自动控制原理第4章根轨迹

合集下载

自动控制原理 第四章根轨迹

自动控制原理 第四章根轨迹

第四章根轨迹法4-1 根轨迹法的基本概念4-2 常规根轨迹的绘制法则4-3 广义根轨迹4-1 根轨迹法的基本概念一、根轨迹的概念根轨迹:系统中某个参数从零到无穷变化时,系统闭环特征根在s平面上移动的轨迹。

根指的是闭环特征根(闭环极点)。

根轨迹法是根据开环传递函数与闭环传递函数的关系,通过开环传递函数直接分析闭环特征根及系统性能的图解法。

K =0 s 1=0 s 2=-40 < K <1s 1 s 2为不等的负实根K =1s 1=-2 s 2=-21 < K < ∞s 1s2 实部均为-2由根轨迹可知:1)当K =0时,s 1=0,s 2=-1,这两点恰是开环传递函数的极点,同时也是闭环特征方程的极点.2)当0<K < 1 时,s 1,2都是负实根,随着k 的增长,s 1从s 平面的原点向左移,s 2从-1点向右移。

3) 当K = 1时, s 1,2= -2,两根重合在一起,此时系统恰好处在临界阻尼状态。

4) 1 <K <∞,s 1,2为共轭复根,它们的实部恒等于-2,虚部随着K 的增大而增大,系统此时为欠阻尼状态。

★在s平面上,用箭头标明K增大时,闭环特征根移动的方向,以数值表明某极点处的增益大小。

有了根轨迹图就可以分析系统的各种性能:(1)稳定性:根轨迹均在s的左半平面,则系统对所有K>0都是稳定的。

(2)稳态性能:如图有一个开环极点(也是闭环极点)s=0。

说明属于I型系统,阶跃作用下的稳态误差为0。

在速度信号V0t作用下,稳态误差为V0/K,在加速度信号作用下,稳态误差为∞。

(3)动态性能:过阻尼临界阻尼欠阻尼K越大,阻尼比ξ越小,超调量σ%越大。

由此可知:1、利用根轨迹可以直观的分析K的变化对系统性能的影响。

2、根据性能指标的要求可以很快确定出系统闭环特征根的位置;从而确定出可变参数的大小,便于对系统进行设计。

由以上分析知:根轨迹与系统性能之间有着密切的联系,但是,高阶方程很难求解,用直接解闭环特征根的办法来绘制根轨迹是很麻烦的。

自动控制原理-第4章 根轨迹

自动控制原理-第4章 根轨迹

又 ∵ 根轨迹方程
n
n
(spi) sn( pi)sn 1L
n
m
Kim 1
i 1 m
snm( pi zj)snm 1L
(szj) sm( zj)sm 1L
i 1
j 1
j 1
j 1
n
m
∴ sn-m-1项系数对应相等
(nm)(a) pi zj
n
m
i1
j1
(2k 1) ,
nm
pi zi
闭环零、极点与开环零、极点的关系
闭环传递函数 (s) G(s)
1G(s)H(s)
开环传递函数 Gk(s)G(s)H(s)
f
l
(s zi)
(s z j)
G (s) KG
i 1 q
H
(s)
K
H
j 1 h
(s pi)
(s p j)
i 1
j 1
f
l
(szi)(szj)
Gk(s)G(s)H(s)K
如何应用根轨迹方程在[s]平面上找到闭环极点。
解: G ( s ) K 0 .5 K K * s(2 s 1) s(s 0.5) s(s 0.5)
K * 0.5 K 开 环 极 点 p1 0, p2 0.5 无开环零点 根据相角方程
s2
p2 4 5 o -0.5 s1
135o
p1 0
m
(s z j)
K j1 n
1
(s pi)
i1
m
n
(szj) (spi)(2k1)
j1
i1
k0,1,2,L
(1)相角条件是决定闭环根轨迹的充要条件; 在测量相角时,规定以逆

自动控制原理第四章 根轨迹

自动控制原理第四章  根轨迹
S ( S 2 )( S 4 )
① ∵有三个极点,根轨迹 有三条分支 ② ∵n=3, m=2 ∴有3-2=1条根 轨迹→∞, 2条终止于开环零点。 ③在实轴上不同段上取试 验点
-4 -3 -2 -1

×
o
×
o ×
σ
§4-2绘制根轨迹的基本规则
五.根轨迹的渐近线
1.根轨迹中(n-m)条趋向无穷远处的分支的 渐近线的倾角为
1 1
在根轨迹与虚轴的交点处,在系统中出现 虚根。因此可以根据这一特点确定根轨迹与虚 轴的交点。可以用 s j 代入特征方程求解, 或者利用劳斯判据确定。
§4-2绘制根轨迹的基本规则 续例4-2,将 s j 代入特征方程。
j ( j 1 )( j 2 ) K j ( j
§4-1根轨迹的基本概念 将开环传递函数写成下列标准的因子式
K1 G (S )H (S )

j 1 n
m
(s z
j
)

i 1
(s pi )
注意这个形式和求 稳态误差的式子不 同,需变换成这种 形式.
z j -开环零点.
p i -开环极点.
此时,幅值条件和相角条件可写成
K
1

j 1 n

s 2 .3
2 . 3 0 . 7 1 . 64 1 . 64 4 . 33
6.求根轨迹在
p3
的出射角
p 180 ( 135 90 26 . 6 ) 431 . 6
( 减去 360 ,为 71 . 6 )
§4-3反馈控制系统的根轨迹分析 7.求根轨迹与虚轴的交点.
K1=6

自动控制原理第第四章 线性系统的根轨迹法

自动控制原理第第四章 线性系统的根轨迹法

2
自动控制原理
§4.1 根轨迹的基本概念
例:开环传递函数
Gs
k1
ss
a
开环系统两个极点为:P1 0, P2 a R(s)
闭环传递函数为:
GB s
s2
k1 as
k1
-
k1
C(s)
ss a
闭环特征方程: s2 as k1 0
闭环特征根:s1,2
a 2
a 2
2
k1
(闭环极点)
3
自动控制原理
在p5附近取一实验点sd, 则∠sd-p5可以认为是p5点的出射角 Sd Z Sd P1 Sd P2 Sd P3 Sd P4 Sd P5 1800
近似为 P5 Z P5 P1 P5 P2 P5 P3 P5 P4 p 1800
p Sd P5 1800
法则4 实轴上存在根轨迹的条件——
这些段右边开环零极点个数之和为奇
数。
m
n
证明:根据相角条件 S Z j S Pi 18002q 1
j 1
i 1
p4
j s平面
例:sd为实验点
p3
z2 sd
p2 z1 p1
p5
① 实验点sd右侧实 轴上零极点提供 1800相角
③ 共轭复零点,复极点提供的相角和为 3600。
2
s1=-1.172,s2=-6.828
33
自动控制原理
法则6 开环复数极点处根轨迹出射角为
p 1800
开环复数零点处根轨迹入射角为:
Z 1800
其中 z p(不包括本点)
34
自动控制原理
j p5
p5
p3 p3
p2

根轨迹法(自动控制原理)ppt课件精选全文完整版

根轨迹法(自动控制原理)ppt课件精选全文完整版
1 K (s z1 )( s z2 )....( s zm ) 0 (s p1 )( s p2 )....( s pn )
课程:自动控制原理
第4章 根轨迹法
➢ 以K为参变量的根轨迹上的每一点都必须满足以上方程, 相应地,称之为‘典型根轨迹方程’。
也可以写成
m
n
(s zl ) K (s pi ) 0
可见,根轨迹可以清晰地描绘闭环极点与开环增益K之间的 关系。
课程:自动控制原理
第4章 根轨迹法
2.根轨迹的基本条件
❖ 考察图示系统,其闭环传递函数为:
Y(s) G(s) R(s) 1 G(s)H(s)
闭环特征方程为:
1 G(s)H(s) 0
➢ 因为根轨迹上的每一点s都是闭环特征方程的根,所以根轨 迹上的每一点都应满足:
l 1
i 1
对应的幅值条件为:
相角条件为:
n
( s pi ) K i1
m
(s zl )
l 1
m
n
(s zl ) (s pi ) (2k 1)180
k 1,2,
l 1
i 1
课程:自动控制原理
第4章 根轨迹法
❖ 上述相角条件,即为绘制根轨迹图的依据。具体绘制方法 是:在复平面上选足够多的试验点,对每一个试验点检查 它是否满足相角条件,如果是则该点在根轨迹上,如果不 是则该点不在根轨迹上,最后将在根轨迹上的试验点连接 就得到根轨迹图。
显然,位于实轴上的两个相邻的开环极点之间一定有分离 点,因为任何一条根轨迹不可能开始于一个开环极点终止 于另一个开环极点。同理,位于实轴上的两个相邻的开环 零点之间也一定有分离点。
课程:自动控制原理
第4章 根轨迹法

自动控制原理第四章根轨迹课件

自动控制原理第四章根轨迹课件

幅值条件
s z
i 1
Hale Waihona Puke mi s p
j 1
n

j
1 Kg
Kg=0
(s p ) 0
j 1 j
n
根轨迹起始于开环极点
Kg=∞
(s z ) 0
i 1 i
m
根轨迹终止于开环零点
根轨迹分支数 • n阶系统的根轨迹有n条分支
s z
i 1
m
i
s p
j 1

-p3

j4
K1 G( s) H ( s) s( s 4)( s 2 4s 20)
规则1、2、3、4 根轨迹对称于实轴, 有四条根轨迹分支,分别起 始于极点0,-4和-2±j4,终止 于无限远零点。 实轴上0~-4区段为根轨迹. 相角条件 -p3、-p4的连接线为 根轨迹
-p2
s1 z1 ( z1 p1 )(z1 p2 )
s2 z1 ( z1 p1 )( z1 p2 )
7.根轨迹的出射角和入射角(1)

出射角:根轨迹离开复数极点处的切线方向与实轴 正方向的夹角 入射角:而进入开环复数零点处的切线方向与实轴 正方向的夹角
7.根轨迹的出射角和入射角(2)
i 1 i 1
每对共轭复数极点所提供的相角 之和为360°; s1右边所有位于实轴上的每一个极 点或零点所提供的相角为180°;
ⅹ ⅹ
-p3 s2
-p4

-θ -z1


-p2 s1

-p1
σ
s1左边所有位于实轴上的每一个极
点或零点所提供的相角为0°。

自动控制原理 第四章 根轨迹法

自动控制原理 第四章 根轨迹法

第4章 根 轨 迹 法根轨迹法是分析和设计线性控制系统的图解方法,使用简便,在控制工程上得到了广泛应用。

本章首先介绍根轨迹的基本概念,然后重点介绍根轨迹绘制的基本法则,在此基础上,进一步讨论广义根轨迹的问题,最后介绍控制系统的根轨迹分析方法。

4.1 根轨迹的基本概念4.1.1 根轨迹概念所谓根轨迹,就是系统开环传递函数的某一参数从零变化到无穷时,闭环特征根在s 平面上变化的轨迹。

例如某控制系统的结构图如图4.1所示。

图4.1 控制系统其开环传递函数为()K (0.51)KG s s s =+其闭环传递函数为22()22Ks s s KΦ=++式中:K 为系统开环增益。

于是闭环特征方程可写为2220s s k ++=对上式求解得闭环特征根为1,21s =−令开环增益K 从零变化到无穷,利用上式求出闭环特征根的全部数值,将这些值标注在s 平面上,并连成光滑的粗实线,如图4.2所示,该粗实线就称为系统的根轨迹。

箭头表示随K 值增加根轨迹的变化趋势。

这种通过求解特征方程来绘制根轨迹的方法,称之为解析法。

画出根轨迹的目的是利用根轨迹分析系统的各种性能。

通过第3章的学习知道,系统第4章 根轨迹法·101··101·特征根的分布与系统的稳定性、暂态性能密切相关,而根轨迹正是直观反应了特征根在复平面的位置以及变化情况,所以利用根轨迹很容易了解系统的稳定性和暂态性能。

又因为根轨迹上的任何一点都有与之对应的开环增益值,而开环增益与稳态误差成反比,因而通过根轨迹也可以确定出系统的稳态精度。

可以看出,根轨迹与系统性能之间有着比较密切的联系。

图4.2 控制系统根轨迹4.1.2 根轨迹方程对于高阶系统,求解特征方程是很困难的,因此采用解析法绘制根轨迹只适用于较简单的低阶系统。

而高阶系统根轨迹的绘制是根据已知的开环零、极点位置,采用图解的方法来实现的。

下面给出图解法绘制根轨迹的根轨迹方程。

自动控制原理第四章-根轨迹分析法

自动控制原理第四章-根轨迹分析法

×
p4 z 2
×
p3
×
×
p 2 z1 p1
σ
规则4:根轨迹的分会点(分离点和会合点)d。 (1)定义:分会点是指根轨迹离开实轴进入复平面的点(分 离点)或由复平面进入实轴的点(汇合点),位于相邻两极点 或两零点之间。
(2)位置:大部分的分会点在实轴上,若出现在复平面内时,则 成对出现。
(3)特点:分会点对应于闭环特征方程有重根的点;根轨迹离开
(4)与虚轴的交点:
方法1:闭环特征方程为s3 + 6s2 + 8s + K*= 0 令s = jω得:-jω3 -6ω2 + j8ω + K* = 0
-6ω2 + K* = 0 即
-ω3 + 8ω= 0
K* = 48 ω= 2.8 s-1
方法2:闭环特征方程为 s3 + 6s2 + 8s + K*= 0 列劳斯表如下:
规则1:根轨迹的起点和终点。 根轨迹起始于开环极点,终止开环零点或无穷远。
m
i 1
s
zi
n
s
l 1
pl
1 K
K
K
0 s pl
s s
zi , m条 (, n
m)条
规则2: 根轨迹的条数和对称性。 n阶系统有n条根轨迹。根轨迹关于实轴对称。
规则3: 实轴上的根轨迹分布。
由实数开环零、极点将实轴分为若干段,如某段右边 开环零、极点(包括该段的端点)数之和为奇数,则该段就 是根轨迹,否则不是。如下图所示。
又因为开环传函的零极点表达式为:
m
GK (s)
G(s)H(s)
K
n
(s
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

该渐近线与实轴的交点为
n
m
pi z j
a
i 1
j 1
nm
夹角为: a
(2k 1) nm
k 0,1,2, , n m 1
【例4.1】 系统开环传递函数为
K * (s 1) G(s)H(s)
s2 (s 2)(s 4)
试根据已知的四个基本规则,确定绘制根轨迹 的有关数据。
解 1.系统开环极点p1=0,p2=0,p3=-2,p4=-4,开环 零点为在z1=-1。将上述的开环零、极点分别用 “×”“O”在s平面的直角坐标系中进行标注。
规则1 在平面上将系统所有的开环零点以“O”表示, 开环极点以“×”表示。
规则2 根轨迹的分支数,起点和终点。根轨迹的分 支数(闭环极点数)与开环有限零点数m和有限极点数 n中的大者相等,它们是连续的并且对称于实轴。根轨 迹的分支起始于开环极点,终止于开环零点。
分支——当K*从零到无穷大变化时,闭环极点在s平面 上所形成的轨迹;
(4)确定分离点。由式(4-21)得
s(s 1)(s 2)' 0
3s2 6s 2 0
解得 s1 0.423
s2 1.577
由于在-1到-2之间的实轴上没有根轨迹,故 s2=-1.577显然不是所要求的分离点。因此,两 个极点之间的分离点应为s1=-0.423。 (5)确定根轨迹与虚轴的交点 方法一 利用劳斯判据确定 闭环特征方程为
(2)令闭环系统特征方程中的s=jω ,并令虚 部和实部分别为零而求得。
【例4.3】设系统的开环传递函数为
G(s)H (s)
K*
s(s 1)(s 2)
试绘制系统的根轨迹。
解:(1)系统的开环极点为0,-1,-2是根轨 迹各分支的起点。由于系统没有有限开环零点, 三条根轨迹分支均趋向于无穷远处。
方法二 令s=jω代入闭环特征方程式,可得
( j)3 3( j)2 2( j) K * 0


(K * 3 2 ) j(2 2 ) 0
令上述方程中的实部和虚部分别等于零,即
K * 3 2 0
2 2 0
所以
2
有以上规则即可 概略绘制出系统的根 轨迹图。
用MATLAB程序 绘制出的根轨迹图如 图4.7所示。 MATLAB程序为: y=zpk([],[0 -1 -2],1); rlocus(y)
起点——对应于根轨迹上K*=0的点;
终点——对应于根轨迹上K*=∞的点。
规则3 实轴上的根轨迹。若实轴上某一线段 右边的所有开环零极点的总个数为奇数,则这一 线段就是根轨迹。
规则4 根轨迹的渐近线。当开环有限极点数 n大于有限零点数m时,有n-m条根轨迹分支趋于 无穷远处并且无限接近于某一直线(渐近线)。
【例4.2】 已知单位反馈控制系统的开环传 递函数为
G(s) K (0.25s 1) (s 1)(0.5s 1)
计算根轨迹的分离点和汇合点,以及分离点和汇 合点处的根轨迹增益。 解 首先将系统写成开环传递函数零、极点的形 式
G(s) K * (s 4) (s 1)(s 2)
式中 K * K 是根轨迹增益。 2
4.1.1 根轨迹的概念
根轨迹指的是系统某个参数(如根轨迹增益 K *或 开环零、极点)变化时,闭环特征根在s平面上移动的 轨迹。
下面结合图4.1所示系统,说明根轨迹的基本概念。
R(s)
2K
C(s)
s(s 2)
图4.1 系统结构图
系统开环传递函数为
G(s) 2K s(s 2)
系统闭环传递函数为
上式中G(s)H(s)为系统的开环传递函数,一 般情况下开环传递函数写成零、极点形式为
m
(s z j )
G(s)H (s) K * j1 n (s pi ) i 1
(4-7)
闭环特征方程为
m
(s z j )
G(s)H (s) K *
j 1 n
1
(s pi )
i 1
(4-8)
上式中, , z j ( j 1 ~ m) pi (i 1 ~ n) 分别为控制系统的
m
szj
K * j1
1
n
s pi
i 1
(4-11)
m
n
s z j s pi 2k 1
j 1
j 1
(4-12)
式中 k 0,1,2,
复平面上的s点如果是闭环极点,那么它与 开环零、极点所组成的向量必须满足上式的模值 条件和相角条件。
从上式可以看出,根轨迹的模值增益条件与 根轨迹增益K*有关,而相角条件与K*无关。我们 说,相角条件是确定s平面上根轨迹的充分必要 条件,这就是说,绘制根轨迹时,可用相角条件 确定轨迹上的点,用模值条件确定根轨迹上该点 对应的K*值。
(s)
C(s) R(s)
s2
2K 2s
2K
闭环特征方程为
s2 2s 2K 0
(4-1) (4-2) (4-3)
闭环特征根为
s1 1 1 2K
s2 1 1 2K
上式表明,特征方程的根随着变量K的变化 而变化,如果令K从零变化到无穷,可以用解析 的方法求出闭环系统极点的全部数值,将这些数 值在s平面上标出,并用光滑的线连接,如图4.2 所示,图中的粗实线为根轨迹,箭头表示随着K 值的增加,根轨迹的变化趋势,而标注的数值为 代表与闭环极点位置相应的K值。
对图4.1所示的例子,在推导特征根和可调 参数之间的关系时,根轨迹可用解析法绘制。但 对于高阶系统,很难写出特征根与参数之间关系 的数学表达式。控制系统分析法的关键就是要有 一种简单、实用的根轨迹绘制方法,以便在特征 方程根的解析表达式不易写出时,利用根轨迹图 分析控制系统的性能。
4.1.2 根轨迹的条件
了解利用根轨迹估算阶跃响应的性能指标。 Nhomakorabea引言
设计磁盘驱动器系统可以练习如何进行折衷 和优化。磁盘驱动器必须保证磁头的精确位置, 并减小参数变化和外部振动对磁头定位造成的影 响。机械臂和支撑簧片将在外部振动的频率点上 产生共振。对驱动器产生的干扰包括物理振动, 磁盘转轴的磨损和摆动,以及元器件老化引起的 参数变化等。
4.2.1 等相角根轨迹的绘制规则
负反馈控制系统的典型结构图如图4.3所示。 其开环传递函数和根轨迹方程式分别如式(4-7) 和式(4-8)所示。当根轨迹增益K*大于零时, 根轨迹的幅值条件和相角条件分别如式(4-11) 和式(4-12)所示。这种情况下绘制的根轨迹称 为180°等相角根轨迹,下面讨论绘制180°等 相角根轨迹的基本规则。
令A(s)=s+4,B(s)=(s+1)(s+2)=s2+3s+2,则 A’(s)=1,B’(s)=2s+3。代入A’(s)B(s)-A(s)B’(s)=0 中,得s2+8s+10=0
解出上式的根为s1≈-1.55,s2≈-6.45。 根据规则2,根轨迹在实轴上的分布为[-∞,-4]和[2,-1],从而可知s1是实轴上的分离点,s2是实轴 上的汇合点。
闭环系统传递函数如图4.3所示
R(s)
C(s) G(s)
H (s) 图4.3 闭环控制系统
闭环传递函数为
(s) C(s) G(s)
R(s) 1 G(s)H (s)
(4-4)
特征方程为 或
1 G(s)H(s) 0 G(s)H (s) 1
(4-5) (4-6)
满足上式的s点均为闭环系统的特征根(闭环 极点),反过来,根轨迹上的所有点均必须满足 式上式。上述式子称为根轨迹的基本方程。
(2)系统的根轨迹有n-m=3条渐进线, 渐进线的倾斜角为
a
(2k 1)
nm
(2k 1)
30
取式中的k=0,1,2,得φa=π/3,π,5π/3。
渐进线与实轴的交点为
a
1 nm
n j 1
pj
m i 1
zi
(0 1 2) 3
1
三条渐近线如图4-13中的虚线所示。
(3)实轴上的根轨迹位于原点与-1点之间以 及-2点的左边,如图4-13中的粗实线所示。
第四章 根轨迹
本章教学目标与要求
掌握根轨迹的概念、根轨迹相角条件与模值条件,熟悉 根轨迹绘制法则,了解主导极点的概念。
熟练绘制以开环增益为变量的根轨迹(正反馈和负反 馈),了解参数根轨迹的含义。
了解控制系统性能与系统闭环传递函数零点、极点在与 s平面分布的密切关系。初步掌握根轨迹分析法在控制 系统分析与设计中的应用。
s(s 1)(s 2) K * 0
s3 3s 2 2s K * 0
劳斯列表为
s3
1
2
s2
3
K*
s1
6 K*
s0
K3*
由劳斯判据,系统稳定时K*的临界值为6。 相应于K*=6的频率可由辅助方程
3s2 K * 3s2 6 0 确定。
解之得根轨迹与虚轴的交点为 s j 2 。根 轨迹与虚轴交点处的频率为 2 1.41
4.1 根轨迹的基本概念
1948年,W.R.Evans根据反馈控制系统开、 闭环传递函数之间的内在联系,提出一种由系统 开环零、极点的分布确定闭环系统特征方程根的 图解方法——根轨迹法。这是一种由分析开环系 统零、极点在复平面上的分布出发,用图解表示 特征方程的根与开环系统某个或某几个参数之间 全部系统的方法。它不仅适用于单回路系统,而 且也可用于多回路系统。他已成为经典控制理论 的基本方法之一,在工程上得到广泛的应用。
K* 6
Imaginary Axis
Root Locus 4
3
2
1
0
-1
-2
-3
-4
-6
-5
-4
-3
相关文档
最新文档