汉中市2016-2017学年八年级数学上册12月月考试题

合集下载

【最新】2016-2017学年人教版八年级上册第三次月考数学试卷含答案

【最新】2016-2017学年人教版八年级上册第三次月考数学试卷含答案


A .± 16 B . 16 C.± 2 D. 2
8.下列计算错误的是(

A.
=﹣2 B.
=﹣ C.﹣
=﹣
D.
=6
9.在△ ABC 中, EF 是线段 AC 的垂直平分线, AF=12 , BF=3 ,则 BC= ( )
A . 3 B. 12 C. 15 D. 9
10.如图,已知∠ 1=∠2,则不一定能使△ ABD ≌△ ACD 的条件是(
C.三条角平分线的交点
D .三边垂直平分线的交点
4.下列说法正确的是(

A .每个命题都有逆命题
B.真命题的逆命题是真命题
C.假命题的逆命题是假命题
D .以上都不对
5.若△ ABC ≌△ DEF,且∠ A=40 °,∠ E=60°,则∠ C=( )
A . 40° B. 60° C. 100°D. 80°
D .以上都不对
5.若△ ABC ≌△ DEF,且∠ A=40 °,∠ E=60°,则∠ C=( )
A . 40° B. 60° C. 100°D. 80°
6.用尺规作图,不能作出唯一三角形的是(

A .已知两角和夹边 B .已知两边和其中一边的对角
C.已知两边和夹角
D .已知两角和其中一角的对边
7.4 的平方根是(

2016-2017 学年八年级(上)第三次月考数学试卷
一、选择题
1.下列图形中,即是轴对称图形又是中心对称图形的是(

A.
B.
C.
D.
2.若分式
的值为 0,则 x 的值是(

A . x=3 B. x=0 C. x= ﹣ 3 D .x= ﹣ 4

汉中市八年级上学期数学12月月考试卷

汉中市八年级上学期数学12月月考试卷

汉中市八年级上学期数学12月月考试卷姓名:________ 班级:________ 成绩:________一、选择题(本大题有10小题,每小题3分,共30分) (共10题;共30分)1. (3分) (2020八上·吴兴期末) 在平面直角坐标系中,点A(-2020,1)位于哪个象限?()A . 第一象限B . 第二象限C . 第三象限D . 第四象限2. (3分) (2019八上·萧山月考) 若a>b,则下列各式中一定成立的是()A . ma﹥mbB . a2﹤b2C . 1-a﹥1-bD . b-a﹤03. (3分) (2019八上·萧山月考) 已知等腰△ABC的周长为18cm,BC=8cm,若△ABC与△A′B′C′全等,则△A′B′C′的腰长等于()A . 8cmB . 2cm或8cmC . 5cmD . 8cm或5cm4. (3分) (2019八上·萧山月考) 已知点M(a,2),B(3,b)关于y轴对称,则a+b=()A . -5B . -1C . 1D . 55. (3分) (2019八上·萧山月考) 把一些笔记本分给几个学生,如果每人分3本,那么余8本,如果每人分5本,则最后一个人有分到本子但分到的本数不足3本,则共有学生()人.A . 4B . 5C . 6D . 5或66. (3分) (2019八上·萧山月考) 下列四个命题中,真命题有()①两条直线被第三条直线所截,内错角相等.②如果∠1和∠2是对顶角,那么∠1=∠2.③三角形的一个外角大于任何一个内角.④如果,那么.A . 1个B . 2个C . 3个D . 4个7. (3分) (2019八上·萧山月考) 若关于x的不等式组无解,则a的取值范围为()A . a<4B . a≥4C . a≤4D . a>48. (3分) (2019八上·萧山月考) 如图,在△ABC中,∠ACB为钝角.用直尺和圆规在边AB上确定一点D.使∠ADC=2∠B,则符合要求的作图痕迹是()A .B .C .D .9. (3分) (2019八上·萧山月考) 如图,长方形ABCD中,点E是边CD的中点,将△ADE沿AE折叠得到△AFE,且点F在长方形ABCD内.将AF延长交边BC于点G.若BG=3CG,则 =()A .B . 1C .D .10. (3分) (2019八上·萧山月考) 如图所示,长方形ABCD中,AB=4,BC= ,点E是折线ADC上的一个动点(点E与点A不重合),点P是点A关于BE的对称点.在点E运动的过程中,使△PCB为等腰三角形的点E 的位置共有()A . 4个B . 5个C . 6个D . 不能确定二、填空填(本大题有6小题,每小题4分,共24分) (共6题;共24分)11. (4分) (2017九上·南平期末) 如图,AB是⊙O的直径,CD为⊙O的一条弦,CD⊥AB于点E,已知CD=4,AE=1,则⊙O的半径为________.12. (4分)如图,四边形OABC是平行四边形,点c在x轴上,反比例函数y= (x<0)的图象经过点A(-5,12),且与边BC交于点D。

【最新】2016年10月人教版八年级数学上册月考试卷及答案

【最新】2016年10月人教版八年级数学上册月考试卷及答案


2016 ——2017 学年第一学期 八年级数学 第一次水平检测
(时间: 100 分钟;满分: 120 分)
亲爱的同学,欢迎你参加本次考试。这份试卷将再次记录你的自信、沉着、智慧和收获。请认真 审题,看清要求,仔细答题, 同时请注意在答题卷的对应位置上答题。
一、 细心选一选 (每题 3 分共 36 分)
1. 如下书写的四个汉字,其中为轴对称图形的是
()
A.
B.
C. D.
2 . 如图,有 A、B、C三个 居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小
区的距离相等,则超市应建在 ( )
A.在 AC、BC两边高线的交点处
A
B.在 AC、BC两边中线的交点处
C.在 AC、BC两边垂直平分线的交点处 D.在∠ A、∠ B 两内角平分线的交点处

A. ( 3, 2 ) B. (- 3,2)
C. ( 3,- 2) D. (- 3,- 2)
6、已知 : 如图, AC=AE,∠ 1=∠ 2, AB=AD,若∠ D=25°,则∠ B 的度数为 (
)
A.25 ° B.30 ° C.15 ° D.30 °或 15°
第 8题 7. 如图,△ ABC中, AB=AC,BD⊥ AC于 D, CE⊥AB 于 E,BD和 CE交于点 O, AO的延长线交 BC于 F,则图中全等直

2016 ——2017 学年第一学期 八年级数学 第一次水平检测
(时间: 100 分钟;满分: 120 分)
亲爱的同学,欢迎你参加本次考试。这份试卷将再次记录你的自信、沉着、智慧和收获。请认真 审题,看清要求,仔细答题, 同时请注意在答题卷的对应位置上答题。

2016-2017年新人教版八年级上数学第一次月考试卷及答案

2016-2017年新人教版八年级上数学第一次月考试卷及答案

2015-2016学年度第一学期八年级第一次月考数 学 试 卷一、选择题(本大题共10小题,每小题3分,共30分)1.任意画一个三角形,它的三个内角之和为( )A .180°B .270°C .360°D .720°2.△ABC≌△DEF,且△ABC 的周长为100cm ,A 、B 分别与D 、E 对应,且AB=35cm ,DF=30cm ,则EF 的长为( )A .35cmB .30cmC .45cmD .55cm3.如果一个三角形的两边长分别为2和4,则第三边长可能是( )A .2B .4C .6D .84.如图1,在四边形ABCD 中,AB=AD ,CB=CD ,若连接AC 、BD 相交于点O ,则图中全等三角形共有( )A .1对B .2对C .3对D .4对5.如图2,一副分别含有30°和45°角的两个直角三角板,拼成如图,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD 的度数是( )A .15°B .25°C .30°D .10°6.过一个多边形的一个顶点的所有对角线把多边形分成6个三角形,则这个多边形的边数为( )A .5B .6C .7D .87.如图3,已知点A 、D 、C 、F 在同一直线上,且AB=DE ,BC=EF ,要使△ABC≌△DEF,还需要添加的一个条件是( )A .∠A=∠EDFB .∠B=∠EC .∠BCA=∠FD .BC∥EF8.具备下列条件的三角形ABC 中,不为直角三角形的是( )A .∠A+∠B=∠CB .∠A=∠B=∠C C .∠A=90°﹣∠BD .∠A﹣∠B=90° 图1 图2 图39.如图4,AM 是△ABC 的中线,若△ABM 的面积为4,则△ABC 的面积为( )A .2B .4C .6D .810.如图5,在△ABC 中,∠ABC=45°,AC=8cm ,F 是高AD 和BE 的交点,则BF 的长是( )A .4cmB .6cmC .8cmD .9cm二、填空题(本大题共8个小题,每小题3分,共24分)11.三角形的重心是三角形的三条__________的交点. 12.如图6,李叔叔家的凳子坏了,于是他给凳子加了两根木条,这样凳子就比较牢固了,他所应用的数学原理是__________.13.如果一个等腰三角形有两边长分别为4和8,那么这个等腰三角形的周长为__________.14.如图,已知△ABD≌△CDB,且∠ABD=40°,∠CBD=20°,则∠A 的度数为__________.15.如图7,AB=AC ,要使△ABE≌△ACD,应添加的条件是__________(添加一个条件即可).图4 图5 图6 图7 图8 图916.下列条件:①一锐角和一边对应相等,②两边对应相等,③两锐角对应相等,其中能得到两个直角三角形全等的条件有__________(只填序号).17.如图9,已知∠B=46°,△ABC的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=__________.18.如图1是二环三角形,可得S=∠A1+∠A2+…+∠A=360°,图2是二环四边形,可得S=∠A1+∠A2+…+∠A7=720°,图3是二环五边形,可得S=1080°,…聪明的同学,请你根据以上规律直接写出二环n边形(n≥3的整数)中,S=__________.(用含n的代数式表示最后结果)三、解答题(本大题共8小题,共66分)19.如图,点B在线段AD上,BC∥DE,AB=ED,BC=DB.求证:∠A=∠E.20.一个多边形的外角和是内角和的,求这个多边形的边数.21.如图所示,将长方形ABCD沿DE折叠,使点C恰好落在BA边上,得到点C′,若∠C′EB=40°,求∠EDC′的度数.图422.如图,在△ABC中,∠B=40°,∠C=60°,AD⊥BC于D,AE是∠BAC 的平分线.(1)求∠DAE的度数;(2)写出以AD为高的所有三角形.23.如图,已知Rt△ABC≌Rt△ADE,∠ABC=∠ADE=90°,BC与DE相交于点F,连接CD,EB.(1)图中还有几对全等三角形,请你一一列举;(2)求证:CF=EF.24.如图,O是△ABC内任意一点,连接OB、OC.(1)求证:∠BOC>∠A;(2)比较AB+AC与OB+OC的大小,并说明理由.25.看图回答问题:(1)内角和为2014°,小明为什么不说不可能?(2)小华求的是几边形的内角和?(3)错把外角当内角的那个外角的度数你能求出来吗?它是多少度?26.如图1,在△ABC中,∠BAC=90°,AB=AC,AE是过A的一条直线,且B,C在AE的异侧,BD⊥AE于点D,CE⊥AE于点E.(1)求证:BD=DE+CE;(2)若直线AE绕点A旋转到图2位置时(BD<CE),其余条件不变,问BD与DE,CE的关系如何,请证明;(3)若直线AE绕点A旋转到图3时(BD>CE),其余条件不变,BD与DE,CE的关系怎样?请直接写出结果,不须证明.(4)归纳(1),(2),(3),请用简捷的语言表述BD与DE,CE的关系.参考答案一、选择题1.:A.2. A.3 B.4.:C.5. A.6. D.7. B.8. D.9. D.10. C.二、填空题(本大题共8个小题,每小题3分,共24分)11:中线.12:三角形的稳定性.13.:20.14.120°.15.∠B=∠C 或A E=AD.16①②.17.67°.18. 360(n﹣2)度.三、解答题(本大题共8小题,共66分)19.证明:如图,∵BC∥DE,∴∠ABC=∠BDE.在△ABC与△EDB中,∴△ABC≌△EDB(SAS),∴∠A=∠E.20..解:设这个多边形的边数为n,依题意得:(n﹣2)180°=360°,解得n=9.答:这个多边形的边数为9.21.解:由题意得△DEC≌△DEC',∴∠CED=∠DEC',∵∠C′EB=40°,∴∠CED=∠DEC'=,∴∠EDC′=90°﹣70°=20°.22.解:(1)∵在△ABC中,AE是∠BAC的平分线,且∠B=40°,∠C=60°,∴∠BAE=∠EAC=(180°﹣∠B﹣∠C)=(180°﹣40°﹣60°)=40°.在△ACD中,∠ADC=90°,∠C=60°,∴∠DAC=180°﹣90°﹣60°=30°,∠EAD=∠EAC﹣∠DAC=40°﹣30°=10°.(2)以AD为高的所有三角形:△ABC、△ABD、△ACE、△ABE、△ADF 和△ACD.23.(1)解:△ADC≌△ABE,△CDF≌△EBF;(2)证法一:连接CE,∵Rt△ABC≌Rt△ADE,∴AC=AE.∴∠ACE=∠AEC(等边对等角).又∵Rt△ABC≌Rt△ADE,∴∠ACB=∠AED.∴∠ACE﹣∠AC B=∠AEC﹣∠AED.即∠BCE=∠DEC.∴CF=EF.24.解:(1)证明:延长BO交AC于点D,∴∠BOC>∠ODC,又∠ODC>∠A,∴∠BOC>∠A;(2)AB+AC>OB+OC,∵AB+AD>OB+OD,OD+CD>OC,∴AB+AD+CD>OB+OC,即:AB+AC>OB+OC.25.解:(1)∵n边形的内角和是(n﹣2)•180°,∴内角和一定是180度的倍数,∵2014÷180=11…34,∴内角和为2014°不可能;(2)依题意有(x﹣2)•180°<2014°,解得x<13.因而多边形的边数是13,故小华求的是十三边形的内角和;(2)13边形的内角和是(13﹣2)×180°=1980°,2014°﹣1980°=34°,因此这个外角的度数为34°.26.(1)证明:在△ABD和△CAE中,∵∠CAD+∠BAD=90°,∠BAD+∠ABD=90°,∴∠CAD=∠ABD.又∠ADB=∠AEC=90°,AB=AC,∴△ABD≌△CAE.(AAS)∴BD=AE,AD=CE.又AE=AD+DE,∴AE=DE+CE,即BD=DE+CE.(2)BD=DE﹣CE.证明:∵∠BAC=90°,∴∠BAD+∠CAE=90°.又∵BD⊥DE,∴∠BAD+∠ABD=90°,∴∠ABD=∠CAE.又AB=AC,∠ADB=∠CEA=90°,∴△ADB≌△CEA.∴BD=AE,AD=CE.∵DE=AD+AE,∴DE=CE+BD,即 BD=DE﹣CE.(3)同理:BD=DE﹣CE.(4)当点BD、CE在AE异侧时,BD=DE+CE;当点BD、CE在AE同侧时,BD=DE﹣CE.。

初中部八年级数学上学期第一次月考试卷(A卷,含解析) 浙教版-浙教版初中八年级全册数学试题

初中部八年级数学上学期第一次月考试卷(A卷,含解析) 浙教版-浙教版初中八年级全册数学试题

2016-2017学年某某省某某市泰顺县新城学校初中部八年级(上)第一次月考数学试卷(A卷)一、选择题(共10小题,每小题3分,满分30分)1.现有四根木棒,长度分别为4cm,6cm,8cm,10cm,从中任取三根木棒,能组成三角形的个数为()A.1个B.2个C.3个D.4个2.一个三角形三个内角的度数之比是2:3:5,则这个三角形一定是()A.直角三角形B.等腰三角形C.钝角三角形D.锐角三角形3.如图,∠A+∠B+∠C+∠D+∠E+∠F的度数为()A.180°B.360°C.540°D.720°4.下列说法:①全等三角形的面积相等;②全等三角形的周长相等;③全等三角形的对应角相等;④全等三角形的对应边相等.其中正确的有()A.1个B.2个C.3个D.4个5.如图,下列A,B,C,D四个三角形中,能和模板中的△ABC完全重合的是()A. B.C.D.6.BD是△ABC的中线,若AB=5cm,BC=3cm,则△ABD与△BCD的周长之差是()A.1cm B.2cm C.3cm D.5cm7.如图,已知MB=ND,∠MBA=∠NDC,下列哪个条件不能判定△ABM≌△CDN()A.∠M=∠N B.AB=CD C.AM∥ D.AM=8.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是()A.3 B.4 C.6 D.59.如图,锐角三角形ABC中,直线L为BC的中垂线,直线M为∠ABC的角平分线,L与M相交于P 点.若∠A=60°,∠ACP=24°,则∠ABP的度数为何?()A.24° B.30° C.32° D.36°10.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交B于点D,则下列说法中正确的个数是()①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC:S△ABC=1:3.A.1 B.2 C.3 D.4二、填空题11.已知三角形的三边长分别是3、x、9,则化简|x﹣5|+|x﹣13|=.12.如图,点D,E分别在线段AB,AC上,BE,CD相交于点O,AE=AD,要使△ABE≌△ACD,需添加一个条件是(只需一个即可,图中不能再添加其他点或线).13.可以用来证明命题“如果a,b是有理数,那么|a+b|=|a|+|b|”是假命题的反例可以是.14.如图,在△ABC中,∠C=90°,BD平分∠ABC,交AC于D.若DC=3,则点D到AB的距离是.15.如图,在△ABC中,AB=AC=12,EF为AC的中垂线,若EC=8,则BE的长为.16.一个三角形的两边长分别是3和7,且第三边长为奇数,这样的三角形的周长最大值是.17.如图,在△ABC中,高BD,CE相交于点H,若∠BHC=110°,则∠A等于.18.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,∠A,∠1,∠2之间有一种数量关系始终保持不变,这种关系是.三、解答题(共46分)19.(5分)已知线段a,b及∠α,用直尺和圆规作△ABC,使∠B=∠α,AB=a,BC=b.20.(6分)如图,△ABC≌△ADE,且∠CAD=35°,∠B=∠D=20°,∠EAB=105°,求∠BFD和∠BED 的度数.21.如图,△ABC与△BAD中,AD与BC相交于点M,∠1=∠2,,试说明△ABC≌△BAD.请你在横线上添加一个条件,使得它可以用“AAS”来说明△ABC≌△BAD,并写出说理过程.22.如图,在四边形ABCD中,∠A=∠BCD=90°,BC=DC.延长AD到E点,使DE=AB.(1)求证:∠ABC=∠EDC;(2)求证:△ABC≌△EDC.23.如图,在△ABC中,∠C=90°,BE平分∠ABC,AF平分外角∠BAD,BE与FA交于点E,求∠E的度数.24.如图,在△ABC中,AC=6cm,AB=9cm,D是边BC上一点,AD平分∠BAC,在AB上截取AE=AC,连结DE,已知DE=2cm,BD=3cm.求:(1)线段BC的长;(2)若∠ACB的平分线CF交AD于点O,且O到AC的距离是acm,请用含a的代数式表示△ABC的面积.25.如图,在Rt△ABC中,AB=AC,∠BAC=90°,∠1=∠2,CE⊥BD的延长于E.求证:BD=2CE.思维与拓展(20分)26.如图,已知在△ABC中,∠B与∠C的平分线交于点P.(1)当∠A=112°时,求∠BPC的度数;(2)当∠A=α时,求∠BPC的度数.27.(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE ⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.2016-2017学年某某省某某市泰顺县新城学校初中部八年级(上)第一次月考数学试卷(A卷)参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.现有四根木棒,长度分别为4cm,6cm,8cm,10cm,从中任取三根木棒,能组成三角形的个数为()A.1个B.2个C.3个D.4个【考点】三角形三边关系.【分析】取四根木棒中的任意三根,共有4中取法,然后依据三角形三边关系定理将不合题意的方案舍去.【解答】解:共有4种方案:①取4cm,6cm,8cm;由于8﹣4<6<8+4,能构成三角形;②取4cm,8cm,10cm;由于10﹣4<8<10+4,能构成三角形;③取4cm,6cm,10cm;由于6=10﹣4,不能构成三角形,此种情况不成立;④取6cm,8cm,10cm;由于10﹣6<8<10+6,能构成三角形.所以有3种方案符合要求.故选C.【点评】考查三角形的边时,要注意三角形形成的条件:任意两边之和大于第三边,任意两边之差小于第三边.当题目指代不明时,一定要分情况讨论,把符合条件的保留下来,不符合的舍去.2.一个三角形三个内角的度数之比是2:3:5,则这个三角形一定是()A.直角三角形B.等腰三角形C.钝角三角形D.锐角三角形【考点】三角形内角和定理.【专题】压轴题.【分析】已知三角形三个内角的度数之比,可以设一份为k°,根据三角形的内角和等于180°列方程求三个内角的度数,再判断三角形的形状.【解答】解:设一份为k°,则三个内角的度数分别为2k°,3k°,5k°.根据三角形内角和定理可知2k°+3k°+5k°=180°,得k°=18°,所以2k°=36°,3k°=54°,5k°=90°.即这个三角形是直角三角形.故选:A.【点评】此类题利用三角形内角和定理列方程求解可简化计算.有一个角是90°的三角形是直角三角形.3.如图,∠A+∠B+∠C+∠D+∠E+∠F的度数为()A.180°B.360°C.540°D.720°【考点】三角形的外角性质;三角形内角和定理.【专题】几何图形问题.【分析】利用三角形外角的性质及三角形的内角和定理即可计算.【解答】解:如图,∠AKH=∠A+∠B=∠HGK+∠KHG,∠CGK=∠C+∠D=∠GKH+∠KHG,∠FHB=∠E+∠F=∠HKG+∠KGH,∴∠A+∠B+∠C+∠D+∠E+∠F=2(∠HGK+∠KHG+∠GKH)=2×180°=360°.故选:B.【点评】本题考查三角形外角的性质及三角形的内角和定理,实际上证明了三角形的外角和是360°,解答的关键是沟通外角和内角的关系.4.下列说法:①全等三角形的面积相等;②全等三角形的周长相等;③全等三角形的对应角相等;④全等三角形的对应边相等.其中正确的有()A.1个B.2个C.3个D.4个【考点】全等三角形的性质.【分析】根据全等三角形的性质进行判断即可.【解答】解:①全等三角形的面积相等,说法正确;②全等三角形的周长相等,说法错误;③全等三角形的对应角相等,说法正确;④全等三角形的对应边相等,说法正确;正确的有4个,故选D.【点评】本题考查了对全等三角形的定义和性质的应用,主要考查学生的理解能力和辨析能力,注意:全等三角形的对应边相等,对应角相等.5.如图,下列A,B,C,D四个三角形中,能和模板中的△ABC完全重合的是()A. B.C.D.【考点】全等三角形的判定.【分析】三条边分别对应相等的两个三角形全等;两边及其夹角分别对应相等的两个三角形全等;两角及其夹边分别对应相等的两个三角形全等;两角及其中一个角的对边对应相等的两个三角形全等,据此判断即可.【解答】解:A、∵a,c边夹角为50°,∴根据SAS可判定两三角形全等,故A正确;B、∵a,c边夹角不一定为50°,∴不能判定两三角形全等,故B错误;C、∵72°角所对的边不相等,∴不能判定两三角形全等,故C错误;D、∵50°和58°的角的夹边不相等,∴不能判定两三角形全等,故D错误;故选:A.【点评】本题主要考查了全等三角形的判定,解决问题的关键是掌握全等三角形的判定方法.全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件.6.BD是△ABC的中线,若AB=5cm,BC=3cm,则△ABD与△BCD的周长之差是()A.1cm B.2cm C.3cm D.5cm【考点】三角形的角平分线、中线和高.【分析】利用中线的定义可知AD=CD,可知△ABD和△BCD的周长之差即为AB和BC的差,可求得答案.【解答】解:∵BD是△ABC的中线,∴AD=CD,∵△ABD周长=AB+AD+BD,△BCD周长=BC+CD+BD,∴△ABD周长﹣△BCD周长=(AB+AD+BD)﹣(BC+CD+BD)=AB﹣BC=5﹣3=2(cm),即△ABD和△BCD的周长之差是2cm,故选B.【点评】本题主要考查三角形中线的定义,由条件得出两三角形的周长之差即为AC和BC的差是解题的关键.7.如图,已知MB=ND,∠MBA=∠NDC,下列哪个条件不能判定△ABM≌△CDN()A.∠M=∠N B.AB=CD C.AM∥ D.AM=【考点】全等三角形的判定.【分析】利用三角形全等的条件分别进行分析即可.【解答】解:A、加上∠M=∠N可利用ASA定理证明△ABM≌△CDN,故此选项不合题意;B、加上AB=CD可利用SAS定理证明△ABM≌△CDN,故此选项不合题意;C、加上AM∥可证明∠A=∠NCB,可利用ASA定理证明△ABM≌△CDN,故此选项不合题意;D、加上AM=不能证明△ABM≌△CDN,故此选项符合题意;故选:D.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.8.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是()A.3 B.4 C.6 D.5【考点】角平分线的性质.【专题】几何图形问题.【分析】过点D作DF⊥AC于F,根据角平分线上的点到角的两边距离相等可得DE=DF,再根据S△ABC=S+S△ACD列出方程求解即可.△ABD【解答】解:如图,过点D作DF⊥AC于F,∵AD是△ABC中∠BAC的角平分线,DE⊥AB,∴DE=DF,由图可知,S△ABC=S△ABD+S△ACD,∴×4×2+×AC×2=7,解得AC=3.故选:A.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质是解题的关键.9.如图,锐角三角形ABC中,直线L为BC的中垂线,直线M为∠ABC的角平分线,L与M相交于P 点.若∠A=60°,∠ACP=24°,则∠ABP的度数为何?()A.24° B.30° C.32° D.36°【考点】线段垂直平分线的性质.【分析】根据角平分线的定义可得∠ABP=∠CBP,根据线段垂直平分线上的点到两端点的距离相等可得BP=CP,再根据等边对等角可得∠CBP=∠BCP,然后利用三角形的内角和等于180°列出方程求解即可.【解答】解:∵直线M为∠ABC的角平分线,∴∠ABP=∠CBP.∵直线L为BC的中垂线,∴BP=CP,∴∠CBP=∠BCP,∴∠ABP=∠CBP=∠BCP,在△ABC中,3∠ABP+∠A+∠ACP=180°,即3∠ABP+60°+24°=180°,解得∠ABP=32°.故选:C.【点评】本题考查了线段垂直平分线上的点到两端点的距离相等的性质,角平分线的定义,三角形的内角和定理,熟记各性质并列出关于∠ABP的方程是解题的关键.10.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交B于点D,则下列说法中正确的个数是()①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC:S△ABC=1:3.A.1 B.2 C.3 D.4【考点】作图—复杂作图;角平分线的性质;线段垂直平分线的性质.【分析】①根据作图的过程可以判定AD是∠BAC的角平分线;②利用角平分线的定义可以推知∠CAD=30°,则由直角三角形的性质来求∠ADC的度数;③利用等角对等边可以证得△ADB的等腰三角形,由等腰三角形的“三合一”的性质可以证明点D在AB的中垂线上;④利用30度角所对的直角边是斜边的一半、三角形的面积计算公式来求两个三角形的面积之比.【解答】解:①根据作图的过程可知,AD是∠BAC的平分线.故①正确;②如图,∵在△ABC中,∠C=90°,∠B=30°,∴∠CAB=60°.又∵AD是∠BAC的平分线,∴∠1=∠2=∠CAB=30°,∴∠3=90°﹣∠2=60°,即∠ADC=60°.故②正确;③∵∠1=∠B=30°,∴AD=BD,∴点D在AB的中垂线上.故③正确;④∵如图,在直角△ACD中,∠2=30°,∴CD=AD,∴BC=CD+BD=AD+AD=AD,S△DAC=AC•CD=AC•AD.∴S△ABC=AC•BC=AC•AD=AC•A D,∴S△DAC:S△ABC=AC•AD:AC•AD=1:3.故④正确.综上所述,正确的结论是:①②③④,共有4个.故选D.【点评】本题考查了角平分线的性质、线段垂直平分线的性质以及作图﹣基本作图.解题时,需要熟悉等腰三角形的判定与性质.二、填空题11.已知三角形的三边长分别是3、x、9,则化简|x﹣5|+|x﹣13|= 8 .【考点】三角形三边关系.【分析】首先确定第三边的取值X围,从而确定x﹣5和x﹣13的值,然后去绝对值符号求解即可.【解答】解:∵三角形的三边长分别是3、x、9,∴6<x<12,∴x﹣5>0,x﹣13<0,∴|x﹣5|+|x﹣13|=x﹣5+13﹣x=8,故答案为:8.【点评】本题考查了三角形的三边关系,解题的关键是能够根据三边关系确定x的取值X围,从而确定绝对值内的代数式的符号,难度不大.12.如图,点D,E分别在线段AB,AC上,BE,CD相交于点O,AE=AD,要使△ABE≌△ACD,需添加一个条件是∠ADC=∠AEB或∠B=∠C或AB=AC或∠BDO=∠CEO (只需一个即可,图中不能再添加其他点或线).【考点】全等三角形的判定.【专题】开放型.【分析】要使△ABE≌△ACD,已知AE=AD,∠A=∠A,具备了一组边和一组角对应相等,还缺少边或角对应相等的条件,结合判定方法及图形进行选择即可.【解答】解:∵∠A=∠A,AE=AD,添加:∠ADC=∠AEB(ASA),∠B=∠C(AAS),AB=AC(SAS),∠BDO=∠CEO(ASA),∴△ABE≌△ACD.故填:∠ADC=∠AEB或∠B=∠C或AB=AC或∠BDO=∠CEO.【点评】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关健.13.可以用来证明命题“如果a,b是有理数,那么|a+b|=|a|+|b|”是假命题的反例可以是a=﹣1,b=3 .【考点】命题与定理.【分析】根据有理数的加法和绝对值的性质,只要a、b异号即可.【解答】解:a=﹣1,b=3时|a+b|=|a|+|b|”是假命题.(答案不唯一,只要a、b是异号两数即可).故答案为:a=﹣1,b=3.【点评】本题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题,本题主要利用了有理数的加法和绝对值的性质.14.如图,在△ABC中,∠C=90°,BD平分∠ABC,交AC于D.若DC=3,则点D到AB的距离是 3 .【考点】角平分线的性质.【分析】过点D作DE⊥AB于点E,根据角平分线的性质可知:DE=CD.【解答】解:过点D作DE⊥AB于点E,∵BD平分∠ABC,∠C=∠BED=90°∴DE=CD=3,∴点D到AB的距离为3,故答案为:3【点评】本题考查角平分线的性质,属于基础题型.15.如图,在△ABC中,AB=AC=12,EF为AC的中垂线,若EC=8,则BE的长为 4 .【考点】线段垂直平分线的性质.【分析】由已知条件,根据垂直平分线的性质得到EA=8,做差后得到BE的长度.【解答】解:∵△ABC中,AB=AC=12,EF为AC的中垂线∴EC=EA=8,BE=12﹣8=4.BE的长为4.故填4.【点评】此题主要考查线段的垂直平分线的性质等几何知识;进行线段的等量代换是正确解答本题的关键.16.一个三角形的两边长分别是3和7,且第三边长为奇数,这样的三角形的周长最大值是19 .【考点】三角形三边关系.【分析】首先根据三角形的三边关系确定第三边的取值X围,再根据第三边是奇数确定其值.【解答】解:根据三角形的三边关系,得第三根木棒的长大于4而小10.又∵第三根木棒的长是奇数,则应为5,7,9.这样的三角形的周长最大值是3+7+9=19,故答案为19【点评】此题考查了三角形的三边关系,关键是根据第三边大于两边之差而小于两边之和解答.17.如图,在△ABC中,高BD,CE相交于点H,若∠BHC=110°,则∠A等于70°.【考点】三角形内角和定理.【分析】先根据垂直的定义得出∠BEH=∠HDC=90°,由三角形外角的性质得出∠EBH与∠DCH的度数,再根据三角形内角和定理求出∠HBC+∠HCB的度数,进而可得出∠ABC+∠ACB的度数,由此可得出结论.【解答】解:∵BD⊥AC,CE⊥AB,∴∠BEH=∠HDC=90°.∵∠BHC=110°,∴∠EBH=∠DCH=110°﹣90°=20°,∠HBC+∠HCB=180°﹣110°=70°,∴∠ABC+∠ACB=∠EBH+∠DCH+(∠HBC+∠HCB)=20°+20°+70°=110°,∴∠A=180°﹣110°=70°.故答案为:70°.【点评】本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.18.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,∠A,∠1,∠2之间有一种数量关系始终保持不变,这种关系是∠1+∠2=2∠A .【考点】三角形内角和定理.【分析】设∠AED的度数为x,∠ADE的度数为y,根据全等三角形的对应角相等,以及平角的定义表示出∠1和∠2,求得∠1+∠2,再找到∠A和x、y之间的关系,就可建立它们之间的联系.【解答】解:设∠AED的度数为x,∠ADE的度数为y,则∠1=180°﹣2x,∠2=180°﹣2y,∵∠1+∠2=360°﹣2(x+y)=360°﹣2(180°﹣∠A)=2∠A,∴关系为:∠1+∠2=2∠A.故答案为:∠1+∠2=2∠A.【点评】本题主要考查了三角形内角和定理的运用,解决问题的关键是掌握:三角形内角和是180°.本题解法多样,也可以运用三角形外角性质进行求解.三、解答题(共46分)19.已知线段a,b及∠α,用直尺和圆规作△ABC,使∠B=∠α,AB=a,BC=b.【考点】作图—复杂作图.【分析】先作∠MBN=∠α,再在∠MBN的两边上分别截取AB=a,BC=b,最后连接AC即可.【解答】解:如图所示,△ABC即为所求.【点评】本题主要考查了尺规作图,复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.20.如图,△ABC≌△ADE,且∠CAD=35°,∠B=∠D=20°,∠EAB=105°,求∠BFD和∠BED的度数.【考点】全等三角形的性质.【分析】根据△ABC≌△ADE,进而得到∠EAD=∠CAB,结合∠CAD=35°,即可求出∠EAD和∠CAB的度数,再结合外角的性质即可求出所求角的度数.【解答】解:∵△ABC≌△ADE,∴∠EAD=∠CAB,又∵且∠CAD=35°,∠EAB=105°,∴∠EAD+∠DAC+∠CAB=∠EAB=105°,∴∠EAD=∠DAC=∠CAB=35°,∴∠DFB=∠DAC+∠B=70°+20°=90°,∠BED=∠BFD﹣∠D=90°﹣20°=70°.【点评】本题主要考查了全等三角形的性质,解题的关键是掌握三角形外角的性质,此题难度不大.21.如图,△ABC与△BAD中,AD与BC相交于点M,∠1=∠2,∠C=∠D ,试说明△ABC≌△BAD.请你在横线上添加一个条件,使得它可以用“AAS”来说明△ABC≌△BAD,并写出说理过程.【考点】全等三角形的判定.【分析】直接利用全等三角形的判定方法,添加:∠C=∠D,进而得出答案.【解答】解:添加条件是∠C=∠D.理由如下:在△ABC与△BAD中,∵∴△ABC≌△BAD(AAS),故答案为∠C=∠D.【点评】本题考查了三角形全等的判定方法,根据已知结合图形及判定方法选择条件是正确解答本题的关键.22.如图,在四边形ABCD中,∠A=∠BCD=90°,BC=DC.延长AD到E点,使DE=AB.(1)求证:∠ABC=∠EDC;(2)求证:△ABC≌△EDC.【考点】全等三角形的判定与性质.【专题】证明题.【分析】(1)根据四边形的内角和等于360°求出∠B+∠ADC=180°,再根据邻补角的和等于180°可得∠CDE+∠ADE=180°,从而求出∠B=∠CDE;(2)根据“边角边”证明即可.【解答】(1)证明:在四边形ABCD中,∵∠BAD=∠BCD=90°,∴90°+∠B+90°+∠ADC=360°,∴∠B+∠ADC=180°,又∵∠CDE+∠ADC=180°,∴∠ABC=∠CDE,(2)连接AC,由(1)证得∠ABC=∠CDE,在△ABC和△EDC中,,∴△ABC≌△EDC(SAS).【点评】本题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,根据四边形的内角和定理以及邻补角的定义,利用同角的补角相等求出夹角相等是证明三角形全等的关键,也是本题的难点.23.如图,在△ABC中,∠C=90°,BE平分∠ABC,AF平分外角∠BAD,BE与FA交于点E,求∠E的度数.【考点】三角形的外角性质;三角形内角和定理.【分析】设∠ABC=x°,再根据三角形外角的性质得出∠BAD=∠B+∠C=90°+x°,根据AF平分外角∠BAD可知∠DAF=∠BAD=(90°+x°),根据对顶角的性质得出∠EAG=∠DAF=(90°+x°),根据BE平分∠ABC可知∠CBE=∠ABC=x°,故可得出∠AGE的度数,由三角形内角和定理即可得出结论.【解答】解:设∠ABC=x°,∵∠BAD是△ABC的外角,∠C=90°,∴∠BAD=∠ABC+∠C=90°+x°,∵AF平分外角∠BAD,∴∠DAF=∠BAD=(90°+x°),∴∠EAG=∠DAF=(90°+x°).∵BE平分∠ABC,∴∠CBE=∠ABC=x°,∴∠AGE=∠BGC=90°﹣∠CBE=90°﹣x°,∵∠E+∠EAG+∠AGE=180°,即∠E+(90°+x°)+90°﹣x°=180°,解得∠E=45°.【点评】本题考查的是三角形外角的性质,熟知三角形的外角等于与之不相邻的两个内角的和是解答此题的关键.24.如图,在△ABC中,AC=6cm,AB=9cm,D是边BC上一点,AD平分∠BAC,在AB上截取AE=AC,连结DE,已知DE=2cm,BD=3cm.求:(1)线段BC的长;(2)若∠ACB的平分线CF交AD于点O,且O到AC的距离是acm,请用含a的代数式表示△ABC的面积.【考点】角平分线的性质.【分析】(1)分析题意易证得△ADE≌△ADC,则有CD=DE,而BC=BD+DC可求BC的长;(2)根据题意画出图形,利用三角形的面积公式即可得出结论.【解答】解:(1)∵AD平分∠BAC∴∠BAD=∠CAD在△ADE和△ADC中∵,∴△ADE≌△ADC(SAS)∴DE=DC,∴BC=BD+DC=BD+DE=2+3=5(cm);(2)如图,∵∠ACB的平分线CF交AD于点O,且O到AC的距离是acm,∴S△ABC=S△AOC+S△AOF+S△BCF=×6a+×9a+×5a=3a+a+a=10a(cm)2.【点评】本题考查的是角平分线的性质,熟知角的平分线上的点到角的两边的距离相等是解答此题的关键.25.如图,在Rt△ABC中,AB=AC,∠BAC=90°,∠1=∠2,CE⊥BD的延长于E.求证:BD=2CE.【考点】全等三角形的判定与性质;等腰直角三角形.【专题】证明题.【分析】延长CE、BA交于F点,然后证明△BFC是等腰三角形,再根据等腰三角形的性质可得CE=CF,然后在证明△ADB≌△AFC可得BD=FC,进而证出BD=2CE.【解答】证明:延长CE、BA交于F点,如图,∵BE⊥EC,∴∠BEF=∠CEB=90°.∵BD平分∠ABC,∴∠1=∠2,∴∠F=∠BCF,∴BF=BC,∵BE⊥CF,∴CE=CF,∵△ABC中,AC=AB,∠A=90°,∴∠CBA=45°,∴∠F=(180﹣45)°÷2=67.5°,∠FBE=22.5°,∴∠ADB=67.5°,∵在△ADB和△AFC中,,∴△ADB≌△AFC(AAS),∴BD=FC,∴BD=2CE.【点评】此题主要考查了全等三角形的判定与性质,以及等腰三角形的性质,关键是证明△ADB≌△AFC和CE=CF.思维与拓展(20分)26.如图,已知在△ABC中,∠B与∠C的平分线交于点P.(1)当∠A=112°时,求∠BPC的度数;(2)当∠A=α时,求∠BPC的度数.【考点】三角形内角和定理;三角形的外角性质.【分析】(1)先根据三角形内角和定理,求出∠ABC+∠ACB的度数,再由角平分线的定义得出∠2+∠4的度数,最后由三角形内角和定理,即可求出∠BPC的度数;(2)先连接AP并延长至D,根据∠ABC与∠ACB的角平分线相交于P,求得∠1=ABC,∠3=∠ACB,最后根据三角形的外角性质,求得∠BPC的度数.【解答】解:(1)∵△ABC中,∠A=112°,∴∠ABC+∠AC B=180°﹣∠A=180°﹣112°=68°,∴BP,CP分别为∠ABC与∠ACP的平分线,∴∠2+∠4=(∠ABC+∠ACB)=×68°=34°,∴∠P=180°﹣(∠2+∠4)=180°﹣34°=146°.(2)如图,连接AP并延长至D,∵∠ABC与∠ACB的角平分线相交于P,∴∠1=ABC,∠3=∠ACB,∵∠BPD是△ABD的外角,∴∠BPD=∠1+∠BAP,同理可得∠CPD=∠3+∠CAP,∴∠BPC=∠BPD+∠CPD=∠1+∠BAP+∠3+∠CAP=ABC+∠ACB+∠BAC=(∠ABC+∠ACB)+α=(180°﹣α)+α=90°+α.【点评】本题考查的是三角形内角和定理,三角形外角性质及角平分线的定义的综合应用,本题解法多样,熟知三角形的内角和定理是解答此题的关键.27.(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE ⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.【考点】全等三角形的判定与性质;等边三角形的判定.【专题】压轴题.【分析】(1)根据BD⊥直线m,CE⊥直线m得∠BDA=∠CEA=90°,而∠BAC=90°,根据等角的余角相等得∠CAE=∠ABD,然后根据“AAS”可判断△ADB≌△CEA,则AE=BD,AD=CE,于是DE=AE+AD=BD+CE;(2)与(1)的证明方法一样;(3)由前面的结论得到△ADB≌△CEA,则BD=AE,∠DBA=∠CAE,根据等边三角形的性质得∠ABF=∠CAF=60°,则∠DBA+∠ABF=∠CAE+∠CAF,则∠DBF=∠FAE,利用“SAS”可判断△DBF≌△EAF,所以DF=EF,∠BFD=∠AFE,于是∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°,根据等边三角形的判定方法可得到△DEF为等边三角形.【解答】证明:(1)∵BD⊥直线m,CE⊥直线m,∴∠BDA=∠CEA=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD,∵在△ADB和△CEA中,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(2)成立.∵∠BDA=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠CAE=180°﹣α,∴∠CAE=∠ABD,∵在△ADB和△CEA中,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(3)△DEF是等边三角形.由(2)知,△ADB≌△CEA,BD=AE,∠DBA=∠CAE,∵△ABF和△ACF均为等边三角形,∴∠ABF=∠CAF=60°,∴∠DBA+∠ABF=∠CAE+∠CAF,∴∠DBF=∠FAE,∵BF=AF在△DBF和△EAF中,∴△DBF≌△EAF(SAS),∴DF=EF,∠BFD=∠AFE,∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°,∴△DEF为等边三角形.【点评】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.也考查了等边三角形的判定与性质.。

陕西省汉中地区学八年级数学第一学期第一次月考试题

陕西省汉中地区学八年级数学第一学期第一次月考试题

陕西省汉中地区2012~2013学年度第一学期第一次月考八年级数学试题(卷)注意事项:1.本试卷共4页,满分100分,时间90分钟,学生直接在试卷上答卷;2.答卷前请将装订线内的项目填写清楚.一.选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)1.下列实数中,无理数的个数有 【 】1.414、 310、 .3.3、 3.1415926、 π、 0、 Λ1010010001.0A.4个B.3个C.2个D.1个2.下列几组数,能作为直角三角形的三边的是 【 】 A .5,12,23 B .0.6,0.8,1 C .20,30,50 D .4, 5,63.下列语句中正确的是 【 】 A .81的平方根是9 B.81的平方根是9±C .81的算术平方根是3±D .9的算术平方根是34【 】 A .8 B .-8 C .4 D .-45.如图所示,数轴上M 点表示的数可能是 【 】 AD .6.下列语句:①有理数都是有限小数;②n ③所有41 0 -12 3 第6题图a 是非完全平方数;⑤无理数是无限小数 其中错误的是 【 】 A.④⑤ B. ①③④ C.②③ D. ①②⑤7.直角三角形的两直角边长分别为12、16,则它的斜边上的高是 【 】 A.6 B.3013 C. 485 D. 60138.一块木板如图所示,已知AB =4,BC =3,DC =12,AD =13,∠B =90°,木板的面积为 【 】A .60B .30C .24D .129.直角三角形的中一直角边长为9,另两边为连续的自然数,则直角三角形的周长为 【 】A. 121B.120 C 90 D.81 10.直角三角形的三边长分别为a 、b 、c ,且满足等式()222,a b c ab +-=则此三角形是【 】A.锐角三角形B.钝角三角形C.直角三角形D.等腰直角三角形 二.填空题(共8小题,每小题3分,计24分) 11.1125一个数的立方是,则比这个数大8的数是 . 12.一个数的平方根是7±,则这个数的平方是 . 13.满足大于 . 14. 已知22-x y xy y +则x = .15.等腰三角形的底边长为48,底边上的高为7,则腰长为 .16.若一个直角三角形的一条直角边长是7,另一条直角边比斜边短1,则斜边长为 . 17.比较大小:2 32(填“大于”或“小于”). 18.测得一块三角形稻田的三边长分别是14cm 、48cm 、50cm ,则 这块稻田的面积为 2cm .三.解答题(共5小题,计46分.解答应写出过程)ADBC 第8题图19.(620.(8分)铁路上A 、B 两点相距20㎞,C 、D 为两村庄,DA ⊥AB 于A ,CB ⊥AB 于B ,已知DA =15㎞,CB =5㎞,现在要在铁路AB 上修建一个土特产收购站E ,使得C 、D 两村到E 站的距离相等,则E 站应修建在离A 站多少千米处?21.(10分)如图,有一块直角三角形纸片,两直角边AC =6cm ,BC =8cm ,现将直角边AC 沿直线AD 折叠,使它恰好落在斜边AB 上,且与AE 重合,求CD 的长.22.(10分)如图,长方体的长为15 cm ,宽为7 cm ,高为16 cm ,点B 离点C 5 cm ,一只蚂蚁如果要沿着长方体的表面从点A 爬到点B ,需要爬行的最短距离是多少?BADE第21题图()()23.121L 分根据以上规律,填空:,.请你将猜想的规律用含自然数()1n n³的代数式表示出来;(2)填下列各空:()()()(),,,.你填空后,发现了什么规律?请用含n的式子将规律表示出来.试卷类型:B(北师大版)2012~2013学年度第一学期第一次月考八年级数学试题参考答案及评分标准一. 选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)1.C2.B3.D4.C5.B6.D7.C8.C9.A 10.C二. 填空题(共8小题,每小题3分,计24分)11.41512.-2407 13.-1、0、1、2 14.9 15.25 16.25 17. < 18.336三. 解答题(共5小题,计46分.解答应写出过程)19.=2+1-2=1.LL LL L解:原式(3分)(5分)(6分)20. 解:如图,设E站应建在距离A站x(km)处. ……(1分)已知AB=25km,则BE=25-x(km). ……(2分)因为,DA⊥AB所以,在Rt△DAE中由勾股定理,有2222215DE AD AE x=+=+.……(4分)同理,在Rt△CBE中有()222520CE x=+-.……(6分)由CE=DE得到()2222520=15x x+-+,……(7分)化简得 40x=200,……(8分)解得 x=5,即,AE=5km. ……(9分)答:E站应建在距离A站5km处. ……(10分)20CDA第20题图E5()()()()()()22221.90,=68,10.,90.,,=8-.,C AC cm BC cm AB cm AE AC CD DE DEA CD xcm DE xcm BD x cm Rt BDE BD DE BE ??====??==D =+L L L L L L L L 解:因为且, 所以,由勾股定理,得2分 由折叠知识,得==6cm,4分 设则5分 在中,由勾股定理得:6分 ()()()()()2228-=4=3.3.10x x x x CD cm +==L L L L L L L L 即 ,7分 化简得 1648,8分 解得 9分 所以,分()()()()()22.116,7512,.'A B A B AB ABD AD cm BD cm AB cm A B AB ABD D ==+==D L L L L L L 解:蚂蚁从点爬到点,有两种爬法,将长方体展开, 图是蚂蚁沿侧面由爬向的展开图,连接, 则为直角三角形.1分 2分 由勾股定理,得4分 图2是蚂蚁沿上底面由爬向的展开图,连接, 则为直角三()()())()()()'7,'16521,.20,20.20.10AD cm BD cm AB cm A B cm cm ==+==L L L L L L L L L L 角形.5分 6分 由勾股定理,得8分 所以,蚂蚁沿侧面由爬到距离最短,最短距离为9分 答:蚂蚁需要爬行的最短距离是分图1ABDCB A D'图C()()()()23. L L L L L 解:(1)①4分 6分 (2)①②③④10分12分 。

《2016-2017学年西安名校八年级上第二次月考(12月份)数学+物理真题册》答案解析

目录2016-2017学年陕西省西安市八年级(上)第二次月考数学试卷(一)参考答案2016-2017学年陕西省西安市八年级(上)第二次月考数学试卷(二)参考答案2016-2017学年陕西省西安市八年级(上)第二次月考数学试卷(三)参考答案2016-2017学年陕西省西安市八年级(上)第二次月考物理试卷(一)参考答案2016-2017学年陕西省西安市八年级(上)第二次月考物理试卷(二)参考答案2016-2017学年陕西省西安市八年级(上)第二次月考物理试卷(三)参考答案2016-2017学年陕西省西安市八年级(上)第二次月考数学试卷(一)参考答案与试题解析一、精心选一选1.(3分)下列方程组中,是二元一次方程组的是()A. B.C.D.【分析】根据二元一次方程组的定义,可得答案.【解答】解:A、是二元一次方程组,故A符合题意;B、是三元一次方程组,故B不符合题意;C、是二元二次方程组,故C不符合题意;D、是二元二次方程组,故D不符合题意;故选:A.【点评】本题考查了二元一次方程组,熟记二元一次方程组的定义是解题关键.2.(3分)下列变形正确的是()A.B.C. D.【分析】根据算术平方根的定义判断A;根据立方根的定义判断B;根据二次根式的性质判断C;根据立方根的性质判断D.【解答】解:A、=4,故本选项错误;B、=3,故本选项错误;C、=3,故本选项错误;D、=﹣3,故本选项正确.故选D.【点评】本题考查了算术平方根、立方根的定义,二次根式、立方根的性质,牢记定义与性质是解题的关键.3.(3分)若一个正比例函数的图象经过不同象限的两点A(﹣2,m),B(n,3),那么一定有()A.m>0,n>0 B.m>0,n<0 C.m<0,n>0 D.m<0,n<0【分析】根据正比例函数的图象结合点A、B在不同的象限,即可得出m、n的符号是解题的关键.【解答】解:∵正比例函数图象为中心对称图形,且正比例函数的图象经过不同象限的两点A(﹣2,m),B(n,3),∴﹣2与n异号,m和3异号,∴n>0,m<0.故选C.【点评】本题考查了正比例函数的图象,根据正比例函数为中心对称图形找出m、n的符号是解题的关键.4.(3分)如图所示,一圆柱高8cm,底面半径为2cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程(π取3)是()A.20cm B.10cm C.14cm D.无法确定【分析】先将图形展开,根据两点之间,线段最短,利用根据勾股定理即可得出结论.【解答】解:如图所示:沿AC将圆柱的侧面展开,∵底面半径为2cm,∴BC==2π≈6cm,在Rt△ABC中,∵AC=8cm,BC=6cm,∴AB===10cm.故选:B.【点评】本题考查的是平面展开﹣最短路径问题,熟知两点之间,线段最短是解答此类问题的关键.5.(3分)要使式子有意义,a的取值范围是()A.a≠0 B.a>﹣2且a≠0 C.a>﹣2或a≠0 D.a≥﹣2且a≠0【分析】分子中二次根式的被开方数是非负数,而且分母不能为0,同时满足两个条件,求a的范围.【解答】解:根据题意,得解得a≥﹣2且a≠0.故选D.【点评】考查二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.当式子中有分母时还要考虑分母不等于零.6.(3分)某校运动员分组训练,若每组7人,余3人;若每组8人,则缺5人;设运动员人数为x人,组数为y组,则列方程组为()A.B.C.D.【分析】根据题意中的两种分法,分别找到等量关系:①组数×每组7人=总人数﹣3人;②组数×每组8人=总人数+5人.【解答】解:根据组数×每组7人=总人数﹣3人,得方程7y=x﹣3;根据组数×每组8人=总人数+5人,得方程8y=x+5.列方程组为.故选:C【点评】此题的关键是注意每一种分法和总人数之间的关系.7.(3分)如图,直线y=2x﹣4和直线y=﹣3x+1交于一点,则方程组的解是()A.B.C.D.【分析】两条直线有交点,那么他们有共同的解,可以组成方程组,解此方程组可得答案.【解答】解:直线y=2x﹣4和直线y=﹣3x+1交于一点,所以他们可以组成方程组,,①+②得,5x=5,解得,x=1,将x=1代入②中计算得,y=﹣2,方程组的解为:.故选C.【点评】本题主要考查一次函数和二元一次方程组的关系:准确的将条件转化为二元一次方程组.8.(3分)西安铁一中滨河学校为了提高五人小组合作热情并促进学生平时对各科核心知识的落实,自建校以来有一个教学特色即每周每天随机从各班选一个小组进行一科的抽检.已知初二一数学老师所带班级的两个小组共10名学生的一次数学抽检成绩平均分是73分,设这个班10名学生抽检成绩的中位数为b分,下表是具体分数统计表:则x,b的值分别是()A.3,70 B.3,75 C.2,70 D.2,75【分析】根据平均数和中位数的定义进行计算解答即可.【解答】解:根据题意可得:,解得:x=2,y=3,这个班10名学生抽检成绩的中位数(70+80)÷2=75,故选D【点评】本题考查了中位数的知识;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.9.(3分)有一个三位数,现将它最左边的数字移至最右边所得到的数比原来的数小144;而由它的十位数字与个位数字所组成的两位数除以百位数字,商是7,余数是4.如果设这个三位数的百位为x,十位与个位数字组成的两位数为y,可得方程组是()A.B.C.D.【分析】根据“将它最左边的数字移至最右边所得到的数比原来的数小144;而由它的十位数字与个位数字所组成的两位数除以百位数字,商是7,余数是4”找到两个等量关系列出方程组即可.【解答】解:设这个三位数的百位为x,十位与个位数字组成的两位数为y,根据题意得:,故选B.【点评】本题考查了由实际问题抽象出二元一次方程的知识,解题的关键是能够找到等量关系并设出未知数表示出等量关系的两边,难度不大.10.(3分)直角三角形有一条直角边长为13,另外两条边长为连续自然数,则周长为()A.182 B.183 C.184 D.185【分析】设出另一直角边和斜边,根据勾股定理列出方程,再根据边长都是自然数这一特点,写出二元一次方程组,求解即可.【解答】解:设另一直角边长为x,斜边为y,根据勾股定理可得x2+132=y2,即(y+x)(y﹣x)=169×1因为x、y都是连续自然数,可得,∴周长为13+84+85=182;故选A.【点评】本题综合考查了勾股定理与二元一次方程组,解这类题的关键是利用勾股定理来寻求未知系数的等量关系.二、细心填一填11.(5分)如图,∠1=∠2=45°,∠3=75°,则∠4=105°.【分析】作出AB∥CD,得出同旁内角互补,即可得出结果.【解答】解:∵∠1=∠2=45°=∠5,∴AB∥CD,∴∠3+∠4=180°,∵∠3=75°,∴∠4=105°;故答案为:105°.【点评】本题主要考查平行线的判定和性质、对顶角相等的性质,掌握平行线的判定和性质是解题的关键,即①同位角相等⇔两直线平行,②内错角相等⇔两直线平行,③同旁内角互补⇔两直线平行,④a∥b,b∥c⇒a∥c.12.(5分)已知点A(m+2,﹣3),B(﹣2,n﹣4)关于x轴对称,则m=﹣4,n=7.【分析】根据题意可设平面直角坐标系中任意一点P,其坐标为(x,y),则点P关于x轴的对称点的坐标P′是(x,﹣y).【解答】解:根据题意,得m+2=﹣2,n﹣4=3.解得:m=﹣4,n=7.故答案为:﹣4;7.【点评】本题考查了平面直角坐标系关于坐标轴成轴对称的两点的坐标之间的关系,是需要识记的内容.记忆方法是结合平面直角坐标系的图形记忆,另一种记忆方法是记住:关于横轴的对称点,横坐标不变,纵坐标变成相反数.13.(5分)已知一组数据5,8,10,7,9的众数是9,那么这组数据的方差是.【分析】根据众数的定义求出x的值,再根据平均数的计算公式求出这组数据的平均数,再根据方差公式进行计算即可.【解答】解:∵一组数据5,8,10,x,7,9的众数是,9,∴x是9,∴这组数据的平均数是(5+8+10+7+9+9)÷6=8,∴这组数据的方差是:[(5﹣8)2+(8﹣8)2+(10﹣8)2+(7﹣8)2+2(9﹣8)2]=.故答案为:【点评】此题考查了众数和方差,掌握众数和方差的定义及计算公式是此题的关键.14.(5分)下列命题:①两条直线被第三条直线所截,同位角相等;②若直角三角形的两条边长为3和4,则第三边长是5;③过直线外一点,有且只有一条直线与已知直线平行;④无限小数都是无理数.其中是真命题是有③.(填写序号)【分析】利用平行线的性质、勾股定理、平行公理及无理数的定义分别判断后即可确定正确的答案.【解答】解:①两条平行直线被第三条直线所截,同位角相等,故错误,是假命题;②若直角三角形的两条边长为3和4,则第三边长是5或,故错误,是假命题;③过直线外一点,有且只有一条直线与已知直线平行,正确,是真命题;④无限不循环小数都是无理数,故错误,是假命题,正确的是③,故答案为:③.【点评】本题考查了命题与定理的知识,解题的关键是了解平行线的性质、勾股定理、平行公理及无理数的定义.15.(5分)若二元一次方程组的解满足方程﹣2y=5,则k=.【分析】先用含k的代数式表示x,y,即解关于x,y的方程组,再代入方程﹣2y=5中解答.【解答】解:解二元一次方程组,得,代入方程﹣2y=5,得k+2k=5,∴k=.故本题答案为:.【点评】理解清楚题意,运用三元一次方程组的知识,解出k的数值.16.(3分)如图,有一矩形纸片OABC放在直角坐标系中,O为原点,C在x轴上,OA=6,OC=10,如图,在OA上取一点E,将△EOC沿EC折叠,使O点落在AB边上的D点处,则点E的坐标为(0,).【分析】根据翻转变换的性质求出CD,根据勾股定理求出AD,设OE=x,根据勾股定理列出方程,解方程即可.【解答】解:由翻转变换的性质可知,CD=OC=10,则BD==8,∴AD=AB﹣BD=2,设OE=x,则AE=6﹣x,DE=OE=x,由勾股定理得,x2=(6﹣x)2+4,解得,x=,则点E的坐标为:(0,),故答案为:(0,).【点评】本题考查的是翻转变换的性质、矩形的性质,翻转变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.17.(3分)已知实数x、y满足,则﹣xy的平方根等于±2.【分析】将已知等式左边后三项利用完全平方公式变形后,根据两非负数之和为0,两非负数分别为0求出x与y的值,确定出﹣xy的值,利用平方根的定义即可求出﹣xy 的平方根.【解答】解:∵+(y﹣3)2=0,∴3x+4=0且y﹣3=0,解得:x=﹣,y=3,∴﹣xy=4,则﹣xy的平方根为±2.故答案为:±2【点评】此题考查了配方法的应用,以及非负数的性质,熟练掌握完全平方公式是解本题的关键.18.(3分)如图,平面直角坐标系中,点A的坐标是(4,0),点P在直线y=﹣x+m 上,且AP=OP=4,那么m的值为2+2或2﹣2.【分析】易知点P在线段OA的垂直平分线上,那么就能求得△AOP是等边三角形,就能求得点P的横坐标,根据勾股定理可求得点P的纵坐标.把这点代入一次函数解析式即可,同理可得到在第四象限的点.【解答】解:由已知AP=OP,点P在线段OA的垂直平分线PM上.∴OA=AP=OP=4,∴△AOP是等边三角形.如图,当点P在第一象限时,OM=2,OP=4.在Rt△OPM中,PM===2,∴P(2,2).∵点P在y=﹣x+m上,∴m=2+2.当点P在第四象限时,根据对称性,P′(2,﹣2).∵点P′在y=﹣x+m上,∴m=2﹣2.则m的值为2+2或2﹣2.故答案为:2+2或2﹣2.【点评】此题主要考查了一次函数图象上点的坐标特征,解决本题的关键是求得点P的坐标,需注意点P的两种可能.三、认真做一做19.(6分)计算下列各题(1)﹣+×(2)(﹣2)×+.【分析】(1)先把各二次根式化简为最简二次根式,再根据二次根式的乘除法则运算,然后合并即可;(2)先利用二次根式的乘法法则运算,然后合并即可.【解答】解:(1)原式=﹣+3×2=﹣+6=﹣;(2)原式=﹣2+8﹣4+1=3﹣6+9﹣4=9﹣﹣6.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.20.(10分)解方程组:(1)(2).【分析】(1)方程组利用代入消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.【解答】解:(1),由②得:y=3x﹣11③,把③代入①得:2x+9x﹣33=0,解得:x=3,把x=3代入③得:y=﹣2,则方程组的解为;(2)方程组整理得:,①×3﹣②×2得:5y=7,解得:y=1.4,把y=1.4代入①得:x=6,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.21.(10分)为了解学生零花钱的使用情况,校团委随机调查了本校部分学生每人一周的零花钱数额,并绘制了如图甲、乙(部分未完成)所示的两个统计图.请根据图中信息,回答下列问题:(1)调查的学生每人一周零花钱数额的众数、中位数分别是多少元?(2)四川雅安地震后,全校5000名学生每人自发地捐出一周零花钱的一半,以支援灾区建设.请估算全校学生共捐款多少元?【分析】(1)首先根据捐款数是40元的有10人,占总人数的25%,即可求得调查的总人数,则捐款是20元的人数即可求得,再根据众数、中位数定义求解;(2)首先利用加权平均数公式求得平均零花钱数,即可求得捐款的平均数,然后乘以总人数即可.【解答】解:(1)调查的总人数是10÷25%=40(人),则捐款是20元的人数是40×15%=6(人),则学生每人一周零花钱数额的众数是30元、中位数分别是20元;(2)学生每周的零花钱的平均数是:=33(元),则估算全校学生共捐款总额是5000×33×=82500(元).【点评】本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.22.(10分)西安铁一中滨河学校是一所课改学校,学校在着力提高教学质量的同时,也特别重视学生综合能力的培养.2016年12月,初二教学组计划开展名为“学数者”讲题大赛,此活动目的是为了促进学生的讲题意识和讲题能力.活动前期还开展了“学数者”讲题考核通过礼品小勋章“滨河学数者”“学数引领者”赠送小游戏.初二一班级两个小组在数学课代表的组织下率先开展给同学讲题行动.若一组先讲题1天,然后二组和一组又各讲题4天,则两组讲题的个数一样多.若一组先讲题10道,然后二组和1组又各讲题3天,则2组比1组多讲题5道.问两个小组平均每天各讲题多少道?【分析】设第一小组平均每天讲题x道,第二小组平均每天讲题y道,利用题意列方程组,然后解方程组即可.【解答】解:设第一小组平均每天讲题x道,第二小组平均每天讲题y道,根据题意得,解得.答:第1和第2组平均每天分别讲题20道、25道.【点评】本题考查了分式方程的应用:列分式方程解应用题的一般步骤:设、列、解、验、答.解决本题可使用二元一次方程解决.23.(10分)为倡导低碳生活,绿色出行,某自行车俱乐部利用周末组织“远游骑行”活动.自行车队从甲地出发,途径乙地短暂休息完成补给后,继续骑行至目的地丙地,自行车队出发1小时后,恰有一辆邮政车从甲地出发,沿自行车队行进路线前往丙地,在丙地完成2小时装卸工作后按原路返回甲地,自行车队与邮政车行驶速度均保持不变,并且邮政车行驶速度是自行车队行驶速度的2.5倍,如图表示自行车队、邮政车离甲地的路程y(km)与自行车队离开甲地时间x(h)的函数关系图象,请根据图象提供的信息解答下列各题:(1)自行车队行驶的速度是24km/h;(2)邮政车出发多少小时与自行车队首次相遇?(3)邮政车在返程途中与自行车队再次相遇时的地点距离甲地多远?【分析】(1)由速度=路程÷时间就可以求出结论;(2)由自行车的速度就可以求出邮政车的速度,再由追击问题设邮政车出发a小时两车相遇建立方程求出其解即可;(3)由邮政车的速度可以求出B的坐标和C的坐标,由自行车的速度就可以D的坐标,由待定系数法就可以求出BC,ED的解析式就可以求出结论.【解答】解:(1)由题意得自行车队行驶的速度是:72÷3=24km/h.故答案为:24;(2)由题意得邮政车的速度为:24×2.5=60km/h.设邮政车出发a小时两车相遇,由题意得24(a+1)=60a,解得:a=.答:邮政车出发小时与自行车队首次相遇;(3)由题意,得邮政车到达丙地的时间为:135÷60=,∴邮政车从丙地出发的时间为:,∴B(,135),C(7.5,0).自行车队到达丙地的时间为:135÷24+0.5=+0.5=,∴D(,135).设BC的解析式为y1=k1x+b1,由题意得,∴,∴y1=﹣60x+450,设ED的解析式为y2=k2x+b2,由题意得,解得:,∴y2=24x﹣12.当y1=y2时,﹣60x+450=24x﹣12,解得:x=5.5.y1=﹣60×5.5+450=120.答:邮政车在返程途中与自行车队再次相遇时的地点距离甲地120km.【点评】本题考查了行程问题的数量关系的运用,待定系数法求一次函数的解析式的运用,一次函数与一元一次方程的运用,解答时求出函数的解析式是关键.24.(10分)如图,直线l1的解析式为y=﹣2x+3,且l1与x轴交于点D,直线l2经过点A(4,0)、B(3,﹣1),直线l1、l2交于点C.(1)点D的坐标:(,0);(直接写出结果)(2)△ADC的面积为:;(直接写出结果)(3)试问在y轴上是否存在一点P,使得△PAC的周长最小?若存在,求出点P的坐标和最小周长;若不存在,请说明理由.(4)试问:在直线l1上是否存在一点Q,使得△BCD的面积等于△ACQ的面积?若存在,请求出点Q的坐标;若不存在,请说明理由.【分析】(1)由l 1的解析式y=﹣2x +3可求得D 点坐标;(2)由A 、B 两点坐标可求得直线AB 的解析式,联立两直线解析式可求得C 点坐标,则可求得△ADC 的面积;(3)可找A 点关于y 轴的对称点为A′,连接A′C 交y 轴于点P ,则P 点即为满足条件的点,再利用勾股定理可求得△PAC 的周长;(4)可先求得△BCD 的面积,可得出△ACQ 的面积,可设出Q 点的坐标,当点Q 在点C 下方时,则有S △ACQ =S △ADQ ﹣S △ACD ,当点Q 在点D 的上方时,则有S △ACQ =S △ADQ +S △ACD ,可得到点Q 坐标的方程,可求得Q 点的坐标.【解答】解:(1)在y=﹣2x +3中,令y=0可得﹣2x +3=0,解得x=,∴D (,0),故答案为:(,0);(2)设直线l 2的解析式为y=kx +b ,把A 、B 两点坐标代入可得,解得,∴直线l 2的解析式为y=x ﹣4, 联立两直线解析式可得,解得,∴C (,﹣),∵A(4,0),D(,0),∴AD=4﹣=,=××=,∴S△ACD故答案为:;(3)设A点关于y轴的对称点为A′,如图1,连接A′C交y轴于点P,则PA′=PA,∴PA+PC=PA′+PC,此时A′、P、C三点在一条直线上,∴PA+PC最小,∵A(4,0),∴A′(﹣4,0),设直线A′C的解析式为y=mx+n,把A′、C的坐标代入可得,解得,∴直线A′C的解析式为y=﹣x﹣,∴P 点坐标为(0,﹣),此时A′C==,AC==,∴PA +PC +AC=A′C +AC=,即△PAC 的周长的最小值为;(4)由(2)可知AD=,且B (3,﹣1),∴S △ADB =××1=,∴S △BCD =S △ACD ﹣S △ABD =﹣=,∵△BCD 的面积等于△ACQ 的面积,∴S △ACQ =,设Q 点坐标为(t ,﹣2t +3),当点Q 在点C 下方时,如图2,则S △ACQ =S △ADQ ﹣S △ACD ,∴=××(2t ﹣3)﹣,解得t=4,此时Q 点坐标为(4,﹣5);当点Q 在点D 的上方时,如图3,则有S △ACQ =S △ADQ +S △ACD ,∴=××(﹣2t +3)+,解得t=,此时Q 点的坐标为(,); 综上可知存在满足条件的点Q ,其坐标为(4,﹣5)或(,).【点评】本题为一次函数的综合应用,涉及待定系数法、三角形的面积、函数图象的交点、轴对称的性质、方程思想及分类讨论思想等知识.在(2)中求得C 点坐标是解题的关键,在(3)中确定出点P 的位置是解题的关键,在(4)中用Q 的坐标表示出△ACQ 的面积是解题的关键.本题考查知识点较多,综合性较强,计算量较大.2016-2017学年陕西省西安市八年级(上)第二次月考数学试卷(二)参考答案与试题解析一、选择题1.(3分)16的平方根是()A.±4 B.±2 C.4 D.2【分析】根据平方根的概念即可求出答案,【解答】解:∵(±4)2=16,∴16的平方根是±4,故选(A)【点评】本题考查平方根的概念,属于基础题型.2.(3分)三角形的一个外角是锐角,则此三角形的形状是()A.锐角三角形 B.钝角三角形 C.直角三角形 D.无法确定【分析】三角形的一个外角是锐角,根据邻补角的定义可得它相邻的内角为钝角,即可判断三角形的形状是钝角三角形.【解答】解:∵三角形的一个外角是锐角,∴与它相邻的内角为钝角,∴三角形的形状是钝角三角形.故选B.【点评】本题考查了三角形的一个内角与它相邻的外角互补.3.(3分)下列命题中,是假命题的是()A.平方根等于本身的数是0B.如果a,b都是无理数,那么a+b也一定是无理数C.坐标平面内的点与有序实数对一一对应D.与6可以合并同类项【分析】根据平方根的性质,无理数的定义,同类二次根式的合并,坐标平面内的点与有序实数对的关系进行判断即可.【解答】解:A、平方根等于本身的数是0,是真命题;B、如果a=,b=﹣都是无理数,那么a+b=0是有理数,是假命题;C、坐标平面内的点与有序实数对一一对应,是真命题;D、∵=2,6=,∴与6是同类二次根式可以合并,是真命题;故选B.【点评】本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的定义、性质等知识.4.(3分)已知等腰三角形的腰长为10,一腰上的高为6,则以底边为边长的正方形的面积为()A.40 B.80 C.40或360 D.80或360【分析】根据题意作出图形分为高线在三角形内和高线在三角形外两种情况,然后根据勾股定理计算求解即可.【解答】解:由题意可作图左图中AC=10,CD=6,CD⊥AB根据勾股定理可知AD=8∴BD=2∴BC2=22+62=40右图中AC=10,CD=6,CD⊥BD,根据勾股定理知AD=8∴BD=18∴BC2=182+62=360.故选C.【点评】本题考查了等腰三角形的性质,作出图形利用三角形知识求解即可.5.(3分)为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则为:明文a,b,c,d对应密文a+2b,2b+c,2c+3d,4d.例如,明文1,2,3,4对应密文5,7,18,16.当接收方收到密文14,9,23,28时,则解密得到的明文为()A.7,6,1,4 B.6,4,1,7 C.4,6,1,7 D.1,6,4,7【分析】已知结果(密文),求明文,根据规则,列方程组求解.【解答】解:依题意,得,解得.∴明文为:6,4,1,7.故选B.【点评】本题考查了方程组在实际中的运用,弄清题意,列方程组是解题的关键.6.(3分)下列图形中,表示一次函数y=mx+n与正比例函数y=mnx(m,n为常数,且mn≠0)的图象的是()A.B.C.D.【分析】根据“两数相乘,同号得正,异号得负”分两种情况讨论mn的符号,然后根据m、n同正时,同负时,一正一负或一负一正时,利用一次函数的性质进行判断.【解答】解:①当mn>0,m,n同号,同正时y=mx+n过1,3,2象限,同负时过2,4,3象限;②当mn<0时,m,n异号,则y=mx+n过1,3,4象限或2,4,1象限.故选A.【点评】主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.7.(3分)在三角形ABC中,D是边BC上的一点,已知AC=5,AD=6,BD=10,CD=5,那么三角形ABC的面积是()A.30 B.36 C.72 D.125【分析】作CE⊥AD,AF⊥CD,则根据面积法可以证明AD×EC=AF×CD,要求AF,求CE即可,根据AC=CD=5,AD=6可以求得CE,△ABC的面积为×BC×AF.【解答】解:作CE⊥AD,AF⊥CD,在△ACD中S=•AD•CE=•CD•AF,∵AC=CD,∴AE=DE=3,故CE==4,∴AF==,∴△ABC的面积为×(10+5)×=36,故选B.【点评】本题考查了等腰三角形面积计算,考查了勾股定理在直角三角形中的应用,本题中求AF即△ABC中BC边上的高是解题的关键.8.(3分)某校6名学生的某次竞赛成绩统计如图,则这组数据的众数、中位数、方差依次是()A.18,17.5,5 B.18,17.5,3 C.18,18,3 D.18,18,1【分析】根据众数、中位数的定义和方差公式分别进行解答即可.【解答】解:这组数据18出现的次数最多,出现了3次,则这组数据的众数是18;把这组数据从小到大排列,最中间两个数的平均数是(18+18)÷2=18,则中位数是18;这组数据的平均数是:(17×2+18×3+20)÷6=18,则方差是:[2×(17﹣18)2+3×(18﹣18)2+(20﹣18)2]=1;故选:D.【点评】本题考查了众数、中位数和方差,众数是一组数据中出现次数最多的数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);9.(3分)有两段长度相等的河渠挖掘任务,分别交给甲乙两个工程队同时进行挖掘,如图是反映所挖河渠长度y(米)与挖掘时间x(时)之间的关系的部分图象.如果甲队施工速度不变,乙队在开挖6小时后,施工速度增加7千米/时,结果两队同时完成了任务,则该河渠的长度为()A.90米B.100米C.110米D.120米【分析】横坐标为施工时间,纵坐标为施工长度,拆线的斜率即为施工速度.在六小时后,解题思路与追赶问题类似.【解答】解:设y1,y2分别为甲,乙施工长度.v1,v2分别为甲,乙施工速度.设以0h开始记时,施工时间为x小时.当2<x<6时,=10米/时,=5米/时.当x>6时,v1=10米/时.v2=5+7=12米/时.y1=10(x﹣6)+60=10xy2=12(x﹣6)+50=12x﹣22当甲乙两队同时完成时,y1=y2即:10x=12x﹣22.解得:x=11.所以河渠长度为:10×11=110米.故选:C.【点评】此题为函数图象的应用,解题时根据题设条件找出横纵坐标对应的量的关系,列出解析式再进一步求解.10.(3分)如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1、S2,则S1+S2的值为()A.16 B.17 C.18 D.19【分析】由图可得,S2的边长为3,由AC=BC,BC=CE=CD,可得AC=2CD,CD=2,EC=2;然后,分别算出S1、S2的面积,即可解答.【解答】解:如图,设正方形S1的边长为x,∵△ABC和△CDE都为等腰直角三角形,。

陕西省汉中市八年级数学上学期12月月考试卷(含解析) 新人教版

2016-2017学年陕西省汉中八年级(上)月考数学试卷(12月份)一、选择题(共10小题,每小题3分,计30分)1.下列函数:①y=x;②y=;③y=﹣;④y=2x+1,其中一次函数的个数是()A.1 B.2 C.3 D.42.已知方程①2x+y=0;② x+y=2;③x2﹣x+1=0;④2x+y﹣3z=7是二元一次方程的是()A.①② B.①②③C.①②④D.①3.如果y=(a+1)x是正比例函数,那么a的值是()A.﹣1 B.0或1 C.﹣1或1 D.14.如果点P(﹣2,b)和点Q(a,﹣3)关于x轴对称,则a+b的值是()A.﹣1 B.1 C.﹣5 D.55.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()A.90° B.60° C.45° D.30°6.给出下列说法:①﹣6是36的平方根;②16的平方根是4;③;④是无理数;⑤一个无理数不是正数就是负数.其中,正确的说法有()A.①③⑤B.②④ C.①③ D.①7.如图,一架长为10m的梯子斜靠在一面墙上,梯子底端离墙6m,如果梯子的顶端下滑了2m,那么梯子底部在水平方向滑动了()A.2m B.2.5m C.3m D.3.5m8.弹簧的长度y cm与所挂物体的质量x(kg)的关系是一次函数,图象如图所示,则弹簧不挂物体时的长度是()A.8.3cm B.10cm C.10.5cm D.5cm9.某中学计划租用若干辆汽车运送七年级学生外出进行社会实践活动,如果一辆车乘坐45人,那么有35名学生没有车坐;如果一辆车乘坐60人,那么有一辆车只坐了35人,并且还空出一辆车.设计划租用x辆车,共有y名学生.则根据题意列方程组为()A.B.C.D.10.一次函数y=mx+n与y=mnx(mn≠0),在同一平面直角坐标系的图象是()A. B. C. D.二、填空题(共6小题,每小题3分,计18分)11.如果的平方根是±3,则= .12.已知P1(1,y1),P2(2,y2)是正比例函数y=x的图象上的两点,则y1y2(填“>”或“<”或“=”).13.中国电信宣布,从某天起,县城和农村电话收费标准一样,在县内通话3分钟内的收费是0.2元,每超1分钟加收0.1元,则电话费y(元)与通话时间t(t≥3分,t为正整数)的函数关系是.14.若点A(3﹣m,2)在函数y=2x﹣3的图象上,则点A关于原点对称的点的坐标是.15.定义运算“*”,规定x*y=ax2+by,其中a,b为常数,且1*2=5,2*3=6,则2*3= .16.已知一次函数y=2x+a与y=﹣x+b的图象都经过点A(﹣2,0),且与y轴分别交于B,C两点,则△ABC的面积为.三、解答题:(共8小题,计72分)17.(6分)计算(1)(﹣)×(2)﹣(×﹣)﹣÷2.18.(8分)用带入消元法求解下列方程组(1)(2).19.(8分)用加减消元法求解下列方程组(1)(2).20.(8分)已知y+2与x成正比例,且x=3时y=1.(1)写出y与x之间的函数关系式;(2)求当x=﹣1时,y的值;(3)求当y=0时,x的值.21.(9分)李老师计划到商店购买甲、乙两种品牌的白板笔.已知甲品牌白板笔每支定价8元,乙品牌白板笔每支定价10元.李老师只带了560元钱,若她恰好花完所带的钱买了甲、乙两种笔共60支,李老师购买两种品牌的白板笔各多少支?22.(9分)如图,直线AB与x轴交于点A(1,0),与y轴交于点B(0,﹣2).(1)求直线AB的解析式;(2)若直线AB上的点C在第一象限,且S△BOC=2,求点C的坐标.23.(10分)如图,把长方形纸片ABCD沿EF折叠后,使得点D与点B重合,点C落在点C′的位置上.(1)若∠1=50°,求∠2、∠3的度数;(2)若AD=8,AB=4,求BF.24.(14分)某社区活动中心为鼓励居民加强体育锻炼,准备购买10副某种品牌的羽毛球拍,每副球拍配x(x≥2)个羽毛球,供社区居民免费借用.该社区附近A、B两家超市都有这种品牌的羽毛球拍和羽毛球出售,且每副球拍的标价均为30元,每个羽毛球的标价为3元,目前两家超市同时在做促销活动:A超市:所有商品均打九折(按标价的90%)销售;B超市:买一副羽毛球拍送2个羽毛球.设在A超市购买羽毛球拍和羽毛球的费用为y A(元),在B超市购买羽毛球拍和羽毛球的费用为y B(元).请解答下列问题:(1)分别写出y A、y B与x之间的关系式;(2)若该活动中心只在一家超市购买,你认为在哪家超市购买更划算?(3)若每副球拍配15个羽毛球,请你帮助该活动中心设计出最省钱的购买方案.2016-2017学年陕西省汉中实验中学八年级(上)月考数学试卷(12月份)参考答案与试题解析一、选择题(共10小题,每小题3分,计30分)1.下列函数:①y=x;②y=;③y=﹣;④y=2x+1,其中一次函数的个数是()A.1 B.2 C.3 D.4【考点】一次函数的定义.【分析】根据形如y=kx+b(k≠0,k、b是常数)的函数,叫做一次函数进行分析即可.【解答】解:①y=x;②y=;④y=2x+1是一次函数,共3个,故选:C.【点评】此题主要考查了一次函数定义,关键是掌握一次函数形如y=kx+b(k≠0,k、b是常数),一次函数解析式的结构特征:k≠0;自变量的次数为1;常数项b可以为任意实数.2.已知方程①2x+y=0;② x+y=2;③x2﹣x+1=0;④2x+y﹣3z=7是二元一次方程的是()A.①② B.①②③C.①②④D.①【考点】二元一次方程的定义.【分析】直接利用二元一次方程的定义分析得出答案.【解答】解:∵①2x+y=0是二元一次方程;②x+y=2是二元一次方程;③x2﹣x+1=0是一元二次方程;④2x+y﹣3z=7是三元一次方程;故选:A.【点评】此题主要考查了二元一次方程的定义,正确把握“元”与“次”的意义是解题关键.3.如果y=(a+1)x是正比例函数,那么a的值是()A.﹣1 B.0或1 C.﹣1或1 D.1【考点】正比例函数的定义.【分析】根据正比例函数定义可得a2=1,且a+1≠0,再解即可.【解答】解:由题意得:a2=1,且a+1≠0,解得:a=1,故选:D.【点评】此题主要考查了正比例函数定义,关键是掌握形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数.4.如果点P(﹣2,b)和点Q(a,﹣3)关于x轴对称,则a+b的值是()A.﹣1 B.1 C.﹣5 D.5【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于x轴对称的点,横坐标相同,纵坐标互为相反数,求出a、b的值,再计算a+b的值.【解答】解:∵点P(﹣2,b)和点Q(a,﹣3)关于x轴对称,又∵关于x轴对称的点,横坐标相同,纵坐标互为相反数,∴a=﹣2,b=3.∴a+b=1,故选B.【点评】解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.5.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()A.90° B.60° C.45° D.30°【考点】勾股定理.【分析】根据勾股定理即可得到AB,BC,AC的长度,进行判断即可.【解答】解:根据勾股定理可以得到:AC=BC=,AB=.∵()2+()2=()2.∴AC2+BC2=AB2.∴△ABC是等腰直角三角形.∴∠ABC=45°.故选C.【点评】本题考查了勾股定理,判断△ABC是等腰直角三角形是解决本题的关键.6.给出下列说法:①﹣6是36的平方根;②16的平方根是4;③;④是无理数;⑤一个无理数不是正数就是负数.其中,正确的说法有()A.①③⑤B.②④ C.①③ D.①【考点】无理数;平方根;立方根.【分析】根据平方根的定义即可判断①②;根据立方根的定义计算③④即可;根据无理数的定义判断⑤即可.【解答】解:﹣6是36的平方根,∴①正确;16的平方根是±4,∴②错误;,∴③正确;=3是有理数,∴④错误;一个无理数不是正数就是负数,∴⑤正确;正确的有①③⑤.故选A.【点评】本题主要考查对无理数、平方根、立方根等知识点的理解和掌握,能熟练地运用这些定义进行判断是解此题的关键.7.如图,一架长为10m的梯子斜靠在一面墙上,梯子底端离墙6m,如果梯子的顶端下滑了2m,那么梯子底部在水平方向滑动了()A.2m B.2.5m C.3m D.3.5m【考点】勾股定理的应用.【分析】首先在Rt△ABO中利用勾股定理计算出AO的长,在Rt△COD中计算出DO的长,进而可得BD的长.【解答】解:在Rt△ABO中:AO===8(米),∵梯子的顶端下滑了2m,∴AC=2米,∴CO=6米,在Rt△COD中:DO===8(米),∴BD=DO﹣BO=8﹣6=2(米),故选:A.【点评】此题主要考查了勾股定理的应用,关键是掌握直角三角形中,两直角边的平方和等于斜边的平方.8.弹簧的长度y cm与所挂物体的质量x(kg)的关系是一次函数,图象如图所示,则弹簧不挂物体时的长度是()A.8.3cm B.10cm C.10.5cm D.5cm【考点】一次函数的应用.【分析】根据题意可以求得一次函数的解析式,从而可以求得弹簧不挂物体时的长度,本题得以解决.【解答】解:设y=kx+b,,解得,,∴y=1.5x+5,当x=0时,y=5,故选D.【点评】本题考查一次函数的应用,解题的关键是明确题意,找出所求问题需要的条件.9.某中学计划租用若干辆汽车运送七年级学生外出进行社会实践活动,如果一辆车乘坐45人,那么有35名学生没有车坐;如果一辆车乘坐60人,那么有一辆车只坐了35人,并且还空出一辆车.设计划租用x辆车,共有y名学生.则根据题意列方程组为()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【分析】设计划租用x辆车,共有y名学生,根据如果一辆车乘坐45人,那么有35名学生没有车坐;如果一辆车乘坐60人,那么有一辆车只坐了35人,列方程组即可.【解答】解:设计划租用x辆车,共有y名学生,由题意得,.故选B.【点评】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组.10.一次函数y=mx+n与y=mnx(mn≠0),在同一平面直角坐标系的图象是()A. B. C. D.【考点】一次函数的图象.【分析】由于m、n的符号不确定,故应先讨论m、n的符号,再根据一次函数的性质进行选择.【解答】解:(1)当m>0,n>0时,mn>0,一次函数y=mx+n的图象一、二、三象限,正比例函数y=mnx的图象过一、三象限,无符合项;(2)当m>0,n<0时,mn<0,一次函数y=mx+n的图象一、三、四象限,正比例函数y=mnx的图象过二、四象限,C选项符合;(3)当m<0,n<0时,mn>0,一次函数y=mx+n的图象二、三、四象限,正比例函数y=mnx的图象过一、三象限,无符合项;(4)当m<0,n>0时,mn<0,一次函数y=mx+n的图象一、二、四象限,正比例函数y=mnx的图象过二、四象限,无符合项.故选C.【点评】一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.二、填空题(共6小题,每小题3分,计18分)11.如果的平方根是±3,则= 4 .【考点】立方根;平方根;算术平方根.【分析】求出a的值,代入求出即可.【解答】解:∵的平方根是±3,∴=9,∴a=81,∴==4,故答案为:4.【点评】本题考查了平方根、算术平方根,立方根定义的应用,关键是求出a的值.12.已知P1(1,y1),P2(2,y2)是正比例函数y=x的图象上的两点,则y1<y2(填“>”或“<”或“=”).【考点】一次函数图象上点的坐标特征.【分析】直接把P1(1,y1),P2(2,y2)代入正比例函数y=x,求出y1,y2的值,再比较出其大小即可.【解答】解:∵P1(1,y1),P2(2,y2)是正比例函数y=x的图象上的两点,∴y1=,y2=×2=,∵<,∴y1<y2.故答案为:<.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.13.中国电信宣布,从某天起,县城和农村电话收费标准一样,在县内通话3分钟内的收费是0.2元,每超1分钟加收0.1元,则电话费y(元)与通话时间t(t≥3分,t为正整数)的函数关系是y=0.1t﹣0.1 .【考点】根据实际问题列一次函数关系式.【分析】根据题意超出3分钟的时间为:(t﹣3)分钟,则电话费y=0.2+0.1(t﹣3).【解答】解:根据题意超出3分钟的时间为(t﹣3)分钟,总共的时间y=0.2+0.1(t﹣3)=0.1(t﹣1),=0.1t﹣0.1即为所求.【点评】本题考查的是一次函数在实际应用问题,比较简单.14.若点A(3﹣m,2)在函数y=2x﹣3的图象上,则点A关于原点对称的点的坐标是(﹣,﹣2).【考点】关于原点对称的点的坐标;一次函数图象上点的坐标特征.【分析】将点A(3﹣m,2)代入函数y=2x﹣3,先求出点A的坐标,再求出它关于原点的对称点的坐标.【解答】解:把A(3﹣m,2)代入函数y=2x﹣3的解析式得:2=2(3﹣m)﹣3,解得:m=,∴3﹣m=,∴点A的坐标是(,2),∴点A关于原点的对称点A′的坐标为(﹣,﹣2).故答案为:(﹣,﹣2).【点评】本题考查了函数图象上的点的坐标与函数解析式的关系,以及关于原点对称的点坐标之间的关系.15.定义运算“*”,规定x*y=ax2+by,其中a,b为常数,且1*2=5,2*3=6,则2*3= 6 .【考点】解二元一次方程组;有理数的混合运算.【分析】已知两等式利用题中新定义化简,求出a与b的值,再利用新定义求出所求式子的值即可.【解答】解:根据题中新定义得:,①×4﹣②得:5b=14,即b=,把b=代入①得:a=﹣,则2*3=4×(﹣)+×3=6,故答案为:6【点评】此题考查了解二元一次方程组,以及有理数的混合运算,熟练掌握运算法则是解本题的关键.16.已知一次函数y=2x+a与y=﹣x+b的图象都经过点A(﹣2,0),且与y轴分别交于B,C两点,则△ABC的面积为 6 .【考点】两条直线相交或平行问题.【分析】首先分别把(﹣2,0)代入两个函数解析式中,解得a=4,b=﹣2.即得B(0,4),C(0,﹣2).然后根据三点坐标求△ABC的面积.【解答】解:把(﹣2,0)代入两个函数解析式中,得:a=4,b=﹣2∴B(0,4),C(0,﹣2)∴S△ABC=×2×(4+2)=6.故填6.【点评】首先运用待定系数法确定待定系数的值,从而确定点B和C的坐标.再结合图形根据三角形的面积公式进行求解.三、解答题:(共8小题,计72分)17.计算(1)(﹣)×(2)﹣(×﹣)﹣÷2.【考点】实数的运算.【分析】(1)原式利用乘法分配律及二次根式乘法法则计算即可得到结果;(2)原式利用二次根式乘除法则计算,合并即可得到结果.【解答】解:(1)原式=﹣=8﹣10=﹣2;(2)原式=2﹣3+4﹣2=1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.用带入消元法求解下列方程组(1)(2).【考点】解二元一次方程组.【分析】方程组利用代入消元法求出解即可.【解答】解:(1),由①得:x=﹣5y+6③,把③代入②得:﹣15y+18﹣6y﹣4=0,即y=,把y=代入③得:x=.则方程组的解为.(2),由②得:x=y+0.75③,把③代入①得:2y+1.5+3y=4,即y=0.5,把y=0.5代入③得:x=1.25.则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.19.用加减消元法求解下列方程组(1)(2).【考点】解二元一次方程组.【分析】(1)方程组利用加减消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.【解答】解:(1),①×3﹣②得:7x=﹣14,解得:x=﹣2,把x=﹣2代入①得:y=3,则方程组的解为;(2)方程组整理得:,①×2+②×3得:13x=﹣1,解得:x=﹣,把x=﹣代入①得:y=﹣,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.20.已知y+2与x成正比例,且x=3时y=1.(1)写出y与x之间的函数关系式;(2)求当x=﹣1时,y的值;(3)求当y=0时,x的值.【考点】待定系数法求一次函数解析式.【分析】(1)设y+2=kx(k≠0),把x=3,y=1代入求值即可;(2)把x=﹣1代入(1)中的函数关系式即可得到相应的y的值;(3)把y=0代入(1)中的函数关系式即可求得相应的x的值.【解答】解:(1)设y+2=kx(k≠0),则由x=3时y=1得到:1+2=3k,解得k=1.则该函数关系式为:y=x﹣2;(2)把x=﹣1代入y=x﹣2得到:y=﹣1﹣2=﹣3;(3)把y=0代入y=x﹣2得到:0=x﹣2;解得x=2.【点评】本题考查了待定系数法求一次函数解析式.注意本题中是“+2与x成正比例”,而不是“y与x成正比例”.21.李老师计划到商店购买甲、乙两种品牌的白板笔.已知甲品牌白板笔每支定价8元,乙品牌白板笔每支定价10元.李老师只带了560元钱,若她恰好花完所带的钱买了甲、乙两种笔共60支,李老师购买两种品牌的白板笔各多少支?【考点】二元一次方程组的应用.【分析】设甲种品牌的白板笔x支,乙种品牌的白板笔y支,根据两种白板笔总费用=560元,甲、乙两种笔共60支,分别得出等式求出答案.【解答】解:设甲种品牌的白板笔x支,乙种品牌的白板笔y支,根据题意得:,解得:.答:甲种品牌的白板笔20支,乙种品牌的白板笔40支.【点评】此题主要考查了二元一次方程组的应用,根据题意得出正确等量关系是解题关键.22.如图,直线AB与x轴交于点A(1,0),与y轴交于点B(0,﹣2).(1)求直线AB的解析式;(2)若直线AB上的点C在第一象限,且S△BOC=2,求点C的坐标.【考点】待定系数法求一次函数解析式.【分析】(1)设直线AB的解析式为y=kx+b,将点A(1,0)、点B(0,﹣2)分别代入解析式即可组成方程组,从而得到AB的解析式;(2)设点C的坐标为(x,y),根据三角形面积公式以及S△BOC=2求出C的横坐标,再代入直线即可求出y的值,从而得到其坐标.【解答】解:(1)设直线AB的解析式为y=kx+b(k≠0),∵直线AB过点A(1,0)、点B(0,﹣2),∴,解得,∴直线AB的解析式为y=2x﹣2.(2)设点C的坐标为(x,y),∵S△BOC=2,∴•2•x=2,解得x=2,∴y=2×2﹣2=2,∴点C的坐标是(2,2).【点评】本题考查了待定系数法求函数解析式,解答此题不仅要熟悉函数图象上点的坐标特征,还要熟悉三角形的面积公式.23.(10分)(2015秋•泰州校级期中)如图,把长方形纸片ABCD沿EF折叠后,使得点D 与点B重合,点C落在点C′的位置上.(1)若∠1=50°,求∠2、∠3的度数;(2)若AD=8,AB=4,求BF.【考点】翻折变换(折叠问题).【分析】(1)由AD∥BC得∠1=∠2,所以∠2=∠BEF=50°,从而得∠3=180﹣∠2﹣∠BEF;(2)首先根据边角之间的关系得到BE=BF,结合∠A=∠C′,AB=BC′,证明出△ABE≌△C′BF,进一步得到AE=FC,在Rt△ABE中,利用AB2+AE2=BE2,求出AE的长,进而求出CF 的长,即可得到结论.【解答】解:(1)∵AD∥BC,∴∠1=∠2=50°.∵∠BEF=∠2=50°,∴∠3=180﹣∠2﹣∠BEF=80°;AD=8,AB=4,(2)∵∠1=∠2,∠BEF=∠2,∴∠1=∠BEF,∴BE=BF,又∵∠A=∠C′,AB=BC′,在△ABE与△C′BF中,,∴△ABE≌△C′BF(SAS),∴AE=C′F.∵FC=FC′,∴AE=FC.在Rt△ABE中,AB2+AE2=BE2.∵AB=4,AD=8,∴42+AE2=(8﹣AE)2,∴AE=3,∴CF=AE=3,∴BF=BC﹣CF=5.【点评】此题考查图形的翻折变换,全等三角形的判定和性质,勾股定理,解题过程中应注意折叠前后的对应关系,此题难度不大.24.(14分)(2013•襄阳)某社区活动中心为鼓励居民加强体育锻炼,准备购买10副某种品牌的羽毛球拍,每副球拍配x(x≥2)个羽毛球,供社区居民免费借用.该社区附近A、B两家超市都有这种品牌的羽毛球拍和羽毛球出售,且每副球拍的标价均为30元,每个羽毛球的标价为3元,目前两家超市同时在做促销活动:A超市:所有商品均打九折(按标价的90%)销售;B超市:买一副羽毛球拍送2个羽毛球.设在A超市购买羽毛球拍和羽毛球的费用为y A(元),在B超市购买羽毛球拍和羽毛球的费用为y B(元).请解答下列问题:(1)分别写出y A、y B与x之间的关系式;(2)若该活动中心只在一家超市购买,你认为在哪家超市购买更划算?(3)若每副球拍配15个羽毛球,请你帮助该活动中心设计出最省钱的购买方案.【考点】一次函数的应用.【分析】(1)根据购买费用=单价×数量建立关系就可以表示出y A、y B的解析式;(2)分三种情况进行讨论,当y A=y B时,当y A>y B时,当y A<y B时,分别求出购买划算的方案;(3)分两种情况进行讨论计算求出需要的费用,再进行比较就可以求出结论.【解答】解:(1)由题意,得y A=(10×30+3×10x)×0.9=27x+270;y B=10×30+3(10x﹣20)=30x+240;(2)当y A=y B时,27x+270=30x+240,得x=10;当y A>y B时,27x+270>30x+240,得x<10;当y A<y B时,27x+270<30x+240,得x>10∴当2≤x<10时,到B超市购买划算,当x=10时,两家超市一样划算,当x>10时在A 超市购买划算.(3)由题意知x=15,15>10,∴选择A超市,y A=27×15+270=675(元),先选择B超市购买10副羽毛球拍,送20个羽毛球,然后在A超市购买剩下的羽毛球:(10×15﹣20)×3×0.9=351(元),共需要费用10×30+351=651(元).∵651元<675元,∴最佳方案是先选择B超市购买10副羽毛球拍,然后在A超市购买130个羽毛球.【点评】本题考查了一次函数的解析式的运用,分类讨论的数学思想的运用,方案设计的运用,解答时求出函数的解析式是关键.。

2016-2017学年八年级上第一次月考数学试卷含答案解析

广东省深圳市锦华实验学校2016-2017学年八年级上学期第一次月考数学试卷一、单选题(共12小题)1.在平面直角坐标系中,已知点(2,-3),则点在()A.第一象限B.第二象限C.第三象限D.第四象限考点:平面直角坐标系及点的坐标答案:D试题解析:(2,-3)横纵坐标为正、负,在第四象限,故选D。

2.以下列各组数为三边的三角形中不是直角三角形的是()A.9、12、15B.41、40、9C.25、7、24D.6、5、4考点:直角三角形与勾股定理答案:D试题解析:不能构成的是 6、5、4,故选D,其他选项都是勾股数。

3.在3.14,π,3.212212221,2+,,—5.121121112……中,无理数的个数为().A.5B.2C.3D.4考点:实数及其分类答案:C试题解析:无理数是无线不循环小数,满足条件的有π,2+,—5.121121112……,故选C。

4.下列计算正确的是()A.B.C.D.考点:实数运算答案:C试题解析:,故A错;,故B错;,故C对;,故D错,故选C。

5.如果点P(在轴上,则点P的坐标为()A.(0,2)B.(2,0)C.(4,0)D.(0,考点:平面直角坐标系及点的坐标答案:B试题解析:P(在轴上,则P的纵坐标为0,则∴P的横坐标为2,∴P(2,0)。

故选B。

6.点P(-3,5)关于x轴的对称点P′的坐标是()A.(3,5)B.(5,-3)C.(3,-5)D.(-3,-5)考点:平面直角坐标系及点的坐标答案:D试题解析:有题意可得,P、关于X轴对称,则两点的纵坐标为相反数,横坐标相等,∴P′(-3,-5),故选D。

7.如图,已知数轴上的点A、B、C、D分别表示数-2、1、2、3,则表示数3-的点P应落在线段()A.AO上B.OB上C.BC上D.CD上考点:二次根式的运算及其估值答案:B试题解析:∵在2~3之间,∴3-的值在0~1之间,∴P应落在线段OB上,故选B。

8.下列说法中,不正确的是()A.3是的算术平方根B.±3是的平方根C.-3是的算术平方根D.-3是的立方根考点:实数的相关概念答案:C试题解析:“3是的算术平方根”正确,故A对;“±3是的平方根”正确,故B对;“-3是的算术平方根”错误,算术平方根是正数,故C错;“-3是的立方根”正确,故D对;故选C。

汉中市八年级上学期数学第一次月考试卷

汉中市八年级上学期数学第一次月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)以3、4为两边的三角形的第三边长是方程x2-13x+40=0的根,则这个三角形的周长为()A . 15或12B . 12C . 15D . 以上都不对2. (2分)在锐角△ABC中,CD,BE分别是AB,AC边上的高,且相交于一点P,若∠A=50°则∠BPC的度数是()A . 150°B . 130°C . 120°D . 100°3. (2分)如图,∠B=∠C,则()A . ∠1=∠2B . ∠1>∠2C . ∠1<∠2D . 不确定4. (2分) (2018八上·兰考期中) 下列命题中,不是定理的是()A . 直角三角形两锐角互余B . 两直线平行,同旁内角互补C . n边形的内角和为(n﹣2)×180°D . 相等的角是对顶角5. (2分) (2018九上·潮南期末) 正十二边形的每一个内角的度数为()A . 120°B . 135°C . 150°D . 1080°6. (2分)如图,∠B=∠D=90°,AB=AD,则能够说明△ABC≌△ADC的理由是()A . ASAB . AASC . SASD . HL7. (2分)如图,△ABC≌△AEF,AB=AE,∠B=∠E,则对于结论:①AC=AF;②∠FAB=∠EAB;③EF=BC;④∠EAB=∠FAC,其中正确结论的个数是()A . 4个B . 3个C . 2个D . 1个8. (2分) (2019八上·天津月考) 如图,一种测量工具,点 O是两根钢条AC、BD中点,并能绕点O转动 .由三角形全等可得内槽宽AB与CD相等,其中△OAB≌△OCD的依据是()A . SSSB . ASAC . SASD . AAS9. (2分) (2019八上·海曙期末) 下列说法中:①法国数学家笛卡尔首先建立了坐标思想;②全等三角形对应边上的中线长相等;③若则④有两边和其中一条边所对的一个角对应相等的两个三角形一定全等.说法正确的为()A . ①③④B . ②④C . ①②D . ②③④10. (2分)(2017·株洲) 如图,在△ABC中,∠BAC=x°,∠B=2x°,∠C=3x°,则∠BAD=()A . 145°B . 150°C . 155°D . 160°二、填空题 (共6题;共6分)11. (1分)已知△ABC≌△DEF,且∠A=50°,∠B=100°,则∠F的度数是________ .12. (1分) (2020八下·深圳期中) 如图,在平行四边形ABCD中,P是CD边上一点,且AP和BP分别平分∠DAB和∠CBA,若AD=5,AP=8,则△APB的面积是________.13. (1分) (2019七下·吴江期中) 如图是婴儿车的平面示意图,其中,,,那么的度数为________.14. (1分)如图,A,O,B是同一直线上的三点,OC,OD,OE是从O点引出的三条射线,且∠1:∠2:∠3:∠4=1:2:3:4,则∠5=________度.15. (1分) (2017八下·滦县期末) 如图,平行四边形ABCD的对角线相交于O点,则图中有________对全等三角形.16. (1分)如图,在△ABC和△ACD中,∠B=∠D,tanB=,BC=5,CD=3,∠BCA=90°﹣∠BCD,则AD=________.三、解答题 (共6题;共42分)17. (5分) (2017七下·博兴期末) 如图所示,在△ABC中,AE、BF是角平分线,它们相交于点O,AD是高,∠BAC=54°,∠C=66°,求∠DAC、∠BOA的度数.18. (5分) (2017八上·丹江口期中) 如图,△ABC中,AC的垂直平分线DE与∠ABC的角平分线相交于点D,垂足为点E,若∠ABC=72°,求∠ADC的度数.19. (2分) (2019七下·如皋期中) 如图,△AOB的边OA半面镜.∠AOB=36°,在OB边上有点E,从点E 射出一束光线经平面镜反射后,反射光线DC恰好满足DC∥OB,已知入射光线、反射光线与半面镜的夹角相等,即∠ODE=∠ADC,求∠DEB的度数.20. (10分) (2017七下·荔湾期末) 如图,已知射线CD∥OA,点E、点F是OA上的动点,CE平分∠OCF,且满足∠FCA=∠FAC.(1)若∠O=∠ADC,判断AD与OB的位置关系,证明你的结论.(2)若∠O=∠ADC=60°,求∠ACE的度数.(3)在(2)的条件下左右平行移动AD,∠OEC和∠CAD存在怎样的数量关系?请直接写出结果(不需写证明过程)21. (10分) (2019八上·右玉月考) 如图,已知90°,、在线段上,与交于点,且, .求证:(1)△ ≌ △ ;(2) .22. (10分)(2020·南山模拟) 如图1所示,已知直线y=kx+m与抛物线y=ax2+bx+c分别交于x轴和y 轴上同一点,交点分别是点B(6,0)和点C(0,6),且抛物线的对称轴为直线x=4;(1)试确定抛物线的解析式;(2)在抛物线的对称轴上是否存在点P ,使△PBC是直角三角形?若存在请直接写出P点坐标,不存在请说明理由;(3)如图2,点Q是线段BC上一点,且CQ=,点M是y轴上一个动点,求△AQM的最小周长.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共6题;共42分)17-1、18-1、19-1、20-1、20-2、20-3、21-1、21-2、22-1、22-2、22-3、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

汉中市实验中学2016--2017学年第一学期 八年级数学12月月考试卷
时间:100分钟 满分:120分 出题、校对:蒋颖雪
一、选择题(共10小题,每小题3分,计30分)
1、下列函数:①x y =;②4x y =;③x
y 4-=;④12+=x y ,其中一次函数的个数是( ) A .1 B .2 C .3 D .4 2、已知方程①02=+y x ;②
221=+y x ;③012=+-x x ;④732=-+z y x 是二元一次方程的是( )
A .①②
B .①②③
C .①②④
D .①
3、如果2
)1(a x a y +=是正比例函数,那么a 的值是( )
A 、-1
B 、0或1
C 、-1或1
D 、1
4、如果点),2(b P -和点)3,(-a Q 关于x 轴对称,则b a +的值是( )
A .﹣1
B .1
C .﹣5
D .5
5、如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( )
A .90° B.60° C.45° D.30°
6、给出下列说法:①﹣6是36的平方根;②16的平方根是4;③2233=--;④327是无理数;⑤一个无理数不是正数就是负数.其中,正确的说法有( )
A .①③⑤
B .②④
C .①③
D .①
7、如图,一架长为10m 的梯子斜靠在一面墙上,梯子底端离墙6m ,如果梯子的顶端 下滑了2m ,那么梯子底部在水平方向滑动了( )
A .2m
B .2.5m
C .3m
D .3.5m
8、弹簧的长度y cm 与所挂物体的质量x(kg)的关系是一次函数,图象如图所示,则弹簧不挂物体时的长度是( )
A 、8.3cm
B 、10cm
C 、10.5cm
D 、11cm
9、某中学计划租用若干辆汽车运送七年级学生外出进行社会实践活动,如果一辆车乘坐45人,那么有35名学生没有车坐;如果一辆车乘坐60人,那么有一辆车只坐了35人,并且还空出一辆车.设计划租用x 辆车,共有y 名学生.则根据题意列方程组为( )
A.⎩⎨⎧-=-=-35)1(603545y x y x
B.⎩⎨⎧=+--=y x y x 35)2(603545
C.⎩
⎨⎧=+-=+y x y x 35)1(603545 D .⎩⎨⎧
=--+=35)2(603545x y y x
10、一次函数n mx y +=与)0(≠=mn mnx y ,在同一平面直角坐标系的图象是( )
A .
B .
C .
D .
二、填空题(共6小题,每小题3分,计18分)
11、如果a 的平方根是±3,则317-a = .
12、已知),2(),,1(2211y P y P 是正比例函数x y 3
1=
图象上的两点,则1y 2y (填“>”或“<”或“=”).
13、中国电信宣布,从2001年2月1日起,县城和农村电话收费标准一样,在县内通话3分钟内的收费是0.2元,每超1分钟加收0.1元,则电话费y (元)与通话时间t (3≥t 分,t 为正整数)的函数关系是 . 14、若点()2,3m A -在函数32-=x y 的图象上,则点A 关于原点对称的点的坐标是 .
15、定义运算“*”,规定by ax y x +=*2
,其中b a ,为常数,且521=*,612=*,则=*32 .
16、一次函数a x y +=2与b x y +-=的图像都经过点)0,2(-A ,与y 轴分别交于B A 、两点,则ABC ∆的面积为 .
三、解答题:(共7小题,计72分)
17、(6分)计算
(1)311)7548(⨯- (2)232)642
118(83÷--⨯- 18、(8分)用带入消元法求解下列方程组
(1)⎩⎨⎧=--=+046365y x y x (2)⎩⎨⎧=-=+3
44432y x y x
19、(8分)用加减消元法求解下列方程组
(1)⎩⎨⎧-=--=-37951734y x y x (2)⎪⎩⎪⎨⎧-=-+=-21312
132y x y x
20、(8分)已知y +2与x 成正比例,且x =3时y =1.
(1)写出y 与x 之间的函数关系式;
(2)求当x =-1时,y 的值;
(3)求当y =0时,x 的值.
21、(9分)李老师计划到商店购买甲、乙两种品牌的白板笔,已知甲品牌白板笔每支定价8元,乙品牌白板笔每支定价10元。

李老师只带了560元钱,若她恰好花完所带的钱买了甲、乙两种笔共60支,李老师购买两种品牌的白板笔各多少支?
22、(9分)如图,直线AB 与x 轴交于点A (1,0),与y 轴交于点B (0,﹣2).
(1)求直线AB 的解析式;
(2)若直线AB 上的点C 在第一象限,且S △BOC =2,求点C 的坐标.
23、(10分)如图,把长方形纸片ABCD 沿EF 折叠后,使得点D 与点B 重合,点C 落在点C′的位置上.
(1)若∠1=50°,求∠2、∠3的度数;
(2)若AD=8,AB=4,求BF .
24、(14分)某社区活动中心为鼓励居民加强体育锻炼,准备购买10副某种品牌的羽毛球拍,每副球拍配)2( x x 个羽毛球,供社区居民免费借用.该社区附近A 、B 两家超市都有这种品牌的羽毛球拍和羽毛球出售,且每副球拍的标价均为30元,每个羽毛球的标价为3元,目前两家超市同时在做促销活动:
A 超市:所有商品均打九折(按标价的90%)销售;
B 超市:买一副羽毛球拍送2个羽毛球.
设在A 超市购买羽毛球拍和羽毛球的费用为A y (元),在B 超市购买羽毛球拍和羽毛球的费用为B y (元).请解答下列问题:
(1)分别写出A y 、B y 与x 之间的关系式;
(2)若该活动中心只在一家超市购买,你认为在哪家超市购买更划算?
(3)若每副球拍配15个羽毛球,请你帮助该活动中心设计出最省钱的购买方案.
汉中市实验中学2016--2017学年第一学期
八年级数学12月月考答案
一、选择题
1.C
2.A
3.D
4.B
5.C
6.C
7.A
8.D
9.B 10.C
二、填空题
11. 4 12. < 13. 1.01.0-=x y 14. )2,5.2(--
15. 10 16. 6
三、解答题
17. (1)-2 (2)1
18. (1)⎪⎩
⎪⎨⎧==3238y x (2)⎪⎩⎪⎨⎧==2145y x 19. (1)⎩⎨⎧=-=32y x (2)⎪⎩
⎪⎨⎧-=-=135131y x 20.(1)2-=x y (2) -3 (3)2
21. 20 40
22.(1)22-=x y (2))2,2(
23.(1)︒=∠︒=∠803502, (2)5
24.(1)y A =27x+270,y B =30x+240;
(2)当2≤x <10时,到B 超市购买划算,当x=10时,两家超市一样划算,当x >10时在A 超市购买划算;
(3)最佳方案是先选择B 超市购买10副羽毛球拍,然后在A 超市购买130个羽毛球.。

相关文档
最新文档