一阶纯滞后系统的不完全微分PID控制

一阶纯滞后系统的不完全微分PID控制
一阶纯滞后系统的不完全微分PID控制

目录

0.前言 (1)

1. 不完全微分PID算法设计 (2)

2.算法仿真研究 (3)

3.一阶纯滞后系统的不完全微分PID控制程序 (4)

4.实验结果 (7)

5.结论及总结 (8)

参考文献 (8)

课设体会 (10)

$

一阶纯滞后系统的不完全微分PID控制

沈阳航空航天大学北方科技学院

摘要:提出在PID算法中加入一阶惯性环节,通过不完全微分PID算法来改善干扰对系统的影响,用MATLAB仿真分析说明该算法在改善过程的动态性能方面具有良好的控制精度。在现代工业生产中,自动控制技术的使用越来越多,而随着工业和控制技术的发展,自动控制理论也在发展和完善,出现了多种控制方法如最基础的PID控制以及微分先行控制、中间微分控制、史密斯补偿控制、模糊控制、神经网络控制等。自动控制技术的发展在工业生产中遇到了一系列的问题:如在本文中所研究的一阶纯滞后系统的控制就是控制理论中一个较为重要的问题。由控制理论可知,无滞后控制系统(简单点说就是没有延迟)比有滞后系统更加稳定,更加容易控制。因此如何解决生产中滞后的问题在当前工业大生产中尤其重要。论文在常规PID控制也就是比例-积分-微分控制的基础上提出了三种控制方法即:微分先行控制、中间微分反馈控制、史密斯补偿控制。并对这三种方案进行Simulink 仿真,检测其抗干扰性能。为便于分析,论文将所得仿真结果以图形的方式给予显示出来,形象生动便于理解。

关键词:一阶纯滞后 ;不完全微分;仿真;PID

0.前言

在多数工业过程当中,控制对象普遍存在着纯时间滞后现象,如化工,热工过程等.

这种滞后时间的存在,会使系统产生明显的超调量和较长的调节时间,滞后严重时甚至会破坏系统的稳定性,在工业生产上产生事故.因此长期以来,纯滞后系统就一直是工业过程中的难控制对象,人们也对它进行了大量的研究.在现代工业生产和理论研究中出现了多种控制方法,如PID控制、PID改进控制、Smith 预估算法控制以及模

糊控制、神经网络控制等.而对于最基础的一阶纯滞后系统常用的控制方法主要是PID 控制、不完全微分PID 控制.

1. 不完全微分PID 算法设计

为了克服上述缺点, 在PID 算法中加一个一阶惯性环节(低通滤波器)G f (S )=1/[1+T f (S )],将低通滤波器直接加在微分环节上,构成如图1的不完全微分PID 控制:

式中,T 为采样时间,T f 为滤波器系数,T 1和T D 分别为积分时间常数和微分时间常数,令 ɑ=T f /(T f +T),则T/(T+T f )=1-ɑ;显然有1<α,1?α<1成立,不完全微分项为:

若e(k)为单位阶跃(即e(k)=1,k=0,1,2,∧)由此得出不完全微分项为:

可见,引入不完全微分后,微分输出按ɑk U D(0)的规律)(ɑ(1)逐渐衰减,所以不完全微分能有效地克服前述微分项的不足。

2.算法仿真研究

设被控对象为含纯滞后的一阶惯性环节,其传递函数为: G(S)=e-80S/50S+1

在对象的输出端加幅值为的随机干扰信号,

采样时间为20s 低通滤波器为G f(S)=1/(180S+1)

控制器取K P=,T1=55,T D=140

控制算法程序框图如图2;

图2 控制算法程序框图

3.一阶纯滞后系统的不完全微分PID控制程序PID的MATLAB仿真程序:

'

%PID Controler 不完全微分

clear all;

close all;

ts=20;

sys=tf([1],[60,1],'inputdelay',80);

dsys=c2d(sys,ts,'zoh');

[num,den]=tfdata(dsys,'v');

u_1=0;u_2=0;u_3=0;u_4=0;u_5=0;

ud_1=0;

y_1=0;y_2=0;y_3=0;

error_1=0;

ei=0;

for k=1:1:100

time(k)=k*ts;

rin(k)=;

%Linear model

yout(k)=-den(2)*y_1+num(2)*u_5;

#

D(k)=*rands(1);

yout(k)=yout(k)+D(k);

error(k)=rin(k)-yout(k);

%PID Controller with partly differential

ei=ei+error(k)*ts;

kc=;

ki=;

TD=140;

kd=kc*TD/ts;

Tf=180;

Q=tf([1],[Tf,1]); %Low Freq Signal Filter

M=2; %M=1不完全微分,

%M=2普通Pid控制!!

if M==1

%Using PID with Partial differential

alfa=Tf/(ts+Tf);

ud(k)=kd*(1-alfa)*(error(k)-error_1)+alfa*ud_1;

u(k)=kc*error(k)+ud(k)+ki*ei;

|

ud_1=ud(k);

elseif M==2 %Using Simple PID

u(k)=kc*error(k)+kd*(error(k)-error_1)+ki*ei; end

%Restricting the output of controller

if u(k)>=10

u(k)=10;

end

if u(k)<=-10

!

u(k)=-10;

end

u_5=u_4;u_4=u_3;u_3=u_2;u_2=u_1;u_1=u(k);

y_3=y_2;y_2=y_1;y_1=yout(k);

error_1=error(k);

end

figure(1);

plot(time,rin,'b',time,yout,'r');

xlabel('time(s)');ylabel('rin,yout');

~

4.实验结果

系统的设定输入值r(K)取单位阶跃函数,跟踪输出控制曲线如图3,比较采用普通PID算法的输出控制曲线图4。可以看出,尽管不完全微分PID算法要复杂一些,但能有效地改善干扰对系统的影响,改善系统的动态特性,提高了系统的控制精度。

图3 普通PID算法输出控制曲线

图4 不完全微分PID算法输出控制曲线

5.结论及总结

@

由仿真结果可以看出,采用不完全微分型PID算法,引入不完全微分后能有效克服普通PID的不足,尽管不完全微分算法比普通PID控制算法要复杂的多,但由于其良好的控制特性,近年来越来越广泛的应用。研究本课题的课题背景和课题综述即课题在工业生产中的应用有一个初步的了解,以及自动控制的背景知识,为后面纯滞后问题的提出和研究做好铺垫。

参考文献

[1] 《MATLAB仿真技术与应用》作者:张德丰杨文茵出版社:清华大学出版社出版年份:2012 年

[2] 《微型计算机控制技术》第二版作者:于海生丁军航潘松峰吴贺荣出版社:清华大学出版社出版年份:1999年

[3]金以慧. 过程控制[M].清华大学出版社,1993年:196-202

[4]潘新民,王燕芳.微型计算机控制技术[M].电子工业出版社,2002年:281-282

&

|

课设体会

通过本次课设,我学会了matlab软件的运用,对直线插补与逐点比较法平有了一个深刻的认识,遇到问题是,在解决问题的过程中使我对知识有了更深刻的认识,不再像知识把书本上的习题学来考试。

课程设计诚然是一门专业课,给我很多专业知识以及专业技能上的提升,同时又是一门讲道课,一门辩思课,给了我许多道,给了我很多思,给了我莫大的空间。同时,设计让我感触很深。使我对抽象的理论有了具体的认识。通过这次课程设计,我掌握了的识别和测试;熟悉了;了解了方法;以及如何提高的性能等等,掌握了的方法和技术,通过查询资料,也了解了原理。

我认为,在这学期的实验中,不仅培养了独立思考、动手操作的能力,在各种其它能力上也都有了提高。更重要的是,在实验课上,我们学会了很多学习的方法。而这是日后最实用的,真的是受益匪浅。要面对社会的挑战,只有不断的学习、实践,再学习、再实践。这对于我们的将来也有很大的帮助。以后,不管有多苦,我想我们都能变苦为乐,找寻有趣的事情,发现其中珍贵的事情。就像中国提倡的艰苦奋斗一样,我们都可以在实验结束之后变的更加成熟,会面对需要面对的事情。

回顾起此课程设计,至今我仍感慨颇多,从理论到实践,在这段日子里,可以说得是苦多于甜,但是可以学到很多很多的东西,同时不仅可以巩固了以前所学过的知识,而且学到了很多在书本上所没有学到过的知识。通过这次课程设计使我懂得了理论与实际相结合是很重要的,只有理论知识是远远不够的,只有把所学的理论知识与实践相结合起来,从理论中得出结论,才能真正为社会服务,从而提高自己的实际动手能力和独立思考的能力。在设计的过程中遇到问题,可以说得是困难重重,但可喜的是最终都得到了解决。

[2014年7月 11日完成]

一阶纯滞后系统的控制方法研究

题目一阶纯滞后系统的控制方法研究

摘要 在现代工业生产中,自动控制技术的使用越来越多,而随着工业和控制技术的发展,自动控制理论也在发展和完善,出现了多种控制方法如最基础的PID控制以及微分先行控制、中间微分控制、史密斯补偿控制、模糊控制、神经网络控制等。自动控制技术的发展在工业生产中遇到了一系列的问题:如在本文中所研究的一阶纯滞后系统的控制就是控制理论中一个较为重要的问题。由控制理论可知,无滞后控制系统(简单点说就是没有延迟)比有滞后系统更加稳定,更加容易控制。因此如何解决生产中滞后的问题在当前工业大生产中尤其重要。论文在常规PID控制也就是比例-积分-微分控制的基础上提出了三种控制方法即:微分先行控制、中间微分反馈控制、史密斯补偿控制。并对这三种方案进行Simulink仿真,检测其抗干扰性能。为便于分析,论文将所得仿真结果以图形的方式给予显示出来,形象生动便于理解。 关键词:自动控制,仿真,PID,复杂控制

The control method research of the first-order delay system Abstract The automatic control technology use more and more in modern industrial production, and as the industrial and control technology development, the automatic control theory are developed and perfected, a lot of controlled methods appear such as PID control which is the most basic control and differential first control, intermediate differential control, Smith compensation control, fuzzy control, nerve network control. Automatic control technology had experienced a series of questions in industrial production: as the first-order delay system control in this article which is a more important issue in the control theory. Known by the control theory,a no lag control system (simple say is no delay) is more stable and more easily controlled than a delay system . So it is particularly important of how to solve the lagging problem in the current industrial production . The articles propose three control methods such as differential first control 、the middle of differential feedback control、smith compensation control base the conventional PID control in the other word is proportional - integral - derivative controller .And simulate this three programs by the simulink, testing its interference fearure. For convenient analyze the simulation result , the paper of the study derive from the simulation results by the graphical ,which we can easy understand and clear know the mean in the article. Key Words:automatic control; simulation; PID; complicated control

过程控制系统习题答案

什么是过程控制系统?其基本分类方法有哪几种? 过程控制系统通常是指连续生产过程的自动控制,是自动化技术中最重要的组成部分之一。基本分类方法有:按照设定值的形式不同【定值,随动,程序】;按照系统的结构特点【反馈,前馈,前馈-反馈复合】。 热电偶测量的基本定律是什么?常用的冷端补偿方式有哪些 均质材料定律:由一种均匀介质或半导体介质组成的闭合回路中,不论截面和长度如何以及沿长度方向上的温度分布如何,都不能产生热电动势,因此热电偶必须采用两种不同的导体或半导体组成,其截面和长度大小不影响电动势大小,但须材质均匀; 中间导体定律:在热电偶回路接入中间导体后,只要中间导体两端温度相同,则对热电偶的热电动势没有影响; 中间温度定律:一支热电偶在两接点温度为t 、t0 时的热电势,等于两支同温度特性热电偶在接点温度为t 、ta和ta、t0时的热电势之代数和。只要给出冷端为0℃时的热电势关系,便可求出冷端任意温度时的热电势,即 由于冷端温度受周围环境温度的影响,难以自行保持为某一定值,因此,为减小测量误差,需对热电偶冷端采取补偿措施,使其温度恒定。冷端温度补偿方法有冷端恒温法、冷端补偿器法、冷端温度校正法和补偿导线法。 为什么热电阻常用三线制接法?试画出其接线原理图并加以说明。 电阻测温信号通过电桥转换成电压时,热电阻的接线如用两线接法,接线电阻随温度变化会给电 桥输出带来较大误差,必须用三线接法,以抵消接线电阻随温度变化对电桥的影响。 对于DDZ-Ⅲ型热电偶温度变送器,试回答: 变送器具有哪些主要功能? 变送器的任务就是将各种不同的检测信号转换成标准信号输出。 什么是变送器零点、零点迁移调整和量程调整? 热电偶温度变送器的输入电路主要是在热电偶回路中串接一个电桥电路。电桥的功能是实现热电偶的冷端补偿和测量零点的调整。

《过程控制系统》-时间滞后控制系统

《过程控制系统》
第七章 时间滞后控制系统
Time-delay control system
2016年4月
东北大学

《过程控制系统》
第七章 时间滞后控制系统
7.1 7.2 7.3
概述 改进型常规控制方案 大滞后预估补偿方案 采样控制 三种方案比较
7.4
7.5

第七章时间滞后控制系统
《过程控制系统》
7.1 概述
滞后时间对控制质量的影响: 当纯滞后存在于扰动通道时,仅使系统的输出对扰动的反应延迟了一 个纯滞后时间; 当容量滞后存在于扰动通道时,容量滞后时间越大,系统抗干扰能力 越强。 当控制通道存在纯滞后时,调节器的控制作用将要滞后一个纯滞后时 间,从而使超调量增加,被控参数的最大偏差增大,引起系统的动态指 标下降,并且纯滞后时间的增大,也不利于闭环系统的稳定性; 控制通道的容量滞后同样会造成控制作用不及时,使控制质量下降, 但是容量滞后的影响比纯滞后的影响和缓。若引入微分作用,对于克服 容量滞后对控制质量的影响有显著的效果。 过程纯滞后对控制质量的影响,取决于 τ
T
的大小。
通常,当 τ T > 0.5 时,应作为大纯滞后过程,这时常规控制往往不能满足控制需求。

第七章时间滞后控制系统
《过程控制系统》
7.2 改进型常规控制方案
7.2.1
微分先行控制方案 中间反馈控制方案
7.2.2

第七章时间滞后控制系统
《过程控制系统》
7.2.1 微分先行控制方案(differential forward control)
微分先行控制系统, 其随动特性和抗干扰特性 分别为: Y ′( s ) Wc1 ( s )Wo ( s ) = R ( s ) 1 + Wc1 ( s )Wc 2 ( s )Wo ( s ) Y ′( s ) Wo ( s ) = F ( s ) 1 + Wc1 ( s )Wc 2 ( s )Wo ( s ) 常规PID控制系统,其随动特 性和抗干扰特性分别为: Y ( s) Wc1 ( s )Wc 2 ( s )Wo ( s ) = R( s ) 1 + Wc1 ( s )Wc 2 ( s )Wo ( s ) Y (s) Wo ( s ) = F ( s ) 1 + Wc1 ( s )Wc 2 ( s )Wo ( s )
R E
R
E
-
Wc1 ( s ) 1 K c (1 + ) Ti s
Wc 2 ( s ) 1 + Td s
F
Wo ( s ) Wo′ ( s )e ?τs Y
常规PID控制方案
Wc1 ( s) 1 K c (1 + ) Ti s F Wo ( s ) Wo′ ( s )e ?τs Wc 2 ( s) 1 + Td s Y′
-
微分先行控制方案
常规PID控制系统和微分先行控制系统 具有相同的特征方程,可见,两系统过渡 过程的动态稳定性相同.

一阶纯滞后系统的不完全微分PID控制

目录 0.前言 (1) 1. 不完全微分PID算法设计 (2) 2.算法仿真研究 (3) 3.一阶纯滞后系统的不完全微分PID控制程序 (4) 4.实验结果 (7) 5.结论及总结 (8) 参考文献 (8) 课设体会 (10)

一阶纯滞后系统的不完全微分PID控制 沈阳航空航天大学北方科技学院 摘要:提出在PID算法中加入一阶惯性环节,通过不完全微分PID算法来改善干扰对系统的影响,用MATLAB仿真分析说明该算法在改善过程的动态性能方面具有良好的控制精度。在现代工业生产中,自动控制技术的使用越来越多,而随着工业和控制技术的发展,自动控制理论也在发展和完善,出现了多种控制方法如最基础的PID控制以及微分先行控制、中间微分控制、史密斯补偿控制、模糊控制、神经网络控制等。自动控制技术的发展在工业生产中遇到了一系列的问题:如在本文中所研究的一阶纯滞后系统的控制就是控制理论中一个较为重要的问题。由控制理论可知,无滞后控制系统(简单点说就是没有延迟)比有滞后系统更加稳定,更加容易控制。因此如何解决生产中滞后的问题在当前工业大生产中尤其重要。论文在常规PID控制也就是比例-积分-微分控制的基础上提出了三种控制方法即:微分先行控制、中间微分反馈控制、史密斯补偿控制。并对这三种方案进行Simulink 仿真,检测其抗干扰性能。为便于分析,论文将所得仿真结果以图形的方式给予显示出来,形象生动便于理解。 关键词:一阶纯滞后 ;不完全微分;仿真;PID 0.前言 在多数工业过程当中,控制对象普遍存在着纯时间滞后现象,如化工,热工过程等. 这种滞后时间的存在,会使系统产生明显的超调量和较长的调节时间,滞后严重时甚至会破坏系统的稳定性,在工业生产上产生事故.因此长期以来,纯滞后系统就一直是工业过程中的难控制对象,人们也对它进行了大量的研究.在现代工业生产和理论研究中出现了多种控制方法,如PID控制、PID改进控制、Smith 预估算法控制以及模糊

纯滞后控制实验

实验三 纯滞后控制实验 1. 实验目的与要求 (1) 掌握应用达林算法进行纯滞后系统D(z)的设计; (2) 掌握纯滞后系统消除振铃的方法。 2. 实验设备 (1) 硬件环境 微型计算机一台,P4以上各类微机 (2) 软件平台 操作系统:Windows 2000以上; 仿真软件工具:MATLIB5.3以上。 3. 实验原理 在一些工业过程(如热工、化工)控制中,由于物料或能量的传输延迟,许多被控制对象具有纯滞后性质。例如,一个用蒸汽控制水温的系统,蒸汽量的变化要经过长度为L 的路程才能反映出来。这样,就造成水温的变化要滞后一段时间τ(v v L ,=τ是蒸汽的速度)。对象的这种纯滞后性质常会引起系统产生超调和振荡。因此,对于这一系统,采用一般的随动系统设计方法是不行的,而用PID 控制往往效果也欠佳。 本实验采用达林算法进行被控制对象具有纯滞后系统设计。设被控对象为带有纯滞后的一阶惯性环节或二阶惯性环节,达林算法的设计目标是使整个闭环系统所期望的传递函数Φ(s),相当于一个延时环节和一个惯性环节相串联,即 1 )(+=Φ-s e s s τθ,NT =θ 该算法控制将调整时间的要求放在次要,而超调量小甚至没有放在首位。控制原理如图1,其中:采样周期T=0.9秒,期望传递函数τ=0.5秒,被控对象 1 23)(8.1+=-s e s G s ;输入信号为单位阶跃信号。

图1 纯滞后系统控制原理图 应用达林算法进行纯滞后系统设计) D控制器。 (z 4.实验内容与步骤 (1)按照纯滞后控制系统要求设计) D; (z (2)按照系统原理图,在simulink下构造系统结构图模型,观察输入输出波形,标明参数,打印结果; (3)尝试用M文件实现dalin算法控制。 5.实验结果 simulink框图(用simulink实现dalin算法): Array 图2 纯滞后控制设计

大纯滞后过程特性Smith预估控制

过程控制系统课程设计题目之十三 大纯滞后过程特性Smith 预估控制 对于一个大纯滞后过程特性的对象:s PC e s s s G 10) 12)(3(1 )(-++= ,试设计一 个Smith 预估控制系统,并用SIMULINK 和MATLAB 程序仿真实现。当系统设定值R(s)为1时,调整PI 参数,使过渡过程尽可能满意。(假设检测变送环节的传递函数为1);比较在预估模型有偏差时,在相同的输入条件下,与预估模型无偏差情况的仿真结果;如果系统有扰动信号F(s)为单位阶跃信号或SINS 信号时,比较系统的仿真结果;如有可能,再试设计一种改进的Smith 预估器。 实验报告要求: 1、供系统仿真图; 2、按照题目要求,给出每个实验的仿真结果图; 3、根据以上仿真结果,分析)(s G PC 有滞后与无滞后情况下,PI 参数整定的特点。

大纯滞后过程特性Smith预估控制 摘要:Matlab 是一套高性能的数值计算和可视化软件。它集数值分析、矩阵计算、信号分析与图形显示为一体,构成的一个方便的、界面友好的用户环境。历经二十几年的发展和竞争,现已成为国际公认的最优秀的科技应用软件。Matlab 最突出的特点就是简洁、它用直观的、符合人们思维习惯的代码、代替C 语言和FORTRAN 语言的冗长代码。为此,Matlab 获得了对应用学科的极强适应力。在国内外高校、Matlab 已成为大学生,硕士生、博士生必须掌握的基本技能。在设计研究学位和工业部门,Matlab 已经成为研究和解决各种具体工程问题的一种标准软件。Matlab 软件广泛用于数字信号分析,系统识别,时序分析与建模,神经网络、动态仿真等方面有着广泛的应用。利用Matlab 这个最优秀的科技软件,把计算机技术与信号分析紧密地结合起来,对信号进行分析处理仿真研究,经实例验证,取得了非常好的效果,具有一定的实用价值。本文控制系统为研究主体,提出一种Smith 预估控制算法,通过设计自适应非线性反馈回路来自适应调节参数,从而满足对象参数大幅度变化的要求。 关键词:Matlab;纯滞后;Smith 预估控制器;Simulink Pure time-delay system control algorithm of Smith Abstract:Matlab is a software.of high performance of numerical calculation and visualization It get numerical analysis, calculation and signal analysis and graphic display together, constitute a convenient, interface, user friendly environment. After 20 years of development and competition, has become internationally recognized the best technology application software. The most prominent feature of Matlab is concise, it use the people's thinking and habits of the visual code, instead of C language and FORTRAN language lengthy code.So, Matlab acquire the subject of application for science. Matlab,has become acollege students’, masters’ or doctors’ basic skills which must be grasp of both at home and abroad ,. In the design research degree and industrial department, Matlab has become the research and solve specific engineering problems are a standard software. Matlab software widely used in digital signal analysis, system identification, timing analysis and modeling, neural network, dynamic simulation, etc in a wide range of applications. The best use of Matlab software technology, computer technology and signal analysis closely together, the signal analysis simulation, and achieved very good results since it has certain practical value. This control system as a main body of research, and put forward a II

过程控制工程课后习题参考答案-前三章

过程控制工程课后习题参考答案-前三章

过程控制工程 第一章单回路控制系统 1.1 何谓控制通道?何谓干扰通道?它们的特性对控制系统质量有什么影响? 控制通道——是指操纵变量与被控变量之间的信号联系; 干扰通道——是指干扰作用与被控变量之间的信号联系。 (1)控制通道特性对系统控制质量的影响:(从K、T、τ三方面) 控制通道静态放大倍数越大,系统灵敏度越高,余差越小。但随着静态放大倍数的增大,系统的稳定性变差。 控制通道时间常数越大,经过的容量数越多,系统的工作频率越低,控制越不及时,过渡过程时间越长,系统的质量越低,但也不是越小越好,太小会使系统的稳定性下降,因此应该适当小一些。 控制通道纯滞后的存在不仅使系统控制不及时,使动态偏差增大,而且还还会使系统的稳定性降低。 (2)干扰通道特性对系统控制质量的影响:

(从K、T、τ三方面) 干扰通道放大倍数越大,系统的余差也越大,即控制质量越差。 干扰通道时间常数越大,阶数越高,或者说干扰进入系统的位置越远离被控变量测量点而靠近控制阀,干扰对被控变量的影响越小,系统的质量则越高。 干扰通道有无纯滞后对质量无影响,不同的只是干扰对被控变量的影响向后推迟一个 。 纯滞后时间τ 1.2 如何选择操纵变量? 1)考虑工艺的合理性和可实现性; 2)控制通道静态放大倍数大于干扰通道静态放大倍数; 3)控制通道时间常数应适当小一些为好,但不易过小,一般要求小于干扰通道 时间常数。干扰动通道时间常数越大 越好,阶数越高越好。 4)控制通道纯滞后越小越好。 1.3 控制器的比例度δ变化对控制系统的控制精度有何影响?对控制系统的动态质量有何影响? 比例度δ越小,系统灵敏度越高,余差越小。

基于补偿控制大滞后过程控制系统研究

doi:10.3969/j.issn.1671-1041.2011.03.003 基于补偿控制大滞后过程控制系统研究 孟苹苹,谢文滔 (西南石油大学,成都610500) 摘要:在工业过程控制中,传统PID控制方式用于较复杂被控对象时,在超调量与稳定性等方面都难以获得令人满意的结果。本论文以内模控制器作为研究对象,完成了内模控制器中低通滤波器的设计与Matlab仿真研究,得到了不同情形下的频率特性曲线,同时,通过与传统PID控制对比,对不同类型控制方式的特点进行了分析研究,得到了有意义的研究结论,对实际工业过程控制具有一定实用参考价值。 关键词:内模控制;大滞后过程;Matlab仿真;PID控制 中图分类号:TP273文献标志码:A Research on process control system of large time delay based on compensation control MENG Ping-ping,XIE Wen-tao (Southwest Petroleum University,Chengdu610500,China) Abstract:In industrial process control,when PID control,a traditional control model was applied to some complicated controlled objects,usually control effect is not satisfied as good as expected.In this paper,by focusing study on internal model controller,design and Matlab simulation of the low-pass filter,a very important component in the internal model controller were completed.Amplitude and frequency characteristic curve were drawn under different cases.By compared with PID in controlling characteristics,meaningful conclusions were conducted which might be applicably valuable to in-dustrial process control in practice. Key words:internal model control;great lag process;Matlab simulation;PID control 0引言 过程控制技术近年来发展迅速,特别是在计算机,网络通信和先进控制理论的带动下,过程控制的检测,执行仪表及控制系统日益向智能化方向发展[1]。 在化工、炼油、冶金等一些复杂工业过程中,广泛存在着较大的纯滞后。纯滞后往往是由于物料或能量需要经过一个传输过程而形成的,这类时间滞后系统的控制是世界公认的控制难题。由于纯滞后的存在,使得被控量不能及时地反映系统所受的扰动,从而产生明显的超调,使得控制系统的稳定性变差,调节时间延长。 传统的过程控制系统中,主要运用传统的PID控制,Smith控制,对于被控对象简单的系统,可以得到预期的效果,但是遇到大滞后的被控对象,其控制效果难以达到预定的效果,对于滞后系统,其τ/T>0.5,在这种情况下,就需要提出一种先进的PID控制器,使其在大滞后环境下,也能得到预期的控制效果。在本文中采用直流无刷电机作为被控对象[2],通过仿真说明采用内模控制的电机系统控制精度高、响应快、稳定性和鲁棒性良好。 1内模控制技术[3-4] 1.1内模控制技术简介 内模控制是在模型没有误差,而且可得到这个假设条件下的理想反馈控制。内模控制系统的典型框图如图1所示。 图1内模控制结构图 在实际工作中,模型与实际过程总会存在误差。针对上述情况,设计内模控制器时可首先将过程模型作因式分解如下: G ^ p (s)=G ^ p+ G ^ p- (1) □研究报告□仪器仪表用户 8 EIC Vol.182011No.3欢迎光临本刊网站http://www.eic.com.cn

Smith纯滞后系统控制器分析与设计

绪论 在现代科学的众多领域中,纯滞后对象的控制一直是人们研究的重要课题。 早期的研究主要是运用线性系统的经典方法对纯滞后系统进行分析设计。譬如运用Nyquist法分析纯滞后系统的稳定性问题,用Pade近似方法将纯滞后环节近似为线性系统进行根轨迹的分析综合等。但总的来说,当系统滞后时间较小时,只要我们设计时给予充分的考虑就可以了。这时实际的控制效果不会与设计要求相去甚远。对于滞后时间相对较大的系统,Smith提出了预估补偿的方法,通过补偿环节来消除或减弱闭环系统中纯滞后因素的影响。只要对象的模型较精确,Smith方法的效果是比较理想的。 上世纪80年代起,随着自动控制理论、实践的深入发展和广泛应用,最优控制、鲁棒控制、变结构控制、H 控制以及预测控制等现代控制理论也逐步地应用到纯滞后的系统中来,并取得了一定的成果。 近几年来,以模糊控制技术、神经网络、专家系统和遗传算法为主要内容的智能控制技术,得到了充分的发展和广泛的应用。尤其是它与传统的控制技术相结合,成功地解决了采用传统控制技术难以控制的控制对象(特别是对象模型难定的情况),在工程应用中有着强大的生命力并得到了广泛的应用。 本文通过纯滞后工艺过程描述了纯滞后系统的特性,从这个特性可以知道被控对象大多数都有纯滞后特性。根据纯滞后控制系统的基本特点和纯滞后控制系统的设计以及纯滞后控制系统控制器参数整定等基础知识,并通过实例常规模糊控制器在纯滞后系统中的应用来理解和深化对纯滞后控制系统的理解。

1 纯滞后理论概述 1.1 纯滞后相关定义及其工艺过程 1.1.1 纯滞后相关定义 所谓纯滞后是一种时间上的延迟,这种延迟是从引起动态要素变化的时刻到输出开始变化的时刻的这一段时间。存在时间延迟的对象就称为具有纯滞后的对象,简称为纯滞后对象或滞后对象,实际被控对象大多数都有纯滞后特性。 被控对象时滞与其瞬态过程时间常数值比较大,采用通常的控制策略时,不能实现系统的精度控制,甚至会造成系统不稳定。通常认为当被控对象时滞与其瞬态过程时间常数之比大于0.3时,被控系统为纯滞后系统。滞后是过程控制系统中的重要特征,滞后可导致系统不稳定。有些系统滞后较小这时人们为了简化控制系统设计,忽略了滞后;但在滞后较大时,不能忽略,当被控对象的时滞与其瞬态过程时间常数之比大于0.3时,被控系统应按纯滞后系统设计。这类控制过程的特点是:当控制作用产生后,在滞后时间范围内,被控参数完全没有响应,使得系统不能及时随被控制量进行调整以克服系统所受的扰动。因此,这样的过程必然会产生较明显的超调量和需要较长的调节时间。所以,含有纯延迟的过程被公认为是较难控制的过程,其难控制程度随着纯滞后时间与整个过程动态时间参数的比例增加而增加。 但总的来说,当系统滞后时间较小时,只要我们设计时给予充分的考虑就可以了。对于滞后时间相对较大的系统,Smith提出了预估补偿的方法,通过补偿环节来消除或减弱闭环系统中纯滞后因素的影响。 1.1.2 纯滞后工艺过程 在工业生产过程中,极大部分工艺过程的动态特性往往是既包含一部分纯滞后特性又包括一部分惯性特性,这种工艺过程就称为具有纯滞后的工艺过程。譬如对于大型档案馆的温湿度控制,就是存在纯滞后较大的实际对象。在长沙地区,夏天的空气相对湿度一般而言是比较大的,在档案馆进行适当的除湿操作是非常有必要的,而在进行除湿动作以后,档案馆内的相对湿度要相应得到降低则需要一段时间的延迟。当然,对档案馆内温度的控制也是如此。纯滞后环节的输入输出关系(如图1-1)所示:

大纯滞后在对象控制方法应用研究

大纯滞后在对象控制方法应用研究 摘要:针对一般工业过程中存在的大纯滞后问题,提出了一种克服大纯滞后的预测控制方法。利用递推最小二乘法进行参数估计,获得对象的一阶简化模型,提出了一种Smith预估神经元控制器设计方法,再用构建的神经网络预测模型预测出未来相应时刻的系统输出,然后用该输出来调整当前时刻的控制量,从而达到预期的控制目的,仿真结果验证了该方法的有效性。 关键词:神经网络;预测控制;大纯滞后 0 前言 一般工业过程中都具有非线性大纯滞后的特点,特别是滞后较大(即额定滞后S/T>0.5)的系统,常规控制往往无能为力。采用Smith控制是解决对象大纯滞后问题的有效方法,但它需要建立对象的精确的数学模型,而且鲁棒性和抗干扰能力较差,面向对象的神经元模型及其学习算法具有算法简单、适应性好等优点,但是对于大纯滞后过程,由于被控量的偏差不能及时反映控制量的变化影响了神经元的控制效果。 预测控制是上世纪70年代兴起的一种新控制算法,在工业上已被广泛应用,其主要思想是:在当前时刻,基于过程的动态模型预测未来一定时域内每个采样周期(或按一定间隔)的过程输出,即可以根据当前的输入预测未来多个时刻的输出,从而根据控制要求调整下一时刻的控制量,有利于对纯滞后系统的控制,将预测函数控制应用于大纯滞后温度控制系统,减少了稳态静差,但超调量偏大,要有一种具有自补偿功能的非线性预测反馈校正法,提高了系统的鲁棒性,但该方法限于纯滞后时间已知的情况下,对于纯滞后参数未知或者改变的情况未加讨论。 根据上述情况提出一种用神经网络辨识系统的滞后时间参数,用预测控制算法实现对大纯滞后对象的控制方法。其中预测模型是用神经网络逼近被控的动态对象而建立的,从而无需知道系统的精确数学模型。 1 神经元模型及控制系统 1.1神经元模型 针对将神经网络直观套用于自动控制中存在的局限性,提出了一种面向控制的神经元模型它的输出u(t)可以表示为

基于Matlab的纯滞后控制系统设计.doc

实验三 基于Matlab 的纯滞后控制系统设计 一、实验目的 1) 学习使用simulink 进行Smith 预估补偿控制的设计方法。 2) 学习使用simulink 实现Dahlin 算法的设计方法。 二、实验原理 1. Smith 预估补偿控制的设计 已知被控对象传递函数: 302 3()2s +60s+1 s G s e -= (1) 应用Smith 预估补偿算法设计控制系统,并采用PID 控制。原理图参见课本P127图4-21和P128图4-22。 表1衰减曲线法整定控制器参数经验公式 2. Dahlin 算法的设计 已知被控对象传递函数: 102 ()100s+1 s G s e -= (2) 采样周期为2s ,选择期望闭环传递函数中的时间常数分别为T τ=5s ,10s ,20s ,设计Dahlin 控制器。原理图参见课本P129 4.3.2小节。 三、实验内容

1)按式(1)建立系统的Simulink模型,应用Smith预估补偿算法设计控制系统,消除滞后时 间的影响,并整定好PID参数。与同一PID控制器对无滞后的被控对象控制结果相比较,记录实验曲线。 据Smith预估补偿算法建立滞后系统的Simulink模型原理图: 图1 系统的Simulink模型仿真图 图2 控制系统整定好PID参数的曲线图 b)与同一PID控制器对无滞后的被控对象控制结果相比较 图3 同一PID控制器对无滞后的被控对象控制Simulink仿真图

图4 同一PID控制器对无滞后系统的仿真曲线图 2)与同一被控对象不带Smith预估补偿器的PID控制系统相比较,观察仿真结果,记录实验曲线。 不带Smith预估补偿器的PID控制系统Simulink仿真图如下 仿真图如下: 图5 不带 Smith预估补 偿器的PID 控制系统曲 线图 当加入离散 控制器和零 阶保持器时,

典型大惯性过程的控制方法综述

典型大惯性过程的控制方法 在工业生产过程中,经常由于物料或能量的传输带来时间延迟的问题,即被控对象具有不同程度的纯滞后,不能及时反映系统所受的扰动。此外,测量信号到达控制器,即使执行机构接受信号后立即动作,也需要经过一个滞后时间才能影响到被控制量实现控制。该种类型过程必然会产生较大的超调和较长的调节时间,使过渡过程变坏,系统的稳定性降低。设τ为纯滞后时间, T 为对象的容量滞后时间,当τ/T 增加时,过程中的相位滞后增加而使超调增大,甚至会因为严重超调而出现生产安全事故。通常将纯滞后时间与过程的时间常数之比大于0. 3的过程认为是具有大滞后的过程。即: P T =T 传统的PID 控制一般不能解决过程控制上的大滞后问题,具有大滞后的过程控制被公认为是较难的控制问题,一直以来都是过程控制研究的热点。加热装置的炉温控制具有典型的时间滞后特点。 基于前人研究成果,本文对适用于大惯性过程中的典型控制算法进行总结,并适当的列举当下较为突出的相关控制策略,做出相应的说明和阐述。 一、传统控制的改进 1. 串级控制 由于系统纯延迟时间较长,而且扰动的因素多,单回路反馈控制系统不能满足控制品质的要求。为了提高控制质量,采用串级控制系统,运用副回路的快速作用,有效地提高控制质量,满足生产要求。

串级控制系统采用两套检测变送器和两个调节器,前一个调节器的输出作为后一个调节器的设定,后一个调节器的输出送往调节阀。若选择锅炉为大延迟对象,则串级控制方框图可以设计成如图1-1所示。 y 图1-1 整个系统包括两个控制回路,主回路和副回路。副回路由副变量检测变送、副调节器、调节阀和副过程构成;主回路由主变量检测变送、主调节器、副调节器、调节阀、副过程和主过程构成。 前一个调节器称为主调节器,它所检测和控制的变量称主变量(主被控参数),即工艺控制指标;后一个调节器称为副调节器,它所检测和控制的变量称副变量(副被控参数),是为了稳定主变量而引入的辅助变量。 分析可以看到:在串级控制系统中,由于引入了一个副回路,不仅能及早克服进入副回路的扰动,而且又能改善过程特性。副调节器具有“粗调”的作用,主调节器具有“细调”的作用,从而使其控制品质得到进一步提高。 2.Smith预估控制 为了解决纯延迟对象的大滞后控制问题,Smith提出了一种纯滞后补偿方法,被称为Smith预估器。该方法结构简单、概念明确,是一种得到广泛应用的时滞过程控制方案。传统的Smith预估控制方框图如图1-2所示。

过程控制习题答案

第一章单回路控制系统 1.1 何谓控制通道?何谓干扰通道?它们的特性对控制系统质量有什么影响? 控制通道——是指操纵变量与被控变量之间的信号联系; 干扰通道——是指干扰作用与被控变量之间的信号联系。 (1)控制通道特性对系统控制质量的影响:(从K、T、τ三方面) 控制通道静态放大倍数越大,系统灵敏度越高,余差越小。但随着静态放大倍数的增大,系统的稳定性变差。 控制通道时间常数越大,经过的容量数越多,系统的工作频率越低,控制越不及时,过渡过程时间越长,系统的质量越低,但也不是越小越好,太小会使系统的稳定性下降,因此应该适当小一些。 控制通道纯滞后的存在不仅使系统控制不及时,使动态偏差增大,而且还还会使系统的稳定性降低。 (2)干扰通道特性对系统控制质量的影响:(从K、T、τ三方面) 干扰通道放大倍数越大,系统的余差也越大,即控制质量越差。 干扰通道时间常数越大,阶数越高,或者说干扰进入系统的位置越远离被控变量测量点而靠近控制阀,干扰对被控变量的影响越小,系统的质量则越高。 干扰通道有无纯滞后对质量无影响,不同的只是干扰对被控变量的影响向后推迟一个纯滞后时间τ0。 1.2 如何选择操纵变量? 1)考虑工艺的合理性和可实现性; 2)控制通道静态放大倍数大于干扰通道静态放大倍数; 3)控制通道时间常数应适当小些为好,但不易过小,一般要求小于干扰通道时间常数。干扰动通道时间常数越大越好,阶数越高越好。 4)控制通道纯滞后越小越好。 1.3 控制器的比例度δ变化对控制系统的控制精度有何影响?对控制系统的动态质量有何影响? 比例度δ越小,系统灵敏度越高,余差越小。随着δ减小,系统的稳定性下降。 1.5图1-42为一蒸汽加热设备,利用蒸汽将物料加热到所需温度后排出。试问:影响物料出口温度的 主要因素有哪些?如果要设计一温度控制系统,你认为被控变量与操纵变量应选谁?为什么?如果物 料在温度过低时会凝结,应如何选择控制阀的开闭形式及控制器的正反作用? 答:影响物料出口温度的因素主要有蒸汽的流量和温度、搅拌器的搅拌速度、物料的流量和入口温度。 被控变量应选择物料的出口温度,操纵变量应选择蒸汽流量。物料的出口温度是工艺要求的直接质量 指标,测试技术成熟、成本低,应当选作被控变量。可选作操纵变量的因数有两个:蒸汽流量、物料 流量。后者工艺不合理,因而只能选蒸汽流量作为操纵变量。控制阀应选择气关阀,控制器选择正作用。 1.6 图1-43为热交换器出口温度控制系统,要求确定在下面不同情况下控制阀的开闭形式及控制器的正反作用: 被加热物料在温度过高时会发生分解、自聚; 被加热物料在温度过低时会发生凝结; 如果操纵变量为冷却水流量,该地区最低温度 在0℃以下,如何防止热交换器被冻坏。 答:控制阀选气开阀,选反作用控制器。 控制阀选气关阀,选正作用控制器。 控制阀选气关阀,选反作用控制器。 1.7 单回路系统方块图如图1-44所示。试问当系统中某组成环节的参数发生变化时,系统质量会有何变化?为什么? (1)若T0增大;(2)若τ0增大;(3)若Tf增大;(4) 若τf增大。 答:(1)T0 增大,控制通道时间常数增大,会使系统的工作频 率降低,控制质量变差; (2)τ0 增大,控制通道的纯滞后时间增大,会使系统控制不 及时,动态偏差增大,过渡过程时间加长。 (3)Tf 增大,超调量缩小1/Tf倍,有利于提高控制系统质量; (4)τ f 增大对系统质量无影响,当有纯滞后时,干扰对被控 变量的影响向后推迟了一个纯滞后时间τ f 。 第二章串级控制系统 2.1 与单回路系统相比,串级控制系统有些什么特点? (1) 串级系统由于副回路的存在, 使等效副对象时间常数减小,改善了对象的特性,使系统工作频率提高。

简述基于Matlab的纯滞后控制系统设计

实验三 基于Matlab 的纯滞后控制系统设计 一、实验目的 1) 学习使用simulink 进行Smith 预估补偿控制的设计方法。 2) 学习使用simulink 实现Dahlin 算法的设计方法。 二、实验原理 1. Smith 预估补偿控制的设计 已知被控对象传递函数: 302 3()2s +60s+1 s G s e -= (1) 应用Smith 预估补偿算法设计控制系统,并采用PID 控制。原理图参见课本P127图4-21和P128图4-22。 表1衰减曲线法整定控制器参数经验公式 2. Dahlin 算法的设计 已知被控对象传递函数: 102 ()100s+1 s G s e -= (2) 采样周期为2s ,选择期望闭环传递函数中的时间常数分别为T τ=5s ,10s ,20s ,设计Dahlin 控制器。原理图参见课本P129 4.3.2小节。 三、实验内容

1)按式(1)建立系统的Simulink模型,应用Smith预估补偿算法设计控制系统,消除滞后时 间的影响,并整定好PID参数。与同一PID控制器对无滞后的被控对象控制结果相比较,记录实验曲线。 据Smith预估补偿算法建立滞后系统的Simulink模型原理图: 图1 系统的Simulink模型仿真图 图2 控制系统整定好PID参数的曲线图 b)与同一PID控制器对无滞后的被控对象控制结果相比较 图3 同一PID控制器对无滞后的被控对象控制Simulink仿真图

图4 同一PID控制器对无滞后系统的仿真曲线图 2)与同一被控对象不带Smith预估补偿器的PID控制系统相比较,观察仿真结果,记录实验曲线。 不带Smith预估补偿器的PID控制系统Simulink仿真图如下 仿真图如下: 图5 不带 Smith预估补 偿器的PID 控制系统曲 线图 当加入离散 控制器和零 阶保持器时, 观察和比较 实验图。

08011331计控实验-纯滞后系统大林控制

东南大学自动化学院 实验报告 课程名称:计算机控制技术基础 第四次实验 实验名称:具有纯滞后系统的大林控制 院(系):自动化学院专业:自动化 姓名:郭劲廷学号:08011331 实验室:常州楼419 实验组别: 同组人员:实验时间:2014 年 4 月28 日评定成绩:审阅教师:

实验五 具有纯滞后系统的大林控制 一、实验目的 1.了解大林控制算法的基本原理; 2.掌握用于具有纯滞后对象的大林控制算法及其在控制系统中的应用。 二、实验设备 1.THBDC-1型 控制理论·计算机控制技术实验平台 2.PCI-1711数据采集卡一块 3.PC 机1台(安装软件“VC++”及“THJK_Server ”) 三、实验原理 在生产过程中,大多数工业对象具有较大的纯滞后时间,对象的纯滞后时间τ对控制系统的控制性能极为不利,它使系统的稳定性降低,过渡过程特性变坏。当对象的纯滞后时间 τ与对象的惯性时间常数T1之比,即τ/T1≥0.5时,采用常规的比例积分微分(PID )控制, 很难获得良好的控制性能。长期以来,人们对纯滞后对象的控制作了大量的研究,比较有代表性的方法有大林算法和纯滞后补偿(Smith 预估)控制。 本实验以大林算法为依据进行研究,大林算法的被控对象是带纯滞后的一阶或二阶惯性环节。即 1 )(1+= -s T Ke s G s τ 或 ) 1)(1()(21++=-s T s T Ke s G s τ 本实验被控对象为带纯滞后的一阶惯性环节。 式中:τ为纯滞后时间,为方便起见假设为采样周期T 的整数倍 NT =τ 大林算法的主要设计目标是系统在单位阶跃输入作用下,整个闭环系统的传递函数相当于一个延迟环节和一个惯性环节相串联。即 1 )(0+= -s T e s H s τ (5-1) 要求整个闭环系统的纯滞后时间等于被控对象的纯滞后时间。 与H(s)相对应的闭环系统脉冲传递函数为 01()[]1 sT NTs e e H z Z s T s ---=?+ 101(1)[] (1)N z z Z s T s --=-+ 0 1 1 11(1)(1) (1)(1) T T N T T e z z z z e z - -------=---00 (1) 1 (1)1T T N T T e z e z - -+- --= - (5-2)

相关文档
最新文档