为 它涉及到平面和空间的关系。
04 切割线定理的应用实例
应用实例一:求圆的切线方程
证明方法三:利用向量积的性质
总结词
通过向量运算和向量的外积性质,证明切割线定理。
详细描述
第三种证明方法是利用向量运算和向量的外积性质。首 先,我们需要理解向量的外积性质,即两个向量的外积 等于它们所夹的平行四边形的面积的两倍。在切割线定 理的情境中,我们可以将切割线视为一个向量,并利用 向量的外积性质来计算它与半径之间的比例关系。通过 适当的数学推导,我们可以证明切割线定理。这种方法 基于向量运算和向量的外积性质,通过向量运算来证明 定理。
范围,我们可以发现更多有趣的应用场景。
对切割线定理的进一步研究与探索
深入研究切割线定理的细节
虽然我们已经对切割线定理有了基本的理解,但还有 很多细节值得深入研究。例如,我们可以探索不同条 件下切割线定理的表现形式,或者研究这个定理在其 他几何图形中的应用。通过深入研究,我们可以更深 入地理解这个定理的本质。
切割线定理的几何意义
证明相似三角形
通过切割线定理,可以证明两个三角形相似,从而用于解决 几何问题。
Hale Waihona Puke 计算线段长度利用切割线定理,可以计算出给定条件下某条线段的长度。
切割线定理的应用场景
建筑设计
在建筑设计领域,切割线定理常被用 于确定建筑物的位置和尺寸,以确保 建筑物的外观和结构符合设计要求。

《切线的判定》课件

《切线的判定》课件

切线与过切点的半径所在的直 线相互垂直。
02
切线的判定方法
利用定义判定切线
总结词:直接验证
详细描述:根据切线的定义,如果直线与圆只有一个公共点,则该直线为圆的切 线。因此,可以通过验证直线与圆的交点数量来判断是否为切线。
利用切线的性质判定切线
总结词:半径垂直
详细描述:切线与过切点的半径垂直,因此,如果已知过切点的半径,可以通过验证直线与半径的夹角是否为直角来判断是 否为切线。
切线判定定理的变种
切线判定定理的变种
除了标准的切线判定定理,还存在一些变种,如利用切线的 性质来判断是否为切线,或者利用已知点和切线的性质来判 断未知点是否在曲线上。
切线判定定理的应用
切线判定定理在几何证明题中有着广泛的应用,如证明某直 线为圆的切线,或者判断某点是否在曲线上。这些应用都需 要熟练掌握切线判定定理及其变种。
04
切线判定定理的证明
定理的证明过程
第一步
根据题目已知条件,画 出图形,标出已知点和
未知点。
第二步
根据切线的定义,连接 已知点和未知点,并作
出过这两点的割线。
第三步
根据切线和割线的性质 ,证明割线与圆只有一 个交点,即证明割线是
圆的切线。
第四步
根据切线的判定定理, 如果一条割线满足上述 性质,则这条割线是圆
切线判定定理在其他领域的应用
物理学中的应用
在物理学中,切线判定定理可以应用于研究曲线运动和力的分析。例如,在分析物体在曲线轨道上的 运动时,可以利用切线判定定理来判断物体的运动轨迹是否与轨道相切。
工程学中的应用
在工程学中,切线判定定理可以应用于机械设计和流体力学等领域。例如,在机械设计中,可以利用 切线判定定理来判断曲轴是否与轴承相切,从而避免轴承的损坏。在流体力学中,可以利用切线判定 定理来判断流体是否沿着流线流动。

【教案】变化率问题(第2课时)教学设计高二下学期数学人教A版(2019)选择性必修第二册

【教案】变化率问题(第2课时)教学设计高二下学期数学人教A版(2019)选择性必修第二册

第五章一元函数的导数及其应用《5.1.1变化率问题》教学设计第2课时◆教学目标1.通过求曲线上某点处切线斜率的过程,体会求切线斜率的一般方法.2. 理解函数的平均变化率,瞬时变化率的概念.◆教学重难点◆教学重点:理解曲线上某点处切线斜率的概念及算法教学难点:理解函数的平均变化率,瞬时变化率的概念◆课前准备PPT课件.◆教学过程【新课导入】问题1:阅读课本第62~64页,回答下列问题:(1)本节将要探究哪类问题?(2)本节探究的起点是什么?目标是什么?师生活动:学生带着问题阅读课本,并在本节课中回答相应问题.(1)本节课主要学习变化率问题:曲线上某点处切线斜率的问题.(2)总结归纳出一般函数的平均变化率概念和瞬时变化率的概念,在此基础上,要求学生掌握函数平均变化率和瞬时变化率解法的一般步骤.平均变化率是个核心概念,它在整个高中数学中占有及其重要的地位,是研究瞬时变化率及其导数概念的基础.在这个过程中,注意特殊到一般、数形结合等数学思想方法的渗透.一般曲线的切线的概念与学生熟悉的圆的切线的定义方式不同,学生不易理解,因此曲线的切线概念是本节的教学难点.通过本节的学习,学生的数学抽象和直观想象素养将得以提升.设计意图:通过阅读读本,让学生明晰本阶段的学习目标,初步搭建学习内容的框架.问题2:什么叫直线与圆相切?师生活动:学生回顾并回答.预设的答案:如果一条直线与一个圆只有一个公共点,那么这条直线与这个圆相切.对于一般的曲线C,如何定义它的切线呢?设计意图:通过复习直线与圆相切,引出问题,进入新课.【探究新知】知识点1:曲线在某点处的切线 我们以抛物线f (x )=x 2为例进行研究.问题3:如何定义抛物线2()f x x =在点0(11)P ,处的切线? 师生活动:学生思考,尝试回答,教师讲解.与研究瞬时速度类似,为了研究抛物线2()f x x =在点0(11)P ,处的切线,我们通常在点0(11)P ,的附近任取一点2()P x x ,,考察抛物线2()f x x =的割线0P P 的变化情况.如图,当点P 无限趋近于点0P 时,割线0P P 无限趋近于一个确定的位置,这个确定位置的直线0PT 称为抛物线2()f x x =在点0(11)P ,处的切线. 知识点2:曲线在某点处的切线斜率抛物线2()f x x =在点0(11)P ,处的切线0PT 的斜率与割线0P P 的斜率有内在联系.记1x x ∆=-,则点P 的坐标是2(1Δ(1Δ))x x ++,.于是,割线0P P 的斜率2()(1)(1Δ)1Δ21(1Δ)1f x f x k x x x -+-===+-+-.我们可以用割线0P P 的斜率k 近似地表示切线0PT 的斜率0k ,并且可以通过不断缩短横坐标间隔||x ∆来提高近似表示的精确度,得到如下表格.0x ∆< 0x ∆>x ∆ Δ2k x =+ x ∆ Δ2k x =+ 0.01-1.990.012.010.001-1.9990.0012.0010.0001- 1.9999 0.0001 2.0001 0.00001- 1.99999 0.00001 2.00001 0.000001-1.9999990.0000012.000001…… ……当x ∆1时,割线0P P 的斜率k 都无限趋近于2.事实上,由(1Δ)(1)Δ2Δf x f k x x+-==+可以直接看出,当x ∆无限趋近于0时,Δ2x +无限趋近于2.我们把2叫做“当x ∆无限趋近于0时,(1Δ)(1)Δf x f k x +-=的极限”,记为Δ0(1Δ)(1)lim 2Δx f x f x→+-=.从几何图形上看,当横坐标间隔||x ∆无限变小时,点P 无限趋近于点0P ,于是割线0P P 无限趋近于点0P 处的切线0PT .这时,割线0P P 的斜率k 无限趋近于点0P 处的切线0PT 的斜率0k .因此,切线0PT 的斜率02k =.【巩固练习】例1 已知函数1y x x=-,求该函数在点x =1处的切线斜率. 师生活动:学生分组讨论,每组派一代表回答,教师完善. 预设的答案:∵11(1)(1)11y x x ∆=+∆---+∆111x x =+∆-+∆1xx x ∆=∆++∆111y x x ∆=+∆+∆,∴斜率k =001lim lim(1)1121x x y x x∆→∆→∆=+=+=∆+∆.设计意图:通过求曲线上某点处切线斜率的问题,加深学生对曲线在某点处的切线和切线斜率的理解,发展学生逻辑推理,直观想象、数学抽象和数学运算的核心素养. 方法总结:求曲线y =f (x )在点(x 0,f (x 0))处的切线斜率 (1)计算00()()f x x f x y x x+∆-∆=∆∆, (2)计算0limx yx∆→∆∆,该值即为曲线y =f (x )在点(x 0,f (x 0))处的切线斜率.例2已知函数f (x )=3x 2+5,曲线y =f (x )在点((x 0,f (x 0))处的切线方程. 师生活动:学生分组讨论,每组派一代表回答,教师完善. 预设的答案:因为f (x )=3x 2+5,所以Δy = f (x 0+Δx )-f (x 0)=3(x 0+Δx )2+5-(3x 02+5) =3 x 02+6 x 0Δx +3(Δx )2+5-3 x 02-5=6 x 0Δx +3(Δx )2. 所以063yx x x∆=+∆∆, 所以0000limlim(6)6x x yx x x x ∆→∆→∆=+∆=∆,所以曲线y =f (x )在点(x 0,f (x 0))处的切线斜率为6 x 0,所以曲线y =f (x )在点(x 0,f (x 0))处的切线方程为000()6()y f x x x x -=-, 即200635y x x x =-+. 方法总结:求曲线y =f (x )在点(x 0,f (x 0))处的切线方程(1)计算00()()f x x f x y x x+∆-∆=∆∆, (2)计算0limx y x ∆→∆∆,即曲线y =f (x )在点(x 0,f (x 0))处的切线斜率为0lim x yk x∆→∆=∆.(3)写出切线方程00()()y f x k x x -=-.设计意图:通过求曲线上某点处切线的方程问题,进一步加深学生对曲线在某点处的切线的理解,发展学生逻辑推理,直观想象、数学抽象和数学运算的核心素养. 练习:教科书P 64 练习1、2设计意图:通过练习巩固本节所学知识,通过学生解决问题,发展学生的数学运算、逻辑推理、直观想象、数学建模的核心素养.【课堂总结】1.板书设计:5.1.1变化率问题新知探究巩固练习 知识点1:曲线在某点处的切线 例1 知识点2:曲线在某点处的切线斜率例22.总结概括:(1)什么叫曲线在某点处的切线; (2)如何求曲线在某点处的切线斜率. 师生活动:学生总结,老师适当补充.设计意图:通过总结,让学生进一步巩固本节所学内容,提高概括能力. 3.课堂作业:教科书P 70 习题5.1 2、4、7【目标检测设计】1.在曲线2y x =上取一点(1)1,及附近一点()11x y +∆+∆,,则曲线在点(1)1,处的切线的斜率为( ) A.12x x∆++∆ B.2 C .2x ∆+ D.12x x+∆-∆ 设计意图:让学生进一步理解曲线在某点处的切线及切线斜率的求解. 2.已知曲线11y x =-上两点112222A B x y ⎛⎫⎛⎫-+∆-+∆ ⎪ ⎪⎝⎭⎝⎭,,,,当1x ∆=时,割线AB 的斜率为_______. 3.求曲线24y x =在x =2处的切线的方程. 设计意图:让学生进一步理解曲线在某点处的切线方程的求法.参考答案:1. B 设2()f x x =,则2000(1)(1)(1)1limlim lim(2)2x x x f x f x x x x∆→∆→∆→+∆-+∆-==∆+=∆∆.故选B.2.16-设1()1f x x =-,则1111(2)(2)1122222(2)x f x f x x x -∆⎛⎫⎛⎫+∆-=---=-= ⎪ ⎪+∆+∆+∆⎝⎭⎝⎭, 则(2)(2)12(2)2(2)xf x f x xx x ∆-+∆--+∆==∆∆+∆, 当1x ∆=时,割线AB 的斜率112(21)6k -==-⨯+.3.解:∵2222()4(2)2(24)4x xy x x -∆-∆∆=-=+∆+∆,24(2)y x x x ∆-∆-=∆+∆ ∴20044limlim 1(2)4x x y x x x ∆→∆→∆-∆--===-∆+∆,∴曲线24y x=在x =2处的切线的斜率为-1, ∴曲线24y x=在x =2处的切线的方程为y -1=-1(x -2),即y =-x +3.。

圆锥曲线统一性质(动态图示)

圆锥曲线统一性质(动态图示)

目录一、几个统一定义1.椭圆、双曲线、抛物线的统一定义一2.椭圆、双曲线、抛物线的统一定义二圆锥曲线动态结构135例众所周知圆锥曲线来源于圆锥,其定义简洁而明快,然而却有非常丰富的几何、代数性质,更让世人折服的是还有这么多统一的性质,本人通过几何画板的探索与归纳初步整理了135条性质,归类为四十六个统一性质,并附上相应的动画课件,列举如下:二、与焦半径相关的问题3.椭圆、双曲线、抛物线的切线与焦半径的性质(准线作法)4.椭圆、双曲线、抛物线的焦点在切线上射影的性质5.椭圆、双曲线、抛物线的焦半径圆性质6.椭圆、双曲线、抛物线的焦点弦直径圆性质7.椭圆、双曲线、抛物线焦点三角形内切圆性质三、与焦点弦相关的问题8.椭圆、双曲线、抛物线的焦点弦性质(定值1)9.椭圆、双曲线、抛物线的正交焦点弦性质(定值2)10.椭圆、双曲线、抛物线的焦点弦与其中垂线性质(定值3)11.椭圆、双曲线、抛物线的焦点弦性质1(中点共线)12.椭圆、双曲线、抛物线的焦点弦性质2(三点共线)13.椭圆、双曲线、抛物线的焦点弦性质3(对焦点直张角)14.椭圆、双曲线、抛物线的相交焦点弦与准线关系15.椭圆、双曲线、抛物线的相交焦点弦与准线关系(角平分线)16.椭圆、双曲线、抛物线的相交弦与准线关系推广17.椭圆、双曲线、抛物线的焦点弦直线被曲线及对称轴所分比之和为定值18.椭圆、双曲线、抛物线的焦半径向量模的比之和为定值四、相交弦的蝴蝶特征19.椭圆、双曲线、抛物线的相交弦蝴蝶定理一20.椭圆、双曲线、抛物线的相交弦蝴蝶定理二五、切点弦的相关问题21.椭圆、双曲线、抛物线的切点弦性质1(等比中项)22.椭圆、双曲线、抛物线的切点弦性质2(倒数和2倍)23.椭圆、双曲线、抛物线的切点弦性质3(外项积定值)24.椭圆、双曲线、抛物线的切点弦性质4(平行线族)25.椭圆、双曲线、抛物线的切点弦性质5(切点弦过定点)六、等角问题26.椭圆、双曲线、抛物线的等角定理一27.椭圆、双曲线、抛物线的等角定理二28.椭圆、双曲线、抛物线的对称点共线29.椭圆、双曲线、抛物线的焦点对切线张角性质30.椭圆、双曲线、抛物线的共轭弦性质七、与动弦中点相关的问题31.圆、椭圆、双曲线中点弦与中心性质32.圆、椭圆、双曲线切线与半径的斜率积为定值(中点弦的极限状态)33.椭圆、双曲线、抛物线的动弦中垂线性质34.椭圆、双曲线、抛物线的定向弦中点轨迹35.椭圆、双曲线、抛物线的定点弦中点轨迹八、数量积定值问题36.椭圆、双曲线、抛物线的焦点弦张角向量点积为定值37.椭圆、双曲线、抛物线的定点弦张角向量点积为定值九、其他重要性质38.圆锥曲面光线反射路径的性质39.椭圆、双曲线、抛物线的切线与割线性质40.椭圆、双曲线、抛物线的直周角性质41.椭圆、双曲线的90度的中心角性质42.圆、椭圆、双曲线上动点对直径端点的斜率积为定值43.椭圆、双曲线、抛物线的顶点对垂直弦连线交点轨迹对偶44.椭圆、双曲线、抛物线准线上点对焦点弦端点及焦点斜率成等差45.椭圆、双曲线、抛物线的焦点与切线的距离性质46.椭圆、双曲线、抛物线的中心与共轭点距离等积问题探究1动点P 在圆A :22()4x y λ++=上运动,定点(,0)B λ,则 (1)线段QB 的垂直平分线与直线QA 的交点P 的轨迹是什么?(2)若BM tMQ =u u u u r u u u u r,直线l 过点M ,与直线QA 的交于点P ,则点P 轨迹又是什么?实验成果动态课件定圆上一动点与圆内一定点的垂直平分线与其半径的交点的轨迹是椭圆 备用课件定圆上一动点与圆外一定点的垂直平分线与其半径所在直线的交点的轨迹是双曲线 备用课件定直线(无穷大定圆)上一动点与圆外一定点的垂直平分线与其半径所在直线的交点的轨迹是抛物线 备用课件问题探究2已知定点(1,0)A -,定直线1l :3x =-,动点N 在直线1l 上,过点N 且与1l 垂直的直线2l 上有一动点P ,满足PAPNλ=,请讨论点P 的轨迹类型. 实验成果动态课件动点到一定点与到一定直线的距离之比为小于1的常数,则动点的轨迹是椭圆备用课件动点到一定点与到一定直线的距离之比为大于1的常数,则动点的轨迹是双曲线备用课件动点到一定点与到一定直线的距离之比为等于1的常数,则动点的轨迹是抛物线备用课件3.椭圆、双曲线、抛物线的切线与焦半径的性质(准线作法)问题探究3已知两定点(1,0),(1,0)A B -,动点P 满足条件8PA PB +=,另一动点Q满足0,()0PA PB QB PB QP PA PB•=•+=u u u r u u u ru u u r u u u r u u u r u u u r u u u r ,求动点Q 的轨迹方程.实验成果动态课件椭圆上一点处的切线与该点的焦半径的过相应焦点的垂线的交点的轨迹为椭圆相应之准线备用课件双曲线上一点处的切线与该点的焦半径的过相应焦点的垂线的交点的轨迹为双曲线相应之准线备用课件抛物线上一点处的切线与该点的焦半径的过相应焦点的垂线的交点的轨迹为抛物线之准线备用课件4.椭圆、双曲线、抛物线的焦点在切线上射影的性质问题探究4已知两定点(2,0),(2,0)A B -,动点P 满足条件2PA PB -=,动点Q 满足()0PA PBQB PA PB•+=u u u r u u u r u u u r u u u r u u u r ,()0PA PB QP PA PBλ++=u u u r u u u ru u u r u u u r u u u r ,求动点Q 的轨迹方程.实验成果动态课件焦点在椭圆切线上的射影轨迹是以长轴为直径的圆备用课件焦点在双曲线切线上的射影轨迹是以实轴为直径的圆备用课件焦点在抛物线切线上的射影轨迹是切抛物线于顶点处的直线(无穷大圆) 备用课件5.椭圆、双曲线、抛物线的焦半径圆性质问题探究51.已知动点P在椭圆22143x y+=上,F为椭圆之焦点,0PM FM+=u u u u r u u u u r,探究2OM PF+u u u u r u u u r是否为定值2.已知点P在双曲线22143x y-=上,F为双曲线之焦点,0PM FM+=u u u u r u u u u r,探究2OM PF-u u u u r u u u r是否为定值实验成果动态课件椭圆中以焦半径为直径的圆必与长轴为直径的圆相切(此圆与椭圆内切)备用课件双曲线中以焦半径为直径的圆必与实轴为直径的圆相切(此圆与双曲线外切)备用课件抛物线中以焦半径为直径的圆必与切于抛物线顶点处的直线相切(此圆无穷大与曲线外切)备用课件6.椭圆、双曲线、抛物线的焦点弦直径圆性质问题探究6过抛物线y x 42=上不同两点A 、B 分别作抛物线的切线相交于P 点,.0=⋅PB PA(1)求点P 的轨迹方程;(2)已知点F (0,1),是否存在实数λ使得0)(2=+⋅FP FB FA λ?若存在,求出λ的值,若不存在,请说明理由.实验成果动态课件椭圆中以焦点弦为直径的圆必与准线相离备用课件双曲线中以焦点弦为直径的圆必与准线相交备用课件抛物线中以焦点弦为直径的圆必与准线相切备用课件7.椭圆、双曲线、抛物线焦点三角形内切圆性质问题探究71.已知动点P在椭圆22143x y+=上,12,F F为椭圆之左右焦点,点G为△12F PF的内心,试求点G的轨迹方程.2.已知动点P在双曲线22143x y-=上,12,F F为双曲线之左右焦点,圆G是△12F PF的内切圆,探究圆G是否过定点,并证明之.实验成果动态课件椭圆中焦点三角形的内切圆圆心轨迹是以原焦点为顶点的椭圆备用课件双曲线中焦点三角形的内切圆圆心轨迹是以过原顶点的两平行开线段(长为2b)备用课件抛物线中焦点三角形(另一焦点在无穷远处)的内切圆圆心轨迹是以原焦点为顶点的抛物线备用课件8.椭圆、双曲线、抛物线的焦点弦性质(定值1)问题探究8已知椭圆22143x y +=,1F 为椭圆之左焦点,过点1F 的直线交椭圆于A ,B 两点,是否存在实常数λ,使AB FA FB λ=•u u u r u u u r u u u r恒成立.并由此求∣AB ∣的最小值.(借用柯西不等式)实验成果动态课件椭圆的焦点弦的两个焦半径倒数之和为常数11112||||AF BF ep+= 备用课件双曲线的焦点弦的两个焦半径倒数之和为常数AB 在同支11112||||AF BF ep += AB 在异支11112||||||AF BF ep-= 备用课件抛物线的焦点弦的两个焦半径倒数之和为常数112||||AF BF ep+=备用课件9.椭圆、双曲线、抛物线的正交焦点弦性质(定值2)问题探究9已知椭圆22143x y +=,1F 为椭圆之左焦点,过点1F 的直线12,l l 分别交椭圆于A ,B 两点和C ,D 两点,且12l l ⊥,是否存在实常数λ,使AB CD AB CD λ+=•u u u r u u u r u u u r u u u r恒成立.并由此求四边形ABCD 面积的最小值和最大值.实验成果动态课件椭圆互相垂直的焦点弦倒数之和为常数epe CD AB 22||1||12-=+ 备用课件双曲线互相垂直的焦点弦倒数之和为常数epe CD AB 2|2|||1||12-=+备用课件抛物线互相垂直的焦点弦倒数之和为常数epe CD AB 22||1||12-=+备用课件10.椭圆、双曲线、抛物线的焦点弦与其中垂线性质(定值3)问题探究10已知椭圆22143x y +=,1F 为椭圆之左焦点,过点1F 的直线交椭圆于A ,B 两点,AB 中垂线交x 轴于点D ,是否存在实常数λ,使1AB F D λ=u u u r u u u u r恒成立?实验成果动态课件设椭圆焦点弦AB 的中垂线交长轴于点D ,则∣DF ∣与∣AB ∣之比为离心率的一半(F 为焦点)备用课件设双曲线焦点弦AB 的中垂线交焦点所在直线于点D ,则∣DF ∣与∣AB ∣之比为离心率的一半(F 为焦点)备用课件设抛物线焦点弦AB 的中垂线与对称轴交于点D ,则∣DF ∣与 ∣AB ∣之比为离心率的一半(F 为焦点)备用课件问题探究11已知椭圆22143x y +=,1F 为椭圆之左焦点,过点1F 的直线1l 交椭圆于A ,B 两点,直线2l :4x =-交x 轴于点G ,点,A B 在直线2l 上的射影分别是,N M ,设直线,AM BN 的交点为D ,是否存在实常数λ,使1GD DF λ=u u u r u u u u r恒成立.实验成果动态课件椭圆的焦点弦的端点在相应准线上的投影与端点的交叉连线与对称轴的交点平分焦点与准线与对称轴的交点线段. 备用课件双曲线的焦点弦的端点在相应准线上投影与端点的交叉连线与对称轴的交点平分焦点与准线与对称轴的交点线段. 备用课件抛物线的焦点弦的端点在相应准线上投影与端点的交叉连线与对称轴的交点平分焦点与准线与对称轴的交点线段. 备用课件问题探究12已知椭圆22143x y +=,1F 为椭圆之左焦点,过点1F 的直线1l 交椭圆于A ,B 两点, ,C D 分别为椭圆的左、右顶点,动点P 满足,,PA AD PC CB λμ==u u u r u u u r u u u r u u u r试探究点P 的轨迹.实验成果动态课件椭圆焦点弦端点A 、B 与另一顶点D 连线与相应准线的交点N 、M ,则N 、C 、B 三点共线,M 、C 、A 三点共线备用课件 双曲线焦点弦端点A 、B 与另一顶点D 连线与相应准线的交点N 、M ,则N 、C 、B 三点共线,M 、C 、A 三点共线备用课件抛物线焦点弦端点A 、B 与另一顶点D 连线与相应准线的交点N 、M ,则N 、C 、B 三点共线,M 、C 、A 三点共线(抛物线的D 点在无穷远处).备用课件13.椭圆、双曲线、抛物线的焦点弦性质3(对焦点直张角)问题探究13已知双曲线22131x y -=,1F 为双曲线之左焦点,过点1F 的直线1l 交双曲线于A ,B 两点, ,C D 分别为双曲线的左、右顶点,动点P 满足11,,PA AD PC CB λμ==u u u r u u u r u u u r u u u r 动点Q 满足22,,QA AC QB BD λμ==u u u r u u u r u u u r u u u r试探究1PF Q ∠是否为定值.实验成果动态课件椭圆焦点弦端点A 、B 与另一顶点D 连线与相应准线的交点N 、M ,则11NF MF ⊥备用课件双曲线焦点弦端点A 、B 与另一顶点D 连线与相应准线的交点N 、M ,则11NF MF ⊥备用课件抛物线焦点弦端点A 、B 与另一顶点D 连线与相应准线的交点N 、M ,则NF MF ⊥(抛物线的D 点在无穷远处)备用课件14.椭圆、双曲线、抛物线的相交焦点弦与准线关系问题探究14已知椭圆22143x y +=,1F 为椭圆之左焦点,过点1F 的直线12,l l 分别交椭圆于A ,B 两点和C ,D 两点,直线2l :4x =-,直线AD 交直线2l 于点P ,试判断点P 、C 、B 是否三点共线,并证明之.实验成果动态课件椭圆的任意两焦点弦端点所在直线交点的轨迹是准线备用课件本性质还可解释圆也有准线(在无穷远处), 因为当焦点逐步向中心靠拢时准线逐步外移双曲线的任意两焦点弦端点所在直线交点的轨迹是准线备用课件抛物线的任意两焦点弦端点所在直线交点的轨迹是准线备用课件15.椭圆、双曲线、抛物线的相交焦点弦与准线关系(角平分线)问题探究15已知椭圆22143x y +=,1F 为椭圆之左焦点,过点1F 的直线12,l l 分别交椭圆于A ,B 两点和C ,D 两点,直线3l :4x =-,直线AD 交直线3l 于点P ,试证明11PF A PF D ∠=∠.实验成果动态课件椭圆的任意两焦点弦端点所在直线交点必在准线上且交点与焦点的连线平分2AF C ∠备用课件双曲线的任意两焦点弦端点所在直线交点必在准线上且交点和焦点的连线平分1AF C ∠备用课件抛物线的任意两焦点弦端点所在直线交点必在准线上且交点和焦点的连线平分AF D ∠备用课件16.椭圆、双曲线、抛物线的相交弦与准线关系推广问题探究16已知椭圆22184x y +=,过点(2,0)N 的直线12,l l 分别交椭圆于A ,B 两点和C ,D 两点,设直线AD 与直线CB 交于点P ,试证明点P 的轨迹为直线4x =.实验成果动态课件过椭圆长轴上任意一点N (0,t )的两条弦端点的直线的交点的轨迹是一定直线ta x 2=备用课件过双曲线实轴上任意一点N (0,t )的两条弦端点的直线的交点的轨迹是一定直线ta x 2=备用课件过抛物线对称轴上任意一定点N (0,t )的两条弦端点的直线的交点的轨迹是一定直线t x -=备用课件17.椭圆、双曲线、抛物线的焦点弦直线被曲线及对称轴所分比之和为定值问题探究17已知椭圆22184x y +=,点1F 为椭圆之左焦点,过点1F 的直线1l 分别交椭圆于A ,B 两点,设直线AB 与y 轴于点M ,11,,MA AF MB BF λμ==u u u r u u u r u u u r u u u r试求λμ+的值.实验成果动态课件椭圆的焦点弦所在直线被曲线及短轴直线所分比之和为定值.备用课件双曲线的焦点弦所在直线被曲线及虚轴直线所分比之和为定值.备用课件过抛物线的焦点弦所在直线被曲线及顶点处的切线所分比之和为定值. 备用课件18.椭圆、双曲线、抛物线的焦半径向量模的比之和为定值问题探究18已知方向向量为(1,3)e =r 的直线l 过点(0,23)A -和椭圆2222:1x y C a b+=(0)a b >>的焦点,且椭圆C 的中心O 和椭圆的右准线上的点B 满足:0,OB e AB AO •==u u u r r u u u r u u u r.⑴求椭圆C 的方程;⑵设E 为椭圆C 上任一点,过焦点12,F F 的弦分别为,ES ET ,设111,EF FS λ=u u u r u u u r 222EF F T λ=u u u u r u u u r,求12λλ+的值.实验成果动态课件过椭圆上任点A 作两焦点的焦点弦AC ,AB ,其共线向量比之和为定值.即1112222122121AF m F B AF m F B e m m e →→→→==++==-定值备用课件过双曲线上任点A 作两焦点的焦点弦AC ,AB ,其共线向量比之和为定值.即1112222122121AF m F B AF m F B e m m e→→→→==++==-定值备用课件(注:图中测算不是向量,故中间一式用的是差)由于抛物线的开放性,焦点只有一个,故准线相应地替换了焦点,即PA=m 1AF PB=m 2BF备用课件m 1+m 2=019.椭圆、双曲线、抛物线的相交弦蝴蝶定理一问题探究19已知椭圆22184x y +=,过点T(1,0)的直线12,l l 分别交椭圆于A ,B 两点和C ,D 两点,设直线3l 过点T 且3l x ⊥轴,交12,l l 于点N ,M ,试证明∣TN ∣=∣TM ∣.实验成果动态课件过椭圆长轴所在直线上任意一点 T (0,t )的两条弦端点的直线截过T 点的垂线段相等NT =TM备用课件过双曲线实轴所在直线上任意一点T (0,t )的两条弦端点的直线截过T 点的垂线段相等NT =TM备用课件过抛物线对称轴上任意一点T (0,t )的两条弦端点的直线截过T 点的垂线段相等NT =TM备用课件20.椭圆、双曲线、抛物线的相交弦蝴蝶定理二问题探究20已知椭圆22184x y +=,过点(0,1)T 的直线12,l l 分别交椭圆于1122(,),(,)A x y B x y 两点和3344(,),(,)C x y D x y 两点,设直线3l 过点T 且3l x ⊥轴,交12,l l 于点N ,M ,试证明1324y y y y -=-.实验成果动态课件过椭圆短轴上任意一点M 的两条弦端点作两条直线,一定截过M 点与对称轴垂直的直线为相等的线段PM =MQ备用课件过双曲线虚轴上任意一点N (0,t )的两条弦端点作两条直线,一定截过N 点与对称轴垂直的直线为相等的线段PM =MQ备用课件过抛物线对称轴上任意一点M (0,t )的两条弦端点作两条直线,一定截过M 点与对称轴垂直的直线为相等的线段PM =MQ备用课件21.椭圆、双曲线、抛物线的切点弦性质1(等比中项)问题探究21已知椭圆22184x y +=,过原点(0,0)O ,点(2,1)T 的直线l 交椭圆于点N ,过点T 的中点弦为AB ,过A ,B 分别作切线12,l l 且交于点P ,求证:2||||||OT OP ON =.实验成果动态课件椭圆中心O 与点00(,)P x y 的连线交椭圆于N ,交切点弦于点Q ,则2||||||OQ OP ON =.且Q 点平分切点弦AB (无论点P 在曲线的什么位置,上述结论均成立).且点P 与直线001Ax x By y +=沿直线PO 作反向运动.备用课件双曲线中心O 与点00(,)P x y 的连线交双曲线于N ,交切点弦于点Q ,则2||||||OQ OP ON =.且Q 点平分切点弦AB (无论点P 在曲线的什么位置,上述结论均成立).且点P 与直线001Ax x By y +=沿直线PO 作反向运动(直线保持平行).备用课件设过点P 与抛物线对称轴平行(中心在对称轴方向的无穷远处)的直线交抛物线于N ,交切点弦于点Q ,则2||||||O Q O P O N ∞∞∞=.且Q 点平分切点弦AB (无论点P 在曲线的什么位置,上述结论均成立).且点P 与直线00()y y p x x =+作反向运动(直线保持平行).备用课件22.椭圆、双曲线、抛物线的切点弦性质2(倒数和2倍)问题探究22过抛物线2y x =外一点(2,0)P 作抛物线的两条切线PA ,PB ,切点分别为A ,B ,另一直线l 过点P 与抛物线交于两点C 、D ,与直线AB 交于点Q ,试探求||PQ PQPC PD +的值是否为定值.实验成果动态课件椭圆221Ax By +=外一点P 的任一直线与椭圆的两个交点为C 、D ,与椭圆切点弦001Ax x By y +=的交点为Q ,则112||||PC PD PQ +=成立.反之亦然.备用课件双曲线221Ax By +=外一点P 的任一直线与双曲线的两个交点为C 、D ,与双曲线切点弦001Ax x By y +=的交点为Q ,则112||||PC PD PQ +=成立.反之亦然.备用课件 过抛物线外一点P 的任一直线与抛物线的两个交点为C 、D ,与抛物线切点弦的交点为Q ,则112||||PC PD PQ +=成立.反之亦然.备用课件23.椭圆、双曲线、抛物线的切点弦性质3(外项积定值)问题探究23已知椭圆22184x y +=,过点T (1,0)的直线1l ,2l 分别交椭圆于两点C 、D ,点Q 在直线l 上,且满足CP QD PD CQ =u u u r u u u r u u u r u u u r,试探求点Q 的轨迹.实验成果动态课件过椭圆221Ax By +=外一点P 的任一直线与椭圆的两个交点为C 、D ,点Q 是此直线上另一点,且满足CP QD PD CQ =u u u r u u u r u u u r u u u r,则点Q 的轨迹即为切点弦001Ax x By y +=,反之亦然. 备用课件过双曲线221Ax By +=外一点P 的任一直线与双曲线的两个交点为C 、D ,点Q 是此直线上另一点,且满足CP QD PD CQ =u u u r u u u r u u u r u u u r,则点Q 的轨迹即为切点弦001Ax x By y +=,反之亦然. 备用课件过抛物线外一点P 的任一直线与抛物线的两个交点为C 、D ,点Q 是此直线上另一点,且满足CP QD PD CQ =u u u r u u u r u u u r u u u r,则点Q 的轨迹即为切点弦,反之亦然. 备用课件24.椭圆、双曲线、抛物线的切点弦性质4(平行线族)问题探究24过抛物线2y x =外一点(2,0)P 作抛物线的两条切线PA ,PB ,切点分别为A ,B ,另一直线l :2x =与抛物线交于点N ,与直线AB 交于点Q ,求证:(1)N 点处的切线与直线AB 平行.(2)AQ QB =u u u r u u u r.实验成果动态课件椭圆221Ax By +=中心与椭圆外一点的直线与椭圆的交点处的切线平行于椭圆的切点弦001Ax x By y +=.备用课件双曲线221Ax By +=中心与双曲线外一点的直线与双曲线的交点处的切线平行于双曲线的切点弦001Ax x By y +=. 备用课件过抛物线中心(这中心在无穷远处)与抛物线外一点的直线与抛物线的交点处的切线平行于抛物线的切点弦. 备用课件25.椭圆、双曲线、抛物线的切点弦性质5(弦过定点)问题探究25过抛物线2y x =外一点(1,2)Q 作抛物线的中点弦AB (Q 为AB 中点),两条切线PA ,PB 交于点P ,过点P 作直线l ,且l ∥AB ,点G 是直线l 上的动点,过G 作抛物线的两条切线GC 、GD ,求证:直线CD 过定点.实验成果动态课件点T 是与椭圆221Ax By +=外一点P 的切点弦对应的直线上的动点,则与点T 对应的切点弦必过定点Q .备用课件点T 是与双曲线221Ax By +=外一点P 的切点弦对应的直线上的动点,则与点T 对应的切点弦必过定点Q .备用课件点T 是与抛物线22y px =外一点P 的切点弦对应的直线上的动点,则与点T 对应的切点弦必过定点Q .(PQ 平行对称轴)备用课件26.椭圆、双曲线、抛物线的等角定理一问题探究26已知椭圆22184x y +=,点1F 为椭圆之左焦点,过点1F 的直线1l 分别交椭圆于A ,B 两点,问是否在x 轴上存在一点P ,使得斜率0PA PB k k +=.实验成果动态课件椭圆准线与长轴的交点与焦半径端点连线所成角被长轴平分 备用课件双曲线准线与实轴的交点与焦半径端点连线所成角被实轴平分 备用课件抛物线准线与对称轴的交点与焦半径端点连线所成角被对称轴平分 备用课件27.椭圆、双曲线、抛物线的等角定理二问题探究27已知双曲线22131x y -=,过(,0)N t 点的直线1l 交双曲线于A ,B 两点,问是否在x 轴上存在一点P ,使得斜率0PA PB k k +=.实验成果动态课件过椭圆长轴上任意一点N (0,t )的一条弦端点与对应点)0,(2ta 的连线所成角被焦点所在直线平分. 备用课件过双曲线实轴所在直线上任意一点N (0,t )的一条弦端点与对应点)0,(2ta 的连线所成角被焦点所在直线平分.备用课件过抛物线对称轴上任意一点N (0,t )的一条弦端点与对应点)0,(2ta 的连线所成角被对称轴平分 备用课件28.椭圆、双曲线、抛物线的对称点共线问题探究28抛物线24y x =,直线l 过点(,0)F t 并交抛物线于M 、N ,若)0(>=λλFN MF ,直线x t =-与x 轴交于点E ,试探究:EN EM EF λ-与的夹角是否为定值.实验成果动态课件过点Q (T ,0)的任一直线交椭圆于A ,B 两点,点A 关于x 轴的对称点A ’,则点A ’,B ,2(,0)a P t三点共线.备用课件过点Q (T ,0)的任一直线交双曲线于A ,B 两点,点A 关于x 轴的对称点A ’,则点A ’,B , 2(,0)a P t三点共线.备用课件过点P (T ,0)的任一直线交椭圆于A ,B 两点,点A 关于x 轴的对称点A ’,则点A ’,B ,P ’(-t ,0)三点共线.备用课件29.椭圆、双曲线、抛物线的焦点对切线张角性质问题探究29过点(2,0)P 作抛物线24x y 的切线P A (斜率不为0),F 为焦点,研究斜率PF PA k k 与的关系.实验成果动态课件过椭圆外一点作椭圆的两切线与焦点连线所成的角相等.备用课件过双曲线外一点作双曲线的两切线与焦点连线所成的角相等.备用课件过抛物线外一点作抛物线的两切线与焦点(另一焦点在无穷远处)连线所成的角相等. 备用课件30.椭圆、双曲线、抛物线的共轭弦性质问题探究30过点(1,2)P 作抛物线24y x =的直线P A 、PB ,且斜率0PB PA k k =+. (1)探究直线AB 的斜率是否为定值.(2)试研究三角形P AB 的面积是否有最大值.实验成果动态课件过椭圆上一定点作倾角互补的两直线与椭圆的另两交点的连线的倾角为定值备用课件过双曲线上一定点作倾角互补的两直线与双曲线的另两交点的连线的倾角为定值 备用课件过抛物线上一定点作倾角互补的两直线与抛物线的另两交点的连线的倾角为定值 备用课件31.圆、椭圆、双曲线弦中点与中心性质问题探究31已知椭圆22184x y+=的动弦AB的中点为M,试研究斜率AB OMk k是否为定值(O为原点).实验成果动态课件圆的弦的斜率与其中点和圆中心连线的斜率积为定值1PA PBK K⋅=-备用课件椭圆的弦的斜率与其中点和椭圆中心连线的斜率积为定值22PA PBbK Ka⋅=-备用课件双曲线的弦的斜率与其中点和双曲线中心连线的斜率积为定值22PA PBbK Ka⋅=备用课件32.圆、椭圆、双曲线切线与半径的斜率积为定值(中点弦的极限状态)问题探究32已知点P为椭圆22184x y+=上的动点,设点P的切线斜率为k,试研究斜率OPk k是否为定值(O为原点).实验成果动态课件圆切线与半径的斜率积为定值1PO LK K⋅=-备用课件椭圆切线与切点和中心连线的斜率积为定值22PO LbK Ka⋅=-备用课件双曲线切线与切点和中心连线的斜率积为定值22PO LbK Ka⋅=备用课件。

切线的证明方法。-概述说明以及解释

切线的证明方法。-概述说明以及解释

切线的证明方法。

-概述说明以及解释1.引言1.1 概述概述部分的内容:引言部分旨在介绍本文将要探讨的主题——切线的证明方法。

切线作为数学中重要的概念,在几何、微积分等领域中都起着至关重要的作用。

切线的证明方法是指在给定一个曲线时,如何确定该曲线上某点的切线。

本文将会介绍三种常见的切线的证明方法,并对其进行详细的讲解和演示。

这些证明方法包括第一个证明方法、第二个证明方法和第三个证明方法。

第一个证明方法将从基础的几何知识出发,通过利用曲线上两点之间的斜率来确定切线的方程。

我们将详细介绍这个方法的步骤和计算过程,并通过实例来加深理解。

第二个证明方法将引入导数的概念,利用导数来求解切线的斜率。

我们将介绍导数的定义和性质,以及如何利用导数求解切线的斜率,并通过例子来说明这个方法的应用。

第三个证明方法与微积分中的极限概念相关,通过极限的定义来求解切线的斜率。

我们将探讨极限的概念和性质,以及如何运用极限来确定切线的斜率,并通过实例进行演示。

本文的目的是帮助读者更加深入地理解切线的概念和证明方法。

通过学习这些方法,读者将能够独立地解决切线相关的问题,并将这些方法应用到其他数学领域中。

在结论部分,我们将对这三种证明方法进行总结,并探讨它们在实际问题中的应用。

同时,我们也将展望未来,探讨可能的改进和拓展方向,以进一步提升切线的证明方法的应用价值。

接下来,我们将详细介绍第一个证明方法,以便读者能够更好地理解和掌握这个技巧。

1.2文章结构文章结构部分的内容应该是对整篇文章的组织和章节安排进行介绍。

在本篇文章中,我们将讨论切线的证明方法,并按照如下结构进行阐述:第一部分是引言。

在引言中,我们将对切线的概念进行概述,介绍其在数学中的重要性以及与其他几何概念的关系。

同时,我们还会简要介绍本文的结构和目的。

第二部分是正文。

在正文中,我们将详细介绍三种不同的证明方法。

首先,我们将讨论第一个证明方法,详细描述其步骤和推导过程。

然后,我们将进一步介绍第二个证明方法,指出其与第一个证明方法的异同之处。

抛物线的切线

抛物线的切线
线AM,BM有何位置关系? 解:由结论2可知:经过 AB两点的直线方程为:
p xx (y ) 0 p 2 设 A ( x , y ), B ( x , y )
1 1 2 2
联立方程:
p xx p ( y ) 0 2 2 x 2py
由 x 2 py ,得 y
2
2 2 得: x 2 xx p 0 0
解题方法研究
解: (1)依题意可得 MA (2 x,1 y) ,
MB (2 x,1 y)
| MA MB | (2 x) 2 (2 2 y) 2 , OM (OA OB) ( x, y ) (0, 2) 2 y
2 2 由已知得 (2 x) (2 2 y ) 2 y 2 ,
是y
解题方法研究
x0 t 1 t 1 1 ,存在 x0 (2, 2) ,使得 , 2 2 2 2 即 l 与直线 PA 平行,故当 1 t 0 时不符合题意 x 1 t x t 1 1 0 , 1 0 ,所以 l 与直线 PA,PB 一定 ②当 t 1 时, 2 2 2 2
F A B
O
P
阿基米德三角形的性质
性质 6 若直线 l 与抛物线没有公共点,以 l 上的点为顶点的阿基米德三角形的底边过定 点. 证明:如上图,设 l 方程为
ax by c 0 ,且 A( x2 , y2 ) ,弦 AB 过点 C ( x0 , y0 ) ,由
①当 1 t 0 时, 1
t 1 y xt 2 , 相交,分别联立方程组 2 y x0 x x0 2 4
1 t y xt 2 , 2 y x0 x x0 2 4

初中数学重点梳理:切线和割线

初中数学重点梳理:切线和割线

切线和割线知识定位切割线定理是初中平面几何中的重要定理,它应用广泛,各地的中考题有相当多的题目都用到它,竞赛题也不例外.且题目新颖,灵活多变,学生往往甚感困难。

因此有计划、有目的、有步骤地对切割线定理进行补充、演化无疑是十分有益的。

知识梳理知识梳理1:切割线定理切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。

是圆幂定理的之一。

几何语言:∵PT切⊙O于点T,PDC是⊙O的割线∴PT²=PD·PC(切割线定理)知识梳理2:割线定理从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等几何语言:∵PT是⊙O切线,PBA、PDC是⊙O的割线∴PD·PC=PA·PB(切割线定理推论)(割线定理)由上可知:PT²=PA·PB=PC·PD例题精讲【试题来源】【题目】如图,等边三角形ABC中,边AB与⊙O相切于点H,边BC,CA与⊙O交于点D,E,F,G。

已知AG=2,GF=6,FC=1.则DE=_______.【答案】21【解析】2由切割线定理可知16:4又AH AG AF,AHAC AG=•=∴==2又99故5则25又7,9,AC AG GF FCAB ACBHBD BE BHCE CD CF CG BC AC=++=∴===•==•=•===【知识点】切线和割线【适用场合】当堂例题【难度系数】3【试题来源】【题目】如图,⊙O和⊙O′都经过点A和B,PQ切⊙O于P,交⊙O′于Q,M,交AB的延长线于N.求证:2PN MN NQ=⋅.【答案】【解析】【知识点】切线和割线【适用场合】当堂例题【难度系数】3【试题来源】【题目】如图,已知点P是O外一点,PS,PT是O的两条切线,过点P作O的割线PAB,交O于A.B两点,并交ST于点C,求证:1111()2PC PA PB=+.【答案】【解析】【知识点】切线和割线【适用场合】当堂例题【难度系数】3【试题来源】【题目】如图,设△ABC是直角三角形,点D在斜边BC上,BD=4DC。

直线与圆的位置关系及切线的性质与判定(编)

直线与圆的位置关系及切线的性质与判定(编)

直线与圆的位置关系及切线的性质与判定【知识点一】:直线与圆的位置关系(1)直线和圆的三种位置关系:①相离:一条直线和圆没有公共点.②相切:一条直线和圆只有一个公共点,叫做这条直线和圆相切,这条直线叫圆的切线,唯一的公共点叫切点.③相交:一条直线和圆有两个公共点,此时叫做这条直线和圆相交,这条直线叫圆的割线.(2)判断直线和圆的位置关系:设⊙O的半径为r,圆心O到直线l的距离为d.①直线l和⊙O相交⇔d<r②直线l和⊙O相切⇔d=r③直线l和⊙O相离⇔d>r.【典例分析】1.如图,两个同心圆,大圆的半径为5,小圆的半径为3,若大圆的弦AB与小圆有公共点,则弦AB的取值范围是()A.8≤AB≤10B.8<AB≤10C.4≤AB≤5D.4<AB≤52.如图,在平面直角坐标系中,x轴上一点A从点(﹣3,0)出发沿x轴向右平移,当以A为圆心,半径为1的圆与函数y=x的图象相切时,点A的坐标变为()A.(﹣2,0)B.(﹣,0)或(,0)C.(﹣,0)D.(﹣2,0)或(2,0)3.如图,∠ABC=80°,O为射线BC上一点,以点O为圆心,OB长为半径作⊙O,要使射线BA与⊙O相切,应将射线BA绕点B按顺时针方向旋转()A.40°或80°B.50°或100°C.50°或110°D.60°或120°第1题图第2题图第3题图4.如图,在平面直角坐标系中,已知⊙O的半径为2,动直线AB与x轴交于点P(x,0),直线AB与x轴正方向夹角为45°,若直线AB与⊙O有公共点,则x的取值范围是()A.﹣2≤x≤2B.﹣2<x<2C.0≤x≤2D.﹣2≤x≤25.如图,已知⊙P的半径为2,圆心P在抛物线y=x2﹣1上运动,当⊙P与x轴相切时,圆心P的坐标为.6.如图,半圆的圆心与坐标原点重合,半圆的半径1,直线l的解析式为y=x+t.若直线l与半圆只有一个交点,则t的取值范围是.第4题图第5题图第6题图7.如图Rt△ABC中,∠ABC=90°,P是斜边AC上一个动点,以BP为直径作⊙O交BC于点D,与AC的另一个交点E,且=,连接DE.(1)若=140°,求∠C的度数.(2)求证AB=AP.8.如图,在△ABC中,∠C=90°,点O在AC上,以OA为半径的⊙O交AB于点D,BD的垂直平分线交BC于点E,交BD于点F,连接DE.(1)判断直线DE与⊙O的位置关系,并说明理由;(2)若AC=6,BC=8,OA=2,求线段DE的长.【知识点二】:切线的性质(1)切线的性质①圆的切线垂直于经过切点的半径.②经过圆心且垂直于切线的直线必经过切点.③经过切点且垂直于切线的直线必经过圆心.(2)切线的性质可总结如下:如果一条直线符合下列三个条件中的任意两个,那么它一定满足第三个条件,这三个条件是:①直线过圆心;②直线过切点;③直线与圆的切线垂直.(3)切线性质的运用运用切线的性质进行计算或证明时,常常作的辅助线是连接圆心和切点,通过构造直角三角形或相似三角形解决问题.【典例分析】1.如图,AB,BC,CD分别与⊙O相切于E、F、G三点,且AB∥CD,BO=3,CO=4,则OF的长为()A.B.C.D.52.AB为⊙O的直径,延长AB到点P,过点P作⊙O的切线,切点为C,连接AC,∠P=40°,D为圆上一点,则∠D的度数为()A.25°B.30°C.35°D.40°3.如图,菱形OABC的顶点A,B,C在⊙O上,过点B作⊙O的切线交OA的延长线于点D.若⊙O的半径为1,则BD的长为()A.1B.2C.D.第1题图第2题图第3题图4.如图,AB是⊙O的直径,C,D是⊙O上两点,AD=CD,过点C作⊙O的切线交AB的延长线于点E,若∠E =50°,则∠ACD等于()A.40°B.50°C.55°D.60°5.如图,在平面直角坐标系中,点P在第一象限,⊙P与x轴、y轴都相切,且经过矩形AOBC的顶点C,与BC 相交于点D.若⊙P的半径为5,点A的坐标是(0,8).则点D的坐标是()A.(9,2)B.(9,3)C.(10,2)D.(10,3)6.如图,已知一次函数y=﹣x+2的图象与坐标轴分别交于A、B两点,⊙O的半径为1,P是线段AB上的一个点,过点P作⊙O的切线PM,切点为M,则PM的最小值为()A.2B.C.D.第4题图第5题图第6题图7.如图,正方形ABCD的边长为8,M是AB的中点,P是BC边上的动点,连接PM,以点P为圆心,PM长为半径作⊙P.当⊙P与正方形ABCD的边相切时,BP的长为.8.如图,▱ABCD的两边AB、BC分别切⊙O于点A、C,若∠B=50°,则∠DAE=.第7题图第8题图9.如图,以BC为直径的⊙O交△ABC的边AB于点D,过点D作⊙O的切线交AC于点E,且AC=BC.(1)求证:DE⊥AC;(2)若BC=4cm,AD=3cm,求AE的长.10.如图,AB为⊙O的直径,点C在⊙O上,AD与过点C的切线互相垂直,垂足为D.连接BC并延长,交AD 的延长线于点E.(1)求证:AE=AB;(2)若AB=20,BC=16,求CD的长.11.如图,AB为⊙O的直径,点C是⊙O上一点,CD与⊙O相切于点C,过点A作AD⊥DC,连接AC,BC.(1)求证:AC是∠DAB的角平分线;(2)若AD=2,AB=3,求AC的长.12.如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交AB于点D,切线DE交AC于点E.(1)求证:∠A=∠ADE;(2)若AD=8,DE=5,求BC的长.13.已知直线l与⊙O相切,AB是⊙O的直径,AD⊥l于点D.(1)如图①,当直线l与⊙O相切于点C时,若∠DAC=30°,求∠BAC的大小;(2)如图②,当直线l与⊙O相交于点E,F时,若∠DAE=18°,求∠BAF的大小.【知识点三】:切线的判定(1)切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.(2)在应用判定定理时注意:①切线必须满足两个条件:a、经过半径的外端;b、垂直于这条半径,否则就不是圆的切线.②切线的判定定理实际上是从”圆心到直线的距离等于半径时,直线和圆相切“这个结论直接得出来的.③在判定一条直线为圆的切线时,当已知条件中未明确指出直线和圆是否有公共点时,常过圆心作该直线的垂线段,证明该线段的长等于半径,可简单的说成“无交点,作垂线段,证半径”;当已知条件中明确指出直线与圆有公共点时,常连接过该公共点的半径,证明该半径垂直于这条直线,可简单地说成“有交点,作半径,证垂直”.【典例分析】1.如图,AB为⊙O的直径,AC平分∠BAD交⊙O于点C,CD⊥AD,垂足为点D.求证:CD是⊙O的切线.2.如图,在Rt△ABC中,∠BAC=90°,BD是角平分线,以点D为圆心,DA为半径的⊙D与AC相交于点E (1)求证:BC是⊙D的切线;(2)若AB=5,BC=13,求CE的长.3.如图,四边形ABCD中,AB=AD=CD,以AB为直径的⊙O经过点C,连接AC、OD交于点E.(1)求证:OD∥BC;(2)若AC=2BC,求证:DA与⊙O相切.4.已知:AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使AB=AC,连接AC,过点D作DE⊥AC,垂足为E.(1)求证:DC=BD;(2)求证:DE为⊙O的切线.5.如图,AB是⊙O的直径,点P在AB的延长线上,弦CD⊥AB,联结OD、PC,∠ODC=∠P,求证:PC是⊙O的切线.6.如图,在Rt△ABC中,∠ABC=90°,∠ACB的平分线CO交AB边于点O,以点O为圆心,OB为半径作⊙O.(1)请判断AC与⊙O的位置关系,并证明你的结论;(2)若BO=1,∠BAC=30°,求△AOC的面积.7.如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,O是AB上一点,以OA为半径的⊙O经过点D.(1)求证:BC是⊙O切线;(2)若BD=5,DC=3,求AC的长.8.已知如图,以Rt△ABC的AC边为直径作⊙O交斜边AB于点E,连接EO并延长交BC的延长线于点D,点F 为BC的中点,连接EF.(1)求证:EF是⊙O的切线;(2)若⊙O的半径为3,∠EAC=60°,求AD的长.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

抛物线的切线与割弦的关系
结论1 设,过抛物线外一点作抛物线的切线,设是切点则有以下关系:
其中是点处的切线斜率,在数值上有
证设切点为,设切线方程为,由消去得
在切线上,
又以为切点的切线的斜率为,
推论1 如果抛物线方程为,则有以下关系式
,(是切线的斜率),。

推论2 如果抛物线方程为,同样可以证得以下关系式
证在直线上,,现求的交点,得
上式说明与的横坐标一定是在的左右,而且距离相等为。

观察:
同理可得

由(1),(2)式可知:

(其中为切线斜率,等于,为割线斜率)
该公式形如图的切割线定理,乘以为参变数的系数。

结论3 设过作抛物线的两条割线为,分别交抛物线于,,,。

则由(3)可得
即(其中,为两割线的斜率)。

对于一般的二次曲线都可用上述方法,利用平移,旋转得到相关的结论。

相关文档
最新文档