大涡模拟亚格子模型
LES,DNS,RANS三种模拟模型计算量比较及其原因

LES,DNS,RANS模型计算量比较摘要:湍流流动是一种非常复杂的流动,数值模拟是研究湍流的主要手段,现有的湍流数值模拟的方法有三种:直接数值模拟(Direct Numerical Simulation: DNS),Reynolds平均方法(Reynolds Average Navier-Stokes: RANS)和大涡模拟(Large Eddy Simulation: LES)。
直接数值模拟目前只限于较小Re数的湍流,其结果可以用来探索湍流的一些基本物理机理。
RANS方程通过对Navier-Stokes方程进行系综平均得到描述湍流平均量的方程;LES方法通过对Navier-Stokes方程进行低通滤波得到描述湍流大尺度运动的方程,RANS和LES方法的计算量远小于DNS,目前的计算能力均可实现。
关键词:湍流;直接数值模拟;大涡模拟;雷诺平均模型1 引言湍流是空间上不规则和时间上无秩序的一种非线性的流体运动,这种运动表现出非常复杂的流动状态,是流体力学中有名的难题,其性。
传统计算复杂性主要表现在湍流流动的随机性、有旋性、统计[]1流体力学中描述湍流的基础是Navier-Stokes(N-S)方程,根据N-S 方程中对湍流处理尺度的不同,湍流数值模拟方法主要分为三种:直接数值模拟(DNS)、雷诺平均方法(RANS)和大涡模拟(LES)。
直接数值模拟可以获得湍流场的精确信息,是研究湍流机理的有效手段,但现有的计算资源往往难以满足对高雷诺数流动模拟的需要,从而限制了它的应用范围。
雷诺平均方法可以计算高雷诺数的复杂流动,但给出的是平均运动结果,不能反映流场紊动的细节信息。
大涡模拟基于湍动能传输机制,直接计算大尺度涡的运动,小尺度涡运动对大尺度涡的影响则通过建立模型体现出来,既可以得到较雷诺平均方法更多的诸如大尺度涡结构和性质等的动态信息,又比直接数值模拟节省计算量,从而得到了越来越广泛的发展和应用。
2 直接数值模拟(DNS)湍流直接数值模拟(DNS)就是不用任何湍流模型,直接求解完整的三维非定常的N - S 方程组,计算包括脉动在内的湍流所有瞬时运动量在三维流场中的时间演变。
大涡模拟的亚格子模型总结

高雷诺数湍流的局部各向同性是大涡数值模拟的主要理论依据,也是构造一切亚格子模型的基础。
唯象论亚格子涡粘和涡扩散模型的基本思想是:(1)存在较宽的局部平衡的各向同性湍流的尺度范围;(2)在局部各向同性尺度范围内存在普适性的平衡关系,例如能谱的-5/3次方规律;(3)涡粘和涡扩散型亚格子模式以亚格子能量(湍动能或标量脉动能量)耗散作为构造模式的出发点;(4)采用量纲分析方法构造亚格子涡粘或涡扩散系数的公式,模式中的待定常数由普适性的理论关系或实验结果确定;(5)以局部均匀和局部平衡假定为基础,将均匀湍流导出的模型系数推广到非均匀湍流。
谱空间涡粘模式谱空问涡粘模式的基础是均匀湍流场中的脉动动景输运公式,在实际算例中发现,采川常数谱涡粘系数的计算结果与考虑尖峭现象的结果几乎相同谱涡粘模式有较好的理沦基础,可惜谱方法(或伪谱方法,只能用于均匀湍流,谱涡粘模型也只能用于均匀湍流。
如果可以将涡粘模式的构造方法推广到物理空间,那么物理空间的亚格子模型有较好的物理基础。
Smargorinsky模型(Smagorinsky,1963)是最早提出的亚网格应力模型,是参照雷诺平均模式的涡粘模型,以各向同性湍流为基础,认为亚网格湍流具有混合长度型涡粘系数。
Smagorinsky模式是根据唯象论推出的剪切湍流亚格子模型,它属于耗散型,因此和湍动能耗散理论导出的公式基本相同。
可以认为式(3. 17)模式的涡粘系数在壁面附近是有限值。
Smagroingsky模式的致命缺陷是耗散过大,克服耗散过大的方法有以下几种。
①利用近壁阻尼函数②动态确定模式系数③壁模型Smagorinsky常数Cs= 0.18(太大了),Smargorinsky模型的优点是,概念简单、易于实施且计算方便,只要增加一个涡粘系数的模块,就可以利用N-S方程的数值计算方法和程序;主要缺陷是耗散过大,属于唯象论模型。
尤其是壁面处,该影响尤为明显,可以利用近壁阻尼系数对Smargorinsky 系数Cs做修正结构函数模式结构函数模式是谱空间谱涡粘模式在物理空间的表达式(Metais和Lesieur,1992)。
大涡模拟

4.6.3大涡模拟LSE大涡模拟LES 基本思想是:湍流运动是湍流运动是由许多大小不同尺度的涡旋组成,大尺度的涡旋对平均流动影响比较大,各种变量的湍流扩散、热量、质量、动量和能量的交换以及雷诺应力的产生都是通过大尺度涡旋来实现的,而小尺度涡旋主要对耗散起作用,通过耗散脉动来影响各种变量。
不同的流场形状和边界条件对大涡旋有较大影响,使它具有明显的各向不均匀性。
而小涡旋近似于各向同性,受边界条件的影响小,有较大的共性,因而建立通用的模型比较容易。
据此,把湍流中大涡旋(大尺度量)和小涡旋(小尺度量)分开处理,大涡旋通过N-S 方程直接求解,小涡旋通过亚格子尺度模型,建立与大涡旋的关系对其进行模拟,而大小涡旋是通过滤波函数来区分开的。
对于大涡旋,LES 方法得到的是其真实结构状态,而对小涡旋虽然采用了亚格子模型,但由于小涡旋具有各向同性的特点,在采用适当的亚格子模式的情况下,LES 结果的准确度很高。
大涡模拟LES 有四个一般的步骤: ①定义一个过滤操作,使速度分解u(x,t)为过滤后的成分(),u x t 和亚网格尺度成分u ’(x,t),这里要特别指出:过滤操作和Reynolds 分解是两个不同的概念,亚网格尺度SGS 成分u ’(x,t)与Reynolds 分解后的速度脉动值是两个不同的量。
过滤后的三维的时间相关的成分()t x u ,表示大尺度的涡旋运动;②由N-S 方程推导过滤后的速度场进化方程,该方程为一个标准形式,其中包含SGS 应力张量;③封闭亚网格尺度SGS 应力张量,可采用最简单的涡黏性模型; ④数值求解模化方程,从而获得大尺度流动结构物理量。
(1)过滤操作LES 方法和一般模式理论不同之处在于对N-S 方程第一步的处理过程不一样。
一般模式理论方法是对变量取平均值,LES 方法是通过滤波操作,将变量分成大尺度量和小尺度量。
对任一流动变量(),u x t 划分为大尺度量(,)u x t 和小尺度量(),u x t '(亚格尺度):(,)(,)(,)u x t u x t u x t '=+其中大尺度量是通过滤波获得:,过滤操作定义为:()⎰-=dr t r x u x r G t x u ),(),(, (4.78)式中积分遍及整个流动区域,(,)G r x 是空间滤波函数,它决定于小尺度运动的尺寸和结构。
大涡模拟中模型系数对方柱绕流的影响

大涡模拟中模型系数对方柱绕流的影响张童伟;聂欣;陶雪峰【摘要】采用大涡模拟中3种不同Smagorinsky系数的标准Smagorinsky-Lilly 模型和动态模型,对雷诺数为22000的三维方柱绕流进行数值研究.对计算结果中的特征变量进行了验证与分析;并对不同尺度的涡旋及其相互关系进行研究;同时对流场不同位置处和不同Smagorinsky系数对计算结果的影响及其准确性进行了对比分析.结果表明:不同Smagorinsky系数对流场中的大尺度涡旋以及斯特劳哈尔数的计算结果影响较小;小尺度涡旋的含能量随Smagorinsky值的减小而减小,且较小Smagorinsky系数的模型展现出的小尺度涡旋更多;不同模型的在方柱尾流区不同位置计算准确度存在差异.整体来看,动态模型相比于标准Smagorinsky-Lilly模型更为合适.【期刊名称】《杭州电子科技大学学报》【年(卷),期】2017(037)006【总页数】7页(P55-61)【关键词】大涡模拟;方柱绕流;Smagorinsky系数;动态模型;湍流能谱【作者】张童伟;聂欣;陶雪峰【作者单位】杭州电子科技大学机械工程学院 ,浙江杭州 310018;杭州电子科技大学机械工程学院 ,浙江杭州 310018;杭州电子科技大学机械工程学院 ,浙江杭州310018【正文语种】中文【中图分类】O353方柱绕流广泛存在于环境、海洋、水利、动力机械及建筑等诸多工程领域,其绕流涡旋脱落产生的振动对机械零部件、建筑和桥梁的稳定具有重要影响,涡旋升阻力在海洋方面也得到广泛应用,另外方柱后方的回流现象对泥沙以及污染物的输运起到重要作用.与此同时,由于方柱几何模型简单,且涉及到剪切层的转捩,流动的分离和附着,周期性的涡脱落等复杂的流动现象,因此被广泛应用于实验和数值模拟的研究[1-5].其中大涡模拟作为一种效率高且计算精准的模型被应用于绕流问题的研究.大涡模拟所用的亚格子模型中Smagorinsky系数一直是研究者们关注的对象.Smagorinsky系数Cs是对亚格子涡粘系数进行描述时引出的一个参数,它与过滤尺寸的乘积称为混合长度.对于Cs系数的确定方法,文献[6]根据经典的局部各向同性湍流理论,在Kolmogorov能谱惯性子区范围内,推导得出的Cs取值范围在0.17~0.21之间;文献[7]通过对一些学者的研究结果进行总结,得出Cs取值范围在0.19~0.24之间;而根据文献[8]对渠道湍流的大涡研究表明,较大的Cs值产生的耗散也大,特别是在近壁区表现得更明显,因此对于内流问题,其建议Cs值在0.1左右较合适;文献[9]采用3种不同的Cs系数来模拟渠道湍流问题,与直接数值模拟DNS的结果比较表明,Cs=0.065时计算结果更准确.近年来的研究表明,Cs不是一个常数,即使对于特定的流动,它也是一个与物理模型和数值计算紧密相关的值,需要在使用中不断调整才能得到合适的结果.而对于绕流问题,文献[10]在进行绕流大涡模拟时采用的Cs值为0.07;文献[11]取Cs为0.12进行计算.而关于Cs系数对三维方柱绕流模拟结果的影响,还没有较为系统的研究.本文采用不同Cs系数下的标准Smagorinsky-Lilly模型和动态模型对三维方柱绕流进行大涡模拟,计算结果与文献[3-4]的结果进行了对比.研究了方柱下游流场的时均速度、湍流特性及3D流动状态,对比分析了不同Cs系数下Smagorinsky-Lilly模型的差异,同时验证了动态模型在湍流中计算的准确性,对方柱绕流的流动特性进行分析,为湍流问题研究模型的选择和实际工程应用提供有价值的参考. 运用大涡模拟(Large Eddy Simulation,LES)方法,对连续性和不可压缩流动的Navier-Stokes方程进行滤波,得到如下的控制方程:其中,和分别表示过滤后的时均速度分量和压力,ρ为密度,为运动粘度,τij为亚格子应力,亚格子应力是过滤掉的小尺度脉动和可解尺度湍流间的动量输运.要实现大涡数值模拟,必须构造亚格子应力的封闭模式.其中以Boussinesq假设为基础的计算公式如下:其中,为应变率张量,vt为涡粘系数,由于涡粘模型计算平稳且鲁棒性较好,因此得到广泛的应用.本文的研究分别采用标准Smagorinsky-Lilly模型和动态模型对vt进行定义.1.2.1 标准Smagorinsky-Lilly模型标准Smagorinsky-Lilly模型最早是由J. S. Smagorinsky于1963年基于普朗特混合长度模式的原理而提出的[12],将涡粘系数写成以下形式:其中,为应变率张量,Ls为网格的混合长度,在FLUENT中Ls=min(kd,CSΔ),k 为Von Karman常数,取0.42;d为与近壁面的距离;Cs为Smagorinsky系数,Δ为网格尺寸决定的过滤尺度.Cs系数的确定方法和实际的流动状态、网格精度等多个因素有关,本文中,Cs分别取0.04,0.12和0.18,对3种系数下的模型进行计算和比较.1.2.2 动态Smagorinsky-Lilly模型动态Smagorinsky-Lilly模型是D. K. Lilly于1992年基于Germano等式提出的动态确定Smagorinsky系数的方法,简称动态模型DCs[13-14].将Germano等式用Smagorinsky模式代入得到:采用最小误差法来解决超定问题,对结果进行系统平均得:其中,Mij和Lij分别为二次过滤后新增的应变率张量和亚格子应力.这样的Smagorinsky系数是根据运动解析尺度提供的信息动态计算的,实际计算结果表明,此方法得到的涡粘系数有相当好的适应性,特别是它的近壁涡粘系数这与湍流脉动近壁渐进行为相吻合[15].本文算例以高雷诺数下的方柱绕流为研究对象,采用不同的Smagorinsky系数及动态模型对其进行大涡模拟,计算结果与相关文献的结果进行对比验证.计算区域为20.5D×14D×4D(D为方柱直径),其中方柱上游4.5D,下游15D,如图1所示.入口速度U=0.535 m/s,均匀流动,出口条件为自由流动,四周表面均设为对称边界条件.工作介质为水(密度ρ=998.2kg/m3,动力粘度μ=1.005×10-3Pa·s),方柱的绕流雷诺数Re=ρUD/μ=22 000.根据大涡模拟的物理原则,模型第一层网格的y+应小于1.因此,在粘性底层(y+<5)之内,设置了3~5层网格,根据最终计算的收敛结果,壁面处第一层网格y+在0.5~0.9之间.流域截面的网格形态如图2所示,所有模型的网格总数均为320万.采用FLUENT14.0作为求解器,有限体积法离散控制方程,对于压力与速度的耦合采用SIMPLE算法,时间项采用二阶隐式差分,压力项采用二阶迎风格式进行离散,对流和扩散项采用二阶中心差分格式.根据网格尺度和速度尺度设定时间步长,保证每一次迭代都在一个网格范围内[16],此处Δt设置为1×10-3 s,每个子步迭代8次后达到所设定的残差值(1×10-3).本算例使用曙光5 000计算机(单节点32核)并行计算.先进行稳态分析,获得较合适的初场后进行瞬态计算,在取样前计算10个的流动周期(以D/U作为一个流动周期),取样后再计算10个以上的流动周期(约为30个涡旋脱落周期),以获得稳定的统计平均结果.其中标准Smagorinsky-Lilly模型的计算时间为140 h,动态模型的计算时间为180 h,由于此模型需要进行二次过滤且在计算过程中不断改变Cs的值,因此需要消耗更多的计算资源,约为标准模型的1.3倍.不同Cs系数和模型下,方柱绕流特征变量的模拟结果与相关文献对比如表1所示,包括时均且展现平均的阻力系数Cd,回流区长度L/D,斯特劳哈尔数St=fD/U,f为通过对升力系数随时间的变化量进行快速傅里叶变换求得的涡旋频率.从表1可以看出,所有模型的Cd值和实验结果相比都偏大,与前人的研究结果相似,而DCs模型和Cs=0.04时的压力系数值与实验值更接近,其余模型的Cd值随着Cs系数的增加而变大.对于回流区长度的预测,不同的研究者得出的结果有较大差异[1],本文的计算结果与实验值更接近,其中Cs=0.04时的计算结果和实验值对比差异最小,这与阻力系数的值有一定的对应关系.由于亚格子模型只是对小涡进行建模计算,而对涡旋频率起主导作用的大涡在不同Cs系数下的求解方法相同,因此不同模型的绕流St数计算结果基本相同.图3为不同Cs系数和模型下,方柱后方中心线处时均速度u和湍动能K的分布情况.由于在相同网格精度的情况下,亚格子模型的过滤尺度Δ相同,由Cs与Δ的乘积所构成的混合长度值LS不同,使得亚格子的涡粘系数值随Cs值的增大而增大,而较大的涡粘系数会使得流动耗散偏大.因此,在方柱附近位置流动为层流向湍流过渡的区域,应变率张量大而湍流耗散较小[13],较小的Cs值更适合对回流区长度及阻力系数等参数的预测,同时DCs模型在此种流动状态处会自动减小模型系数来修正流动行为[17].从图3中可以看出,Cs=0.04时方柱附近的时均速度与实验值最接近,DCs模型的计算结果也较为精准.由于同时,从回流区最低速度的大小和位置可以看出,不同模型最低速度都位于方柱后方0.85D的距离处,而DCs和Cs=0.04时的最小值分别为-0.098 m/s和-0.009 m/s,与实验值偏差更小.而在远离方柱的位置,由于涡旋的脱落和破碎,湍流耗散较大,此时较大的Cs 值更适合此种流动状态.因此对比不同模型在方柱后方较远处的速度恢复值可以发现,Cs=0.18时计算结果与实验值更为接近.从图3明显可以看出,在X/D=1.5的位置存在一个峰值,而此位置为两侧涡旋交替产生的区域,因此速度脉动大.同时,在方柱背面的回流区,由于靠近壁面处的流体以沿壁面的纵向流动为主,在层流底层中由壁面效应而猝发的卷吸涡使得此处速度脉动值较大[18],因此该处的湍动能值也有一个明显的峰值,而Cs=0.18时得到的湍流粘度较大,在此处峰值也更为明显,这与文献[2]和[11]在其他问题的研究中提出的观点类似.综合分析表1中的统计值可以得出,方柱后方较大的速度脉动和较低速度恢复值使得其回流区长度偏小而阻力系数值偏大,从DCs和Cs取0.04和0.12中也可以得到相对应的结论,此结论与文献[2]提出的观点一致.总之,对于较高雷诺数下方柱绕流的大涡模拟,Cs=0.04时对方柱后方回流区速度场及阻力系数的预测更准确,而较远处的速度恢复值在Cs=0.18时与实验值更吻合,因此,对于局部位置或流动状态较为单一的问题(如渠道流动,管内流动等)进行研究,合理地选择Cs系数对计算结果的精确性至关重要.而对于方柱绕流这种不同位置流动状态差异较大的问题,标准Smagorinsky-Lilly模型很难做到对整个流场的各个位置进行精准预测,此时动态模型更合适.对于涡旋结构的描述,有研究者通过流线、应变率张量、压力和涡量等不同的方法来表征[5],这些量的基本思想都是基于涡旋结构的伽利略不变性且存在涡核.本研究通过Q准则数[19]对方柱的绕流涡旋进行描述,其中Q准则数表示速度梯度张量的二次不变量(Q=),Ω和S分别表示速度梯度的对称张量和反对称张量,因此可以看出Q>0的区域表示转动速率超过应变速率,即该区域涡旋结构明显.图4分别为Cs取0.04和0.18及DCs模型在同一时刻(t=30 s)3D形态的Q准则数分布情况,其中Q=150(以涡量值为标度).可以明显观察到方柱后方形成的马蹄涡,沿着流向不断破碎最终形成单一的流向涡,不同模型描述出的小尺度涡存在一些差异,但大尺度的涡旋基本相同,这与大涡模拟方法的本质是相关的.其中,Cs=0.04和DCs 模型在方柱附近区域的展现出的小尺度涡旋更多,由于固壁的存在使得亚格子尺度与可解尺度间的能量交换发生变化,小尺度的涡容易受到抑制[20],因此合理的亚格子模型或模型系数对其有较大影响,而Cs=0.18时计算的耗散偏大是导致方柱附近模拟出现偏差的主要原因,从而影响到回流区及阻力系数等参数的预测.在湍流动能输运过程中,大涡占湍动能的绝大部分,因此对数坐标下湍流能谱的含能量主要集中在小波数附近,而小涡占湍动能耗散的绝大部分,在含能区与耗散区之间湍动能通过惯性子区将能量逐级传递下去,此时的湍流能谱函数基本满足波数k的-5/3幂次律[21].特征波数与涡旋尺度及含能量的关系如表2所示,从表2可以看出,大尺度涡旋(小k)在方柱附近位置的含能量最高,随着脱体涡旋的不断发展和破碎,远离方柱的位置,大涡的含能量降低,而小涡整体的含能量增加.由于较小的Cs系数得到的亚格子湍流耗散更小,同时对小尺度涡旋的描述更细致(数量更多),单个涡旋的含能量也会降低,方柱中心线上不同位置的湍流能谱分布情况如图5所示,可以看出小尺度涡的含能量随着Cs系数的减小而减小.而DCs模型的小尺度涡旋含能量在方柱附近位置(X/D=0.5~2.0处)与Cs=0.04相近,在远离方柱位置(X/D=5.0~7.0处)与Cs=0.18相近,这也是DCs模型整体计算结果较为准确的一个重要因素.本文通过对大涡模拟中3种不同模型系数Cs的Smagorinsky-Lilly及动态模型对方柱绕流计算结果的影响进行分析得出,不同Smagorinsky系数Cs对流场中的大尺度涡旋以及斯特劳哈尔数St的计算结果影响较小.在流场不同位置出,不同模型对小尺度涡旋及整体计算结果的准确性存在差异.对于方柱绕流这种涡旋尺度与强度变化较大且雷诺数较高的绕流问题,动态模型相比于标准Smagorinsky-Lilly 模型更为合适.因此,在今后类似绕流问题的大涡模拟计算中,本文的研究为模型以及模型参数值的选择提供了参考.【相关文献】[1] RODI W, FERZIGER J H, BREUER M, et al. Status of large eddy simulation: results of a workshop[J]. Journal of Fluids Engineering,1997,119(2):248-262.[2] SOHANKER A, DAVIDSON L, NORBERG L. Large eddy simulation of flow past a square cylinder: comparison of different subgrid scale models[J]. Journal of Fluids Engineering,1999,122(1):39-47.[3] LYN DA, EINAV S, RODI W, et al. A laser Doppler velocimetry study of ensemble averaged characteristics of the turbulent near wake of a square cylinder[J]. Journal of Fluid Mechanics,1995,304:285-319.[4] TRIAS FX, GOROBETS A, OLIVA A. Turbulent flow around a square cylinder at Reynolds number 22,000: A DNS study[J]. Computers & Fluids,2015,123:87-98.[5] ELKHOURY M. Assessment of turbulence models for the simulation of turbulent flows past bluff bodies[J]. Journal of Wind Engineering & Industrial Aerodynamics,2016,154:10-20.[6] LILLY D K. Representation of small scale turbulence in numerical simulation experiments[J]. Proceedings of IBM Scientific Computing Symposium on Environmental Sciences,1967:195-210.[7] ROGALLO R S, MOIN P. Numerical simulation of turbulent flows[J]. Annual Review of Fluid Mechanics,1984,16(1):99-137.[8] DEARDORFF J W. A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers[J]. Journal of Fluid Mechanics,1970,41(2):453-480.[9] UDDIN M, MALLIK M S I. Large eddy simulation of turbulent channel flow using smagorinsky model and effects of smagorinsky constants[J]. British Journal of Mathematics & Computer Science,2015,7(5):375-390.[10] DOOLAN C J. Large eddy simulation of the near wake of a circular cylinder at sub-critical Reynolds number[J]. Engineering Applications of Computational Fluid Mechanics,2014,4(4):496-510.[11] MURAKAMI S. Overview of turbulence models applied in CWE-1997[J]. Journal of Wind Engineering & Industrial Aerodynamics,1998,74:1-24.[12] SMAGORINSKY J S. General circulation experiments with the primitive equations, the basic experiment[J]. Monthly Weather Review,1963,91(3):99-164.[13] LILLY D K. A proposed modification of the Germano subgrid-scale closure method[J]. Physics of Fluids A Fluid Dynamics,1992,4(3):633-635.[14] GERMANO M, PIOMELLI U, MOIN P, et al. A dynamic subgrid-scale eddy viscosity model[J]. Physics of Fluids A Fluid Dynamics,1991,3(3):1760-1765.[15] 张兆顺,崔桂香,许春晓.湍流大涡数值模拟的理论和应用[M].北京:清华大学出版社,2008:98-99.[16] 郑力铭.ANSYS Fluent 15.0流体计算从入门到精通[M].电子工业出版社,2015:43-49.[17] TU J Y, GUAN H Y, LIU C Q.计算流体力学:从实践中学习[M].沈阳:东北大学出版社,2014:279-281.[18] 唐鹏,韩省思,叶桃红,等.联合RANS/LES方法数值模拟方柱绕流[J].中国科学技术大学学报,2010,40(12):80-85.[19] HUNT J C R. Eddies Stream, and Convergence Zones in Turbulent Flows[J]. Center for Turbulence Research CTR-S 88,1988:193-209.[20] PIOMELLI U, CHASNOV J R. Large-eddy simulations: theory andapplications[M]//Turbulence and transition modelling. Springer Netherlands,1996:269-336.[21] KOLMOGOROV A N. The local structure of turbulence in an incompressible viscous fluid for very large Reynolds numbers[J]. Proceedings of the Royal Society of London,1941,1890(1890):9-13.。
科学网大涡模拟

科学网大涡模拟大涡模拟(LES)基本思想是:紊流的流动是由许多大小不同尺度的旋涡组成,大尺度的涡对平均流动影响较大,各种变量的紊流扩散、热量、质量和能量的交换以及雷诺应力的产生都是通过大尺度的涡来实现的,而小尺度的涡主要对耗散起作用,通过耗散脉动来影响各种变量。
因而大涡模拟是把包括脉动运动在内的湍流瞬时运动通过某种滤波方法分解成大尺度涡和小尺度涡两部分,大尺度涡通过N-S方程直接求解,小尺度涡通过亚网格尺度模型,建立与大尺度涡的关系对其进行模拟。
数值实验证明雷诺时均方法在模拟复杂流动现象如涡脱落、浮力影响、流线弯曲、旋转和压缩运动时会遇到难以克服的困难,对台阶后回流长度的预测总是偏大等,而LES在复杂流动的模拟中可以得到很多雷诺时均方法无法获得的紊流运动的细微结构和流动图像。
与雷诺平均模型相比,大涡数值模拟的亚格子模型具有较大的普适性。
湍流大涡数值模拟方法中需要封闭的量是亚格子应力,它和大尺度脉动的相关微弱。
亚格子应力是不可解小尺度脉动和可解尺度之间的动量交换,它和强烈依赖于流动边界的大尺度脉动相关性很小,因此合理的亚格子模型将有较大的普适性。
湍流大涡数值模拟可以获得流动的动态特性,而雷诺平均模型只能提供定常的气动力特性。
湍流大涡数值模拟的解包含大于过滤尺度的所有脉动,由此可以获得速度谱以及气动力谱等,这些动态气动力特性对于近代航天器设计是十分重要的。
说一下对壁面的模拟,如果选的网格尺度较小,可以模拟出壁面涡的生成,目前国内对LES研究较多的是清华和南航,我试了我们这儿仅两个cpu的服务器就能算200万的网格。
这儿向大家推荐一篇文章,可能有人已经看过,我相信不管大家做哪个方向,只要是做湍流,或多或少都有收获,张兆顺在第六届流体力学大会上做的报告--走近湍流。
FLUENT大涡模拟的相关知识用N-S方程描述大涡,用亚格子尺度模型描述小涡耗散和对大涡的反馈,通过在N-S方程中加入附加应力(亚格子应力)表示;大涡模拟的过程:先把小尺度脉动用滤波的方式过滤,得到大尺度运动的控制方程(滤波后的),再向方程中引入亚格子尺度附加应力项。
大涡模拟滤波网格尺度研究及其应用

大涡模拟滤波网格尺度研究及其应用一、本文概述本文旨在深入探讨大涡模拟(Large Eddy Simulation, LES)中的滤波网格尺度问题,以及其在流体动力学领域的应用。
大涡模拟作为一种重要的湍流模拟方法,能够捕捉到湍流中的大尺度结构,并通过模型描述小尺度运动对大尺度的影响。
滤波网格尺度作为大涡模拟中的关键参数,其选择直接影响到模拟的精度和效率。
因此,研究滤波网格尺度对于提高大涡模拟的准确性和适用性具有重要意义。
本文首先将对大涡模拟的基本理论和方法进行概述,介绍滤波网格尺度在大涡模拟中的作用和影响。
然后,通过对不同滤波网格尺度下的模拟结果进行比较分析,探讨滤波网格尺度对模拟精度和计算效率的影响机制。
在此基础上,本文将提出一种优化的滤波网格尺度选择方法,以提高大涡模拟的准确性和效率。
本文还将探讨大涡模拟在流体动力学领域的应用,特别是在复杂流动和工程实际问题中的应用。
通过具体案例的分析和讨论,展示大涡模拟在解决实际问题中的潜力和优势。
本文将全面系统地研究大涡模拟中的滤波网格尺度问题及其应用,为大涡模拟在流体动力学领域的应用提供理论支持和实践指导。
二、大涡模拟理论基础大涡模拟(Large Eddy Simulation,简称LES)是一种介于直接数值模拟(DNS)和雷诺平均N-S方程(RANS)之间的湍流数值模拟方法。
它的主要思想是将湍流运动通过某种滤波函数分解为大尺度运动和小尺度运动两部分,大尺度运动通过直接求解滤波后的N-S方程得到,而小尺度运动对大尺度运动的影响则通过模型来模拟。
在LES中,滤波函数的选择至关重要。
常用的滤波函数包括盒式滤波、高斯滤波等。
滤波后的N-S方程会包含一个新的未知量,即亚格子应力张量。
为了封闭这个方程,需要引入亚格子尺度模型(Subgrid-Scale Model,简称SGS模型)。
SGS模型的作用是模拟小尺度湍流对大尺度湍流的影响,从而使方程封闭可解。
在大涡模拟中,网格尺度是一个关键参数。
大涡模拟中亚格子尺度湍动能和亚格子尺度耗散的瞬时特性的研究
大涡模拟中亚格子尺度湍动能和亚格子尺度耗散的瞬时特性的研究
大涡模拟是独特的研究方法,用于探索和预测不同尺度的流体动力学,它已经广泛用于海洋物理学,空气物理学,立方、非立方流体力学的研究。
大涡模拟技术可以用来研究一个流体动力学系统中的多尺度运动。
亚格子尺度湍动能界定了一个流体体系的湍动能的小尺度的大小范围,主要由大涡模拟方法来计算,是评估湍动能的一种重要指标,具有重要的工程意义。
亚格子尺度耗散介绍大涡模拟结果中,不同尺度湍动能损失衰减的模式和强度。
瞬时特性也是衡量湍动能特性的有效指标,它描述了俄性耗散作用对不同尺度间湍动能的衰减的影响。
本文对近年来围绕大涡模拟涉及到的亚格子尺度湍动能和亚格子尺度耗散瞬时特性的研究做了总结,解释了模拟中湍动能特性的损失衰减模式和强度,指明了大涡模拟中湍动能瞬时耗散特性的变化趋势,为不同尺度研究命题提供了理论支撑。
基于三种亚格子模型的空腔振荡流动计算
基于三种亚格子模型的空腔振荡流动计算白海涛;赖焕新【摘要】使用三种亚格子应力模型,对长深比(L/D)为5的三维矩形开式空腔的可压缩流体进行大涡模拟计算.研究得到的空腔自激振荡频率与Rossiter公式计算结果和实验结果吻合良好,结果显示振荡能量主要集中在较低频率区域,压力幅值主要出现在前三阶模态.Dynamic Smagorinsky-Lilly (DSM)模型在空腔前后壁面附近区域的脉动强度分布比Smagorinsky-Lily(SM)模型更为接近实验值,Wall Adapting Local Eddy Viscosity(WALE)模型的脉动强度分布与实验值最为接近.由空腔底部监测点声压级分布及声压频谱图可以看出:WALE模型性能最佳,DSM模型结果也与实验结果相符合,SM模型的预测性能略差.【期刊名称】《华东理工大学学报(自然科学版)》【年(卷),期】2016(042)001【总页数】7页(P125-131)【关键词】开式空腔;自激振荡;大涡模拟;亚格子应力模型;气动噪声【作者】白海涛;赖焕新【作者单位】华东理工大学承压系统与安全教育部重点实验室,上海200237;华东理工大学承压系统与安全教育部重点实验室,上海200237【正文语种】中文【中图分类】O353.4流体流过物体表面的空腔或缺口时,由于腔外剪切流与腔内流动的相互作用,会出现自激振荡现象,同时出现剧烈的压力、速度脉动,并辐射产生强烈的噪声,该物理现象称为空腔自激振荡。
空腔自激振荡现象广泛存在于飞行器的起落架舱、武器舱及燃烧室等部位,是典型的声-涡干涉、非定常流和流体动力不稳定问题。
从20世纪50年代开始,人们对空腔自激振荡流动特性做了大量研究。
关于开式空腔自激振荡物理机制,虽然有多种解释,但最被人们接受的是Rossiter[1]提出的空腔流声共振反馈模型并给出了预估振荡频率的半经验公式,该公式在一定精度范围内能够较为准确地预测空腔流激振荡的峰值频率,成为评价数值模拟结果的重要标准。
超音速流动与燃烧的大涡模拟基础
L
RL
34
第一部分
超燃冲压发动机燃烧室研究概述
为了模拟湍流运动,计算网格的尺度应大到 足以包含最大尺度的涡,应小到足以分辨最小涡 的运动,假设为二维网格,整个计算区域的网格 点总数应不少于: 64
N ~ RL
计算要模拟的时间长度应大于大涡的时间尺 度 ,而计算的时间步长应小于小涡的时间尺度 , 因此所需要的时间步数应不小于:
第一部分
超燃冲压发动机燃烧室研究概述
在50年前,人们意识到高超声速技术在军事 和空间技术上的应用价值,便广泛开展了关于高 超声速技术的研究,随着航天技术的飞速发展, 世界各国在高超声速技术上的竞争更加激烈。高 超声速技术主要指研制高超声速(Ma>5)飞行器 所需要的相关技术。吸气式高超声速飞行器无需 自带氧化剂,有效载荷大,飞行成本低,可控性 强,安全性高并可以长时间重复使用,将对未来 的天地往返运输系统和军事攻防对抗体系提供了 非常有价值的新能力。因此目前人们更为关注的 是吸气式高超声速飞行器相关技术。
连续性方程
ui 0 t xi
Favre 过滤
LES中 连续性方程
ui 0 t xi
LES的连续性方程 没有出现未封闭项!
第二部分
动量方程
超音速湍流流动大涡模拟
1 2 Sij 3 Skkij
ui uiu j p t x j xi x j
动量方程出现不封闭项, 亚格子应力需要模化。 sgs u u u u
ij
i
j
i
j
第二部分
超音速湍流流动大涡模拟
常见的亚格子模型包括Smagorinsky涡粘模 型、尺度相似模型、混合模型和一方程模型等。 目前常用的模型是动态Smagorinsky涡粘模型,个 人认为,在超音速流中,一方程模型更合理。因 为在超音速流中,湍流度增强,且具有很强的各 向非均匀性,湍流脉动的局部平衡关系被打破, 动态Smagorinsky涡粘模型不再适用。
旋转列车气流的大涡模拟概论
旋转列车气流的大涡模拟Hassan Heniida.Naliia Gil,Chris Baker摘要利用大涡模拟(LES)方法研究高速列车的气流问题,釆用标准的Smagorinsky模型模拟亚格子应力。
列车模型是由4辆车组成的1/25比例的ICE 2型列车。
该模型被放置于直径为3.61m的旋转试验台上.基于列车的高度和速度,分别对雷诺数77 000和94 000 的大涡进行了模拟。
模拟中运用了粗糙的、中等的和加密的3种讣算网格。
这三种网格分别由6X106, 10X 106 ,和15X106个节点组成。
加密网格的计算结果与试验数据吻合较好。
运用大涡模拟获得了不同的流动区域:上流区、鼻端区、边界层区、风挡区、尾流区和远尾流区。
在靠近列车鼻端区域从气流的最大速度幅值中可以出现局部的速度峰值。
面压力的最大值和最小值分别出现在黑近鼻尖区域的顶面和底面。
所有的湍流结构都产生于列车的顶部,并被列车外侧的径向速度分量所掠过。
在列车的外侧,主要是大结构的大湍流占据主要地位。
研究表明,以柱面形式支撑的风挡和车下复杂结构对气流的速度有很大的影响。
在合适的雷诺数范圉内,气流流速与列车速度近似地呈线性关系。
1.引言列车在空气中运行时,会导致列车两侧以及尾部的气流产生重要的气流流速。
这种现象会对乘客和铁路沿线工作人员的安全造成威胁,同时也会给婴儿车以及手推车带来很多问题。
鉴于对外部环境所造成的影响,铁路安全与标准学会(RSSB)⑴近期已将其确定为亟待解决的课题,各种研究工作也需要开展。
RSSB最新的一项研究显示,在英国,与其他危险相比,所有与列车气流相关的危险所占比例较小。
然而,如得不到有效的组织管理,列车气流会对站台乘客以及铁路沿线工作人员的安全造成很大的威胁。
自1972年以,英国大陆地区已经报道了24起事件,这些事件不但涉及到气流产生的作用力对静止站台上的婴儿车、手推车所造成的伤害,而且也有对乘客及其物品的伤害[29。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
众所周知,求解紊流问题的困难主要来自于两方面,一是紊流的非线性特征难以数值模拟,二是紊流脉动频率谱域极宽,数值模拟技术难以模拟出连续变化的各级紊流运动。
由于工程应用中人们对紊流运动的时间平均效应较为关心,所以目前常用的紊流模型,大都以雷诺时间平均为基础而获得的。
雷诺时均的过程抹平了紊流运动的若干微小细节,模型模化过程带有很多人为因素。
因此,封闭雷诺时均方程的各类紊流模型对复杂精细的紊流结构例如绕流体的流动分离、卡门涡街等流动现象的模拟能力还很有限。
随着计算机的计算速度和计算容量的大幅度提高,已有一些研究机构对Navier-stokes方程不作任何形式的模化和简化,利用极为细密的网格直接数值求解N-S 方程,这就是直接数值模拟(Directly Numerical Simulation,简称DNS)。
但目前普通的研究者尚无法实现DNS ,而介于DNS 和雷诺时均方法之间的大涡模拟(Large Eddy Simulation,简称LES)方法,由于其较雷诺时均理论更为精细且在常规的计算机上即可实现,因而已在计算流体力学(Computational Fluid Dynamics,简称CFD)界逐渐兴起并发展成为最有发展潜力的紊流数值求解方法[1-6]。
目前对温度振荡的研究多采用大涡模拟(LES)和直接模拟(DNS)方法,直接数值模拟(DNS)方法就是直接用瞬时的纳维斯托克斯方程对湍流进行数值计算。
直接数值模拟的最大好处是无需任何简化或近似湍流流动,理论上可以得到较准确的计算结果。
但是实验测试表明,直接数值模拟对计算机的要求非常高,目前的硬件条件无法满足大区域的计算,只能应用于小区域简单湍流计算,尚未用于大规模的工程计算,而LES方法相对来讲已得到成熟的发展。
因此,本文选取LES方法及Smagoringsky-Lilly亚格子尺度模型来模拟温度振荡现象。
大涡模拟是介于直接数值模拟(DNS)与Reyno1ds平均法(RANS)之间的一种湍流数值模拟方法。
在数值模拟湍流运动时,只计算比网格尺寸大的漩涡,通过纳维斯托克斯方程直接算出来,小尺度涡则可以用一个模型来表现出来,仅起到耗散作用,它们几乎是各项同性的。
因此LES方法旨在用非稳态的N-S方程模拟大尺度涡,但不直接计算小尺度涡,小涡对大涡的影响通过近似模型来考虑,这种影响可以用一个湍流粘性系数来描述。
大涡数值模拟的基本思想是直接计算大尺度脉动,用近似模型计算小尺度脉动,实现大涡数值模拟最重要的就是将直接大尺度脉动和小尺度脉动分离。
在LES 方法中,首先建立一个滤波函数,将流体的瞬态变量分为两个部分,即大尺度的平均分量和小尺度分量,将纳维斯托克斯方程作过滤,得到如下的方程:
21i j ij i i j i j j j
u u u u p t x x x x x τνρ∂∂∂∂∂+=-+-∂∂∂∂∂∂ (1)
0i i
u x ∂=∂ (2) 其中,ij i j i j u u u u τ=-,ij τ称为亚格子应力(SGS ),代表小尺度涡对求解运动方程的影响,是过滤掉的小尺度脉动和可解尺度湍流间的动量输运。
由于无法同时求出i u 和i j u u ,必须构造亚格子应力的封闭模式。
比较常用的模式是采用涡粘性概念假设,即
1
23ij i j i j t ij kk ij u u u u S τντδ=-=- (3)
式中,亚格子涡粘系数21/2()()t s ij ij C S S ν=∆,∆是过滤尺度,s C ∆相当于混合
长度。
s C 称为Smagorinsky 常数,这种简单的亚格子应力模型称为Smagorinsky 模式。