离心压缩机余热回收工程技术方案教材

离心压缩机余热回收工程技术方案教材
离心压缩机余热回收工程技术方案教材

离心压缩机余热回收工程技术方案

编制单位:

编制日期:

、项目概况 (1)

、项目建设的必要性 (1)

三、项目建设内容 (2)

(一)项目设计原则 (2)

(二)建设内容 (3)

(三)工艺流程简述 (4)

(四)产品特点......... 错误!未定义书签

四、热工计算 (6)

(一) .......................... 基本参数 6

(二) .......................... 设计计算书 6

(三) .......................... 主要设备7

五、经济效益分析 (10)

、项目概况

有限公司现有三台空压机常年运行,空压机采用离心式两级

压缩工艺,提供总容量为800NmVmin,0.35MPa的压缩空气供生产

使用,根据工艺和设备的要求,二级入口风温不可高于65C。空

压机压缩空气二级出口温度为夏季140 C,现生产工艺是将风温降

到60C以下。

有四台三级离心压缩空压机,提供总容量为730NmVmin,0.75MPa的压缩空气供生产使用,根据工艺和设备的要求,二、三级入口风温不可高于65 C,空压机压缩空气三级出

口温度夏季为140 C,现在的运行方式是将三级出口风温降到60 C 以下外供。

二、项目建设的必要性

国民经济和社会发展第“十二五”规划纲要提出:“面对日趋强化的资源环境约束,必须增强危机意识,树立绿色、低碳发展理念,以节能减排为重点,健全激励和约束机制,加快构建资源节约、环境友好的生产方式和消费模式,增强可持续发展能力。”

“十二五”期间的节能指标为:单位GDP能耗降低率为17%

在能源费用日趋增高的今天,节能降耗也是企业降低运行成本,提高经济效益的一个有效途径。

本项目中,空压机作为压缩空气的生产设备,在制取压缩空气的过程中,不可避免的要产生大量热量,受生产工艺的制约,压缩空气必须降温后才能使用,因此要消耗大量的电能驱动循环冷却水、制造低温冷冻水来给压缩空气降温。而在此过程中被冷却掉的热量有约50%是60 C以上常

年可工业利用的中低温热源,而冬季则可将空压机产生的热能全部用来生活和工艺供暖。

具体利用方式有:夏季可用80 C以上的热水来作为吸收式制

冷机组的动力源来制取7-12 C冷水供生活和生产工艺使用,40 C 以上热水可利用热泵提取部分热能用于工艺加热。

总之,空压机热能综合利用技术就是将压缩空气降温过程重

新整合梳理,将压缩空气中的热量提取出来作为热源综合利用,从而大大降低压缩空气使用过程中的能源浪费,实现能源梯级利用,同时降低压缩空气冷却成本,实现生产过程的节能降耗。

三、项目建设内容

(一)项目设计原则

1、回收利用工艺及技术与现有的生产工艺相结合,方案科学

合理,选用的热回收设备先进、热回收效率高,系统设计可靠,工程投资省,运行费用低,操作管理方便,具有较高的能源回收利用率;

2、严格按照各项相关的国家设计规范、标准、要求进行设计;

3、余热余压回收利用方案充分考虑到季节的影响,与生产工

艺密切结合,有针对性的选择适合本公司的能源利用方案;

4、经济性与可靠性并重的设计原则,合理降低工程造价和运

行费用,提高工程效益,同时尽可能提高系统的可靠性与稳定性;

6、确保热回收系统运行安全、卫生、稳定;

7、充分考虑工程操作、管理、维护的方便;

&尽量做到综合利用,使环境、社会和经济效益有机地结合

起来。

(二)建设内容

本项目在吸取国内同行业节能经验基础上,对工艺生产过程

中的压缩空气进行余热换热,将末级压缩空气中的60 C以上的高温热能转化成热水,用于工艺加热或制冷,将末级前面无法获取

高温热水的30-43 C循环水的热量利用热泵技术提取部分70 C -80 C热量用于工艺加热,从而在夏季最大限度的利用空压机的排热,减少能源的一次消耗量,实现能源梯级利用。

冬季利用水源热泵将全部的空压机循环水热量利用起来用于

冬季采暖,热回收利用率为100%

具体建设的内容为:

1、增设双通道热回收器

增设的双通道热回收器安装在原末级冷却器前,吸收热量后

可制取95 C的高温水。

2、增设溴化锂制冷机组,利用95C的高温热水来制取7-12 C 冷水供生活和生产工艺使用。

3、增设水源热泵机组,用于冬季制取采暖用热水。

科技项目技术研究方案[烟气余热回收]

中国华电集团公司科技项目 技术方案 一、项目背景 自电力企业改革后,从体制上根本打破了电力企业集发、输、配、售于

一体的局面,火电厂在新的经营模式下面临着日渐严峻的考验。尤其是近年来煤炭市场放开后,电煤价格的持续上涨,而电、热价格则一路平行。煤炭价格的上涨,使得火电厂的生产成本急剧上升,导致我厂电热价格与成本倒挂问题越发突出,加剧了火电厂的经营困境。在这种情况下,企业如何扭转负债经营的不利局面,成为当务之急,用新技术、新工艺、新方法,挖潜改造,提高机炉热效率、节能减排势在必行。 现锅炉排烟温度按照经典的控制酸露腐蚀条件的设计规范设计,计算排烟温度已经留有设备保护的余地。目前设计条件下的排烟温度高于酸露点温度的15-18度,实际上排烟温度的计算方面也因为招标对经济指标要求而存在潜在的上升空间。以国内300MV机组的实际运行的负荷、排烟温度状况,几乎没有一家能够按照设计指标运行。造成排烟温度升高的原因是多方面的。 随着运行时间的延长,排烟温度因空预器设备的末端腐蚀而局部积灰、系统阻力增加、过量空气系数增加、排烟温度升高;空气预热器漏风、夏季空气温度升高、煤种变化也使得锅炉远离校核煤种等因素都会引发排烟温度升高。 排烟损失是影响锅炉效率的主要因素,电站锅炉的排烟温度为120?140C,每降低排烟温度16-20 C,可提高锅炉热效率1%对于一台300MW勺发电机组,平均每年可节约标煤约6000吨。 另外,利用烟气余热提高空预前空气温度和脱硫塔后烟温,可减 轻空预器和烟道腐蚀;降低脱硫塔前烟温还可减少脱硫工艺前的喷水量。 要回收低温烟气的余热,就必须有经济和可靠的技术。 国内较早就开始了烟气余热回收技术的开发,并有些技术相继成熟得到应用,但这些技术多停留在早期粗放的阶段,在系统可靠性和余热回收经济性方面都存在明显的不足。 通过合金、陶瓷或塑料等抗低温腐蚀材料做换热材料来进行余热回收的

余热回收技术

余热回收技术 1、热管余热回收器 热管余热回收器即是利用热管的高效传热特性及其环境适应性制造的换热装置,主要应用于工业节能领域,可广泛回收存在于气态、液态、固态介质中的废弃热源。按照热流体和冷流体的状态,热管余热回收器可分为:气—气式、气-汽式、气—液式、液—液式、液—气式。按照回收器的结构形式可分为:整体式、分离式和组合式。 2、间壁式换热器 换热器是化工,石油,动力,食品及其它许多工业部门的通用设备,在生产中占有重要地位.在化工生产中换热器可作为加热器、冷却器、冷凝器、蒸发器和再沸器等,应用更加广泛。换热器种类很多,但根据冷、热流体热量交换的原理和方式基本上可分三大类即:间壁式、混合式和蓄热式。在三类换热器中,间壁式换热器应用最多。常见间壁式换热器如:冷却塔(或称冷水塔) 、气体洗涤塔(或称洗涤塔) 、喷射式热交换器、混合式冷凝器。 3、蓄热式换热器 蓄热式换热器用于进行蓄热式换热的设备,一般用于对介质混合要求比较低的场合。换热器内装固体填充物,用以贮蓄热量。一般用耐火砖等砌成火格子(有时用金属波形带等)。

蓄热式换热分两个阶段进行。第一阶段,热气体通过火格子,将热量传给火格子而贮蓄起来。第二阶段,冷气体通过火格子,接受火格子所储蓄的热量而被加热。这两个阶段交替进行。通常用两个蓄热器交替使用,即当热气体进入一器时,冷气体进入另一器。常用于冶金工业,如炼钢平炉的蓄热室。也用于化学工业,如煤气炉中的空气预热器或燃烧室,人造石油厂中的蓄热式裂化炉。 4、节能陶瓷换热器 陶瓷换热器是一种新型的换热设备,在高温或腐蚀环境下取代了传统的金属换热设备。用它的特殊材质——SIC质,把窑炉原来用的冷空气变成了热空气来达到余热回收的目的。由于其可长期在浓硫酸、盐酸和碱性气、液体中长期使用。抗氧化,耐热震,高温强度高,抗氧化性能好,使用寿命长。热攻工业窑炉。把换取的热风作为助燃风送进窑炉与燃气形成混合气进行燃烧,可节能25%-45%,甚至更多的能源。 5、喷射式混合加热器 喷射式混合加热器是射流技术在传热领域的应用,喷射式混合加热器是通过汽、水两相流体的直接混合来生产热水的设备。喷射式混合加热器具有传换效率高,噪音低(可达到65dB以下),体积小,安装简单,运行可靠,投资少。利用喷射式混合加热器回收发电厂、造纸厂、化工厂的余热,加热采暖循环水

科技项目技术方案烟气余热回收

中国华电集团公司科技工程技术方案

一、工程背景 自电力企业改革后,从体制上根本打破了电力企业集发、输、配、售于一体的局面,火电厂在新的经营模式下面临着日渐

严峻的考验。尤其是近年来煤炭市场放开后,电煤价格的持续上涨,而电、热价格则一路平行。煤炭价格的上涨,使得火电厂的生产成本急剧上升,导致我厂电热价格与成本倒挂问题越发突出,加剧了火电厂的经营困境。在这种情况下,企业如何扭转负债经营的不利局面,成为当务之急,用新技术、新工艺、新方法,挖潜改造,提高机炉热效率、节能减排势在必行。 现锅炉排烟温度按照经典的控制酸露腐蚀条件的设计规范 设计,计算排烟温度已经留有设备保护的余地。目前设计条件下的排烟温度高于酸露点温度的15-18度,实际上排烟温度的计算方面也因为招标对经济指标要求而存在潜在的上 升空间。以国内300MW机组的实际运行的负荷、排烟温度状况,几乎没有一家能够按照设计指标运行。造成排烟温度升高的原因是多方面的。随着运行时间的延长,排烟温度因空预器设备的末端腐蚀而局部积灰、系统阻力增加、过量空气系数增加、排烟温度升高;空气预热器漏风、夏季空气温度升高、煤种变化也使得锅炉远离校核煤种等因素都会引发排烟温度升高。 排烟损失是影响锅炉效率的主要因素,电站锅炉的排烟温度为120~140℃,每降低排烟温度16-20℃,可提高锅炉热效率1%。对于一台300MW的发电机组,平均每年可节约标煤约6000吨。

另外,利用烟气余热提高空预前空气温度和脱硫塔后烟温,可减轻空预器和烟道腐蚀;降低脱硫塔前烟温还可减少脱硫工艺前的喷水量。 要回收低温烟气的余热,就必须有经济和可靠的技术。 国内较早就开始了烟气余热回收技术的开发,并有些技术相继成熟得到应用,但这些技术多停留在早期粗放的阶段,在系统可靠性和余热回收经济性方面都存在明显的不足。 通过合金、陶瓷或塑料等抗低温腐蚀材料做换热材料来进行余热回收的优点是可以将排烟温度降低到烟气酸露点以下,但由于这些材料的导热系数、造价和使用寿命等限制,余热回收的经济性不佳。另外,当换热材料表面发生酸露凝结时,设备表面会形成导热系数更差的粘性灰垢,该类致密的粘性积灰与换热材料表面结合力很强,较难通过吹灰系统清除,甚至使系统堵灰严重而无法正常运行。 传统低温省煤器技术较简单、成熟,但其不仅余热回收的效益低,而且只适于回收排烟温度较高的余热,否则受热面腐蚀和堵灰问题会很严重。该系统如果设计不当,还有发生凝结水汽化的风险。 相变式低温省煤器是为了控制烟道换热器的低温腐蚀而开发,其通过控制中间传热介质(水-汽)的相变参数来控制传热量和烟道换热器壁温,从而提高了系统的可靠性,并可自动将排烟温度降低到最佳的温度。

余热回收利用

余热回收利用(S-CO2)动力循环-应用海运 业 摘要 船舶动力的主要来源是柴油机,它已经发展成为一种高效的发电装置,用于推进和辅助用途。然而,只有小于50%的燃料能源转化为有用的工作,其余的损失。这是公认的,约占总能量的转换在30%型柴油机是在排拒天然气。最近授权的EEDI [ 1 ]系统大型船舶归功于任何可回收的能源设计的船。而一些节能的设备正在酝酿,利用风能和太阳能发电研究中,它被公认为从发动机废气和冷却水的余热回收仍然可以利用,以产生能量,从而提高能源效率的工厂。从废气中回收热能的方法之一是将热量传递给一个能量回收的介质。在大型船舶上,所用的是水和蒸汽,从而产生了我用于加热燃料油或用于涡轮机的电能生产。本文提出了一种替代流体(超临界二氧化碳)作为一种手段,通过一个碳回收的能量闭环循环燃气轮机(布雷顿循环)它明显在较低的温度和无腐蚀性,无毒,不易燃,热稳定。在超临界状态下,S-CO2已高密度的结果,如涡轮机的部件的尺寸减小。超临界二氧化碳气体涡轮机可以在一个高的循环热效率,即使在温和的温度下产生的功率对550℃。周期可以在宽范围的操作压力为20。在一个典型的发动机安装在近海供应船的排气气体的能量回收量的案例研究,提出了理论计算的热量进行的UT的功率可由发动机的超临界CO2气轮机厂产生的废气和提取 . 关键词:余热,S-CO2布雷顿循环,水, 一、引言 今天的大多数船舶使用柴油发动机的推进和电力生产。通常被认为具有实际应用潜力的热排阻式柴油机为了浪费热量恢复是排气和外套冷却液。热通常是从一个以蒸汽的形式大型海轮主推进发动机的废气是最优选的介质用于燃料和货物加热,包括国内服务所需的加热。冷却水的热量通常以新鲜水的形式回收。从辅助余热回收辅助发动机,直到最近,没有考虑经济实用的除的情况下,大型客运船舶或船舶电力推进系统的操作。国际海事组织和国际海

余热回收设计方法

恒昌焦化 焦炉烟气余热回收项目 设计方案 唐山德业环保设备有限公司 二〇一二年三月 一、焦化工艺概述: 备煤车间送来的配合煤装入煤塔,装煤车按作业计划从煤塔取煤,经计量后装入炭化室内。煤料在炭化室内经过一个结焦周期的高温干馏制成焦炭并产生荒煤气。 炭化室内的焦炭成熟后,用推焦车推出,经拦焦车导入熄焦车内,并由电机车牵引熄焦车到熄焦塔内进行喷水熄焦。熄焦后的焦炭卸至凉焦台上,冷却一定时间后送往筛焦工段,经筛分按级别贮存待运。 煤在炭化室干馏过程中产生的荒煤气汇集到炭化室顶部空间,经过上升管、桥管进入集气管。约800℃左右的荒煤气在桥管内被氨水喷洒冷却至84℃左右。荒煤气中的焦油等

同时被冷凝下来。煤气和冷凝下来的焦油等同氨水一起经过吸煤气管送入煤气净化车间。 焦炉加热用的焦炉煤气,由外部管道架空引入。焦炉煤气经预热后送到焦炉地下室,通过下喷管把煤气送入燃烧室立火道底部与由废气交换开闭器进入的空气汇合燃烧。燃烧后的废气经过立火道顶部跨越孔进入下降气流的立火道,再经蓄热室,又格子赚把废气的部分显热回收后,经过小烟道、废气交换开闭器、分烟道、总烟道、烟囱排入大气。 对于其中经总烟道进入烟囱热烟气的仍有较大的余热回收价值。 二、余热回收工艺流程图 技术方案如下:该系统由热管蒸气发生器、软水预热器、汽包、上升管、下降管、外连管路和控制仪表等组成,并且互相独立。 主要技术特点: 1、地下烟道开孔技术:如何实现地下主烟道在焦炉正常行产情况下在线开孔,是本项目成功实施的第一关键。我公司根据多次地下烟道的开孔经验,成功总结出一套行之有效施工方案。 地下烟道路截面尺寸如上图所示。

【免费下载】冶炼炉渣干法粒化余热回收技术

★新型高温炉渣余热回收技术研究分析及对策建议 2012年7月,国务院正式发布《“十二五”国家战略性新兴产业发展规划》,在重点发展方向和主要任务中明确提出“积极开发和推广用能系统优化技术,促进能源的梯次利用和高效利用”,确定了“中低品位余热余压回收利用技术”作为高效节能产业发展的重大行动之一。为了贯彻落实国家节约能源,保护环境的政策,建设资源节约型社会和环境友好型社会,实现可持续发展的战略目标,六院自筹资金积极开展冶炼炉渣余热回收利用技术研究。 目前我国主要采用水淬工艺处理高温炉渣。水冲渣之后产生大量蒸汽,同时生成污染性酸性气体。蒸汽直接排入大气无法进行热量回收,酸性气体造成大气的污染。由于冲渣后的水温度较低,是一种很难高效利用的低品位热源,使用热泵等技术进行利用效率低、污染大且很难在短期内回收投资。冶炼炉渣显热为高品位余热资源,有很高的回收价值,随着国际竞争的日益加剧和能源的持续紧缺,冶金行业面临着多项维系可持续发展战略的问题,其中如何高效地回收冶炼炉渣显热是其中的重要问题之一,因此有必要转变思路采用环保高效的余热利用工艺进行余热回收。 六院十一所成功开发出一种新型高温炉渣余热回收技术——离心空气粒化结合两级流化床余热回收工艺,该工艺能够高效环保地进行炉渣的余热回收,代表了国际上最为先进的高温炉渣余热吸收工艺。 一、国内外相关研究开展情况 高温炉渣余热回收的工艺主要有湿法工艺和干法工艺两种。湿法工艺是指用水或水与空气的混合物使熔融渣冷却,然后再运输的方案,一

般也称为水淬工艺。干法工艺即依靠高压空气或其他方法实现熔融金属冷却、粒化的工艺。湿法处理工艺是将高炉渣作为一种材料来加以利用,并没有对其余热量进行充分的利用。从节能和环保的角度来看,湿法工艺都无法避免处理渣耗水量大的问题。干式粒化工艺是在不消耗新水的情况下,利用高炉渣与传热介质直接或间接接触进行的高炉渣粒化和显热回收的工艺,几乎没有有害气体排出,是一种环境友好的新式处理工艺。 (一)国外研究状况 20 世纪70年代,国外就已开始研究干式粒化炉渣的方法。前苏联、英国、瑞典、德国、日本、澳大利亚等国都开展过高温炉渣(包括高炉渣、钢渣等) 干式粒化技术的研究。日本钢管公司(NKK)开发的转炉钢渣风淬粒化工艺和双内冷却转筒粒化工艺因为处理能力不高、运行不稳定、粒度不均匀等缺点不适合在现场大规模连续处理高炉渣。英国克凡纳金属公司(KvaernerMetals)提出转杯离心粒化气流化床热能回收技术,该法因为热量回收效率高,粒化后渣质量较好,粒度均匀,强度较高,粒径小于2mm等优势具有较好的发展前景。该法曾经于20世纪80年代初期在英国钢铁公司年产1万吨的高炉上进行了为期数年的工业试验,未实现大范围的工业化应用。澳大利亚也对该法的粒化和传热过程进行过一些数值计算和实验研究工作。对高炉渣中显热的回收目前在国际上仍然处于工业试验性阶段,还没有任何一种干式处理工艺实现了工业应用,但已有的各类技术研究积累了很多相关的理论知识和实践经验。 (二)国内研究状况 目前,国内冶金企业对于高温炉渣全部采用水淬工艺进行处理。高

余热回收方案样本

_______有限公司 导热油炉-余热回收装置 项 目 说 明 书 目录 1.摘要 (1) 2.公司营业执照和资质证书复印件 (1) 3.授权委托书 (2) 4.用户供热系统分析、节能分析及节能计算 (3) 5. 热量回收计算

表 (4) 6.热管技术介绍 (5) 7.国内常见余热回收方式对比分析 (9) 8.热管余热回收解决方案 (10) 9. 施工方案 (12) 10. 工程报价及付款方式 (13) 11.售后服务 (14) 12.公司部分实体图片 (15) 13.公司简介 (16)

摘要 本文详细某公司供热系统余热回收工程方案, 分析某公司供热系统并对余热回收技术做了系统的描述, 根据工作需求及工作背景做出技术解决方案、施工方案、工程报价、节能分析、售后服务, 对超导热管技术做了较为具体的描述。本文还对国内各种常见余热回收方式做了系统比较。

授权委托书 本授权委托书声明: 我 ( 公司名称) 现授权委托本公司( 单位名称) 的 ( 姓名) 为我公司代理人, 以本公司的名义参加某公司, 的2台600万大卡导热油炉余热回收工程的业务洽谈。代理人在合同谈判过程中所签署的一切文件和处理与之有关的一切事务, 我均予以承认。 代理人无转委权。特此委托。 代理人: 性别: 年龄: 单位: 本公司部门: 职务: ( 签字或盖章) 日期: 8月31日

供热系统分析 某公司当前2台600万大卡燃煤导热油炉, 在能源日趋紧张的背景下, 同时企业的经营成本不断上升。排烟温度在280℃以上, 造成很大的资源浪费。 备注: 根据现有锅炉情况, 排烟温度为280℃以上, 其节能有很大的空间, 因为其烟气量较大, 热焓高。 节能分析 某公司导热油炉能够改进节能设备: 在导热油炉与引风机之间加装热管余热回收器, 烟气温度由300℃降到130℃左右, 每小时可产生173度的蒸汽1.15吨, 回收74万大卡的热量, 为企业带来可观的经济效益。 节能计算 每小时回收74万大卡热量, 按煤燃烧值5000大卡、锅炉效率80%计算, 每小时可省煤 74万大卡÷5000小时÷80%=185公斤/小时 按煤价650元/吨, 每小时节省费用 185公斤/小时×0.65元/公斤=120元/小时 每年锅炉运行时间按7200小时计, 则每年可节约 120元/小时×7200小时=86万元 设备总投资约16万, 则设备的回报周期为: 16万/( 86万/12月)=2.23个月, 保守估计3个月收回全部

烟气余热回收技术方案样本

烟气余热回收技术 方案

烟气余热回收利用改造项目 技术方案 ***节能科技有限公司 二O一二年

一、运行现状 锅炉房配备2.1MW锅炉2台(一用一备),供热面积5万m2;**炉配备2.1MW锅炉2台(一用一备),供热面积4.5万m2。经监测,**锅炉房2台锅炉正常运行排烟温度在150--170℃,平均热效率在89%,**锅炉房2台锅炉正常运行排烟温度在160-180℃,平均热效率在88%,(标准应不高于160℃)。锅炉系统运行进出水温差较小,排烟热损失较大,同时影响锅炉热效率的提高,回收利用潜力明显。 二、技术介绍 烟气冷凝回收利用技术是国家第一批特种设备节能技术推荐目录中的成熟技术。有着显著的节能效益。主要原理:1m3天然气燃烧后会放出9450kcal的热量,其中显热为8500kcal,水蒸气含有的热量(潜热)为950kcal。对于传统燃气锅炉可利用的热能就是8500kcal的显热,供热行业中常规计算天然气热值一般以8500kcal/nm3为基础计算。这样,天然气的实际总发热量9450kcal与天然气的显热8500kcal比例关系以百分数表示就为:111%,其中显热部分占100%,潜热部分占11%,因此对于传统燃气锅炉来说还是有很多热量白白浪费掉。 普通天然气锅炉的排烟温度一般在120--250℃,这些烟气含有8%--15%的显热和11%的水蒸气潜热。加装烟气冷凝器的主要

目的就是经过冷凝器把烟气中的水蒸气变成凝结水,最大限度地回收烟气中含有的潜热和显热,使回收热量后排烟温度可降至100℃左右,同时烟气冷却后产生的凝结水得到及时有效地排出(1 nm3天然气完全燃烧后,可产生1.66kg水),而且大大减少了co2、co、nox等有害物质向大气的排放,起到了明显的节能、降耗、减排及保护锅炉设备的作用。从而达到节能增效的目的。 三、改造方案 3.1、设备选型 烟气余热回收器选用瑞典爱瑞科(AIREC)板式烟气热回收器。 瑞典AIREC公司是世界上唯一一家 钎焊式模块化非对称流量板式换热器的 专业生产制造商,凭借独到的设计理 念,雄厚的产品开发能力和多年行业丰 富的实践经验使AIREC成为在非对称流量换热领域的真正领导者。 irCross21由多块板片重叠冲压在一起,在真空和高温的环境下,板片用铜或镍焊接在一起,具有很高的机械强度,更大的传热面积,更高的效率,更轻便小巧。AIREC经过继承CBE(钎焊式换热器)的技术特点,独特的换热器设计板纹,气体/液体应用

余热回收方案

能量回收系统

第一部分:能量回收系统介绍 压缩空气是工业领域中应用最广泛的动力源之一。由于其具有安全、无公害、调节性能好、输送方便等诸多优点,使其在现代工业领域中应用越来越广泛。但要得到品质优良的压缩空气需要消耗大量能源。在大多数生产型企业中,压缩空气的能源消耗占全部电力消耗的10%—35%。 根据行业调查分析,空压机系统5年的运行费用 组成:系统的初期设备投资及设备维护费用占到总费用的25%,而电能消耗(电费)占到75%,几乎所有的系统浪费最终都是体现在电费上。 根据对全球范围内各个行业的空气系统进行评估,可以发现:绝大多数的压缩空气系统,无论其新或旧,运行的效率都不理想—压缩空气泄漏、人为用气、不正确的使用和不适当的系统控制等等均会导致系统效率的下降,从而导致客户大量的能耗浪费。据统计,空气系统的存在的系统浪

费约15—30%。这部分损失,是可以通过全面的系统解决方案来消除的。 对压缩空气系统节能提供全面的解决方案应该从压缩空气系统能源审计 开始。现代化的压缩空气系统运行时所碰到的 疑难和低效问题总是让人觉得很复杂和无从下 手。其实对压缩空气系统进行正确的能源审计 就可以为用户的整个压缩空气系统提供全面的 解决方案。对压缩空气系统设备其进行动态管理,使压缩空气系统组件 充分发挥效能。 通过我们在压缩空气方面的专业的、全面的空气系统能源审计和分析采 取适合实际的解决方案,能够实现为客户的压缩空气系统降低 10%—50%的电力消耗,为客户带来新的利润空间。 经过连续近二十年的经济高速增长,中国已经成为全球制造业的中心,大规模的产量提升,造成巨大的资源消耗和能量需求,过快的发展正逐步制约国家经济实力的进一步提升,因此,2005年《国务院关于加强节能工作的决定》明确目标指出: ?到“十一五”期末(2010年),万元GDP能耗比“十五”期末降低20% 左右,平均年节能率为4.4%。 ?重点行业主要产品单位能耗总体达到或接近本世纪初国际先进水平。 ?压缩机作为制造行业的能耗大户,受到越来越多的关注,节能潜力巨大。 ?压缩机在工矿企业的平均耗能占整个企业的约30%,部分行业的压缩机 耗电量占总耗电量的比例高达70% ?从投资成本结构分析,压缩机的节能重心在能耗上,针对于电机驱动类 型的压缩机,能耗可以近似等于电耗。 平均全球各地区平均使用空压机负荷的百分比

空压机余热回收方案

空压机余热利用中央热水系统设计案 致: 根据贵员工宿舍中央热水系统工程项目的邀请,设计施工市森茂节能环保工程有限公司,按贵要求,为该公司员工的热水工程提供空压机余热利用中央热水系统,设计案包括如下容。 第一部分工程概述(P2-4) 第二部分空压机余热利用装置的综合优势(P5-6) 第三部分工程设计案详解(P7-11) 第四部分施工组织计划(P12-13) 第五部分售后服务(P14) 第六部分经济效益分析(P15-P16) 后附:工程概算报价单1份 工程图纸 1

第一部分工程概述 1.1用户需求 1.1.1现用户热水使用情况 现贵司要求我公司对员工楼热水供应系统提供设计案,贵司现有员工3000人左右,员工宿舍楼2栋,每栋共20层,现需增加空压机余热回收系统供热水。1.1.2 空压机机使用情况 现对贵司9台旧空压机及新增4台新空压机进行余热回收改造,空压机余热回收机放置于污水处理厂旁的空压机房,一般情况下13台空压机每天工作24个小时。1.1.3 热水工程改造需求 本着降低企业运营成本及环保的目的,贵司现要求我公司对其热水系统进行改造。改造式为利用螺杆式空压机余热加热热水,实现零费用获取热水的效果。 本工程对13台空压机加装余热利用装置。分两套系统安装,本工程完工后,基本满足3000人的热水供应,供水标准为33KG/人,总供水量约100吨/日,供水式为不定时不定量,热水温度在55℃以上。 1.2 工程总案 根据贵公司的实际情况,我公司为贵公司设计热水系统,将对贵公司现有的13台螺杆式空压机加装余热利用装置,所得热水储存于宿舍楼楼顶的保温水箱,再将热水管

道接入宿舍楼各宿舍洗手间。 1.2.1循环加热输送管道 本工程热泵为我公司的螺杆式空压机余热利用装置,因输送管道过长,所以在空压机房及厂房楼顶各安装了两个转箱,保暖水箱里的水通过循环水泵送入余热利用装置加热,再送回保暖水箱,如此不断往复循环,保证水箱里面的水不断得到加热。 根据贵公司的实际情况,我公司为贵公司设计热水系统,将对贵公司现有的13台螺杆式空压机加装13台“森茂”牌空压机余热利用主机,自来水经冷水管的补水电磁阀输送到保温水箱,经主机换热器与空压机的高温油进行热交换,冷水温度慢慢升高,最终的热水温度即为显示面板控制器所指定的温度。所得热水储存于宿舍楼楼顶的保温水箱,再将热水管道接入宿舍楼各宿舍洗手间。 在管路上水箱、水泵、换热器两头及各预留检修处,均安装铜制优质阀门,另在保暖水箱出口及换热器出口处安装水过滤器各1个。 1.2.2保暖水塔 贵司安装两个50吨保暖水箱,即可满足贵公司员工的用水要求。水箱材质为双层不锈钢,50mm厚聚脂泡沫保溫层,24小时温降5℃以。 1.2.3 换热装置 本工程将对13台螺杆式空压机加装余热利用装置,分两套系统,每小时分别可产水800L以上,10小时可产水160吨,完全可以满足员工的用水要求。 1.2.4 补水系统 补水系统使用水位开关、电磁阀、温度控制器控制

600万大卡导热油炉烟气余热回收方案讲解

实益长丰纺织有限公司 600万大卡导热油炉-余热回收装置 项 目 说 明 书 目录

1.摘要 (1) 2.公司营业执照和资质证书复印件 (1) 3.授权委托书 (2) 4.用户供热系统分析、节能分析及节能计算 (3) 5. 热量回收计算表 (4) 6.热管技术介绍 (5) 7.国内常用余热回收方式对比分析 (9) 8.热管余热回收解决方案 (10) 9. 施工方案 (12) 10. 工程报价及付款方式 (13) 11.售后服务 (14) 12.公司部分实体图片 (15) 13.公司简介 (16)

摘要 本文详细介绍了英德市实益长丰纺织有限公司供热系统余热回收工程方案,分析英德市实益长丰纺织有限公司供热系统并对余热回收技术做了系统的描述,根据工作需求及工作背景做出技术解决方案、施工方案、工程报价、节能分析、售后服务,对超导热管技术做了较为具体的描述。本文还对国内各种常用余热回收方式做了系统比较。

2 供热系统分析 英德市实益长丰纺织有限公司目前1台600万大卡燃煤导热油炉,在能源日趋紧张的背景下,同时企业的经营成本不断上升。排烟温度在280℃以上,造成很大的资源浪费。 备注:根据现有锅炉情况,排烟温度为280℃以上,其节能有很大的空间,因为其烟气量较大,热焓高。 节能分析 英德市实益长丰纺织有限公司导热油炉可以改进节能设备: 在导热油炉与引风机之间加装热管余热回收器,烟气温度由300℃降到130℃左右,每小时可产生173度的蒸汽1.15吨,回收74万大卡的热量,为企业带来可观的经济效益。 节能计算 每小时回收74万大卡热量,按煤燃烧值5000大卡、锅炉效率80%计算,每小时可省煤 74万大卡÷5000小时÷80%=185公斤/小时 185公斤/小时×24/天×320天=1420800公斤/每年 1420800公斤÷1000=1402.8吨 1402.8吨×0.7143=1001tce(每年可节省) 按煤价650元/吨,每小时节省费用 185公斤/小时×0.65元/公斤=120元/小时 每年锅炉运行时间按7200小时计,则每年可节约 120元/小时×7200小时=86万元 设备总投资约16万,则设备的回报周期为: 16万/(86万/12月)=2.23个月,保守估计3个月收回全部投资。

余热回收方案

余热回收方案 一、能量使用情况与节能要求 1.1 车间供热需求 为了保证产品质量和产能产值,三号车间的两个产品半成品仓库,冬季需要控制室内温度为22℃~40℃,以保证产品的质量,无人员值守故不需考虑温控与新风、人员舒适度问题,但须考虑入库人员的安全。 两个仓库占地面积基本相似,均为:12.65x 7=88.55m2。 仓库层高为6m,每个仓库体积为532m3。 VA装配车间,需要控制室内温度为22℃~30℃,以保证工艺的正常生产,装配车间有操作工人,需要考虑操作人员的舒适性因此提出需要对车间的温度、湿度、新风量进行控制。 装配车间占地面积15x23=345m2,层高为 2.5m,总体积为862.5m3。 武汉市地处中国中部,夏季室内温度>25℃,因此夏季不需要对生产车间供热,冬季室内温度<25℃,需要对室内供热。 车间供热需求为季节性,夏季停运,冬季投用。 1.2节能要求 公司要求不采用高品位的电能和蒸汽热能对车间供热,需要采用余热回收途径对车间供热,

1.3 车间耗热量 ①根据仓库的性质,估算每个仓库的供热负荷为25kW。 ②根据装配车间的性质,估算VA装配车间供热负荷为120kW。 1.4余热利用条件 1.4.1 可利用的热能 钢化玻璃工段有两台玻璃炉,其作用是玻璃软化后处理。玻璃高温处理后由冷风急速冷却。根据加工产品的不同,所需急冷温度由65~165℃。急冷后的热风直接排入大气,外排热风温度为45℃~65℃。外排热风仅为热空气,不含有毒有害气体。 为外排热风,每台玻璃炉配三台20000m3/h轴流风机。 根据估算,每台轴流风机按120%配置,维持室温25℃,每台轴流风机的热风可提供热负荷为100kW。 合计的余热足够满足车间的供热需求。 1.4.2可用余热回收型式。 根据现场情况,受热车间与玻璃炉间距比较近,可以将热风引入受热车间,由热风直接供暖。 该供暖方式简单易行,投资省,运行费用低,余热回收利用充分。 二、余热利用方案 2.1余热回收

余热回收项目实施方案

第一章总论 一、项目概况 (一)项目名称 余热回收项目 (二)项目选址 某经济新区 项目选址应符合城乡建设总体规划和项目占地使用规划的要求,同时具备便捷的陆路交通和方便的施工场址,并且与大气污染防治、水资源和自然生态资源保护相一致。 (三)项目用地规模 项目总用地面积9924.96平方米(折合约14.88亩)。 (四)项目用地控制指标 该工程规划建筑系数76.42%,建筑容积率1.09,建设区域绿化覆盖率7.26%,固定资产投资强度199.92万元/亩。 (五)土建工程指标 项目净用地面积9924.96平方米,建筑物基底占地面积7584.65平方米,总建筑面积10818.21平方米,其中:规划建设主体工程8230.01平方米,项目规划绿化面积785.47平方米。

(六)设备选型方案 项目计划购置设备共计42台(套),设备购置费900.53万元。 (七)节能分析 1、项目年用电量867524.29千瓦时,折合106.62吨标准煤。 2、项目年总用水量5447.22立方米,折合0.47吨标准煤。 3、“余热回收项目投资建设项目”,年用电量867524.29千瓦时,年 总用水量5447.22立方米,项目年综合总耗能量(当量值)107.09吨标准 煤/年。达产年综合节能量43.74吨标准煤/年,项目总节能率20.34%,能 源利用效果良好。 (八)环境保护 项目符合某经济新区发展规划,符合某经济新区产业结构调整规划和 国家的产业发展政策;对产生的各类污染物都采取了切实可行的治理措施,严格控制在国家规定的排放标准内,项目建设不会对区域生态环境产生明 显的影响。 (九)项目总投资及资金构成 项目预计总投资4019.78万元,其中:固定资产投资2974.81万元, 占项目总投资的74.00%;流动资金1044.97万元,占项目总投资的26.00%。 (十)资金筹措 该项目现阶段投资均由企业自筹。 (十一)项目预期经济效益规划目标

工业余热回收利用途径与技术

工业余热回收利用途径与技术 余热资源普遍存在,特别在钢铁、化工、石油、建材、轻工和食品等行业的生产过程中,都存在丰富的余热资源,所以充分利用余热资源是企业节能的主要内容之一。 余热利用的潜力很大,在当前节约能源中占重要地位。余热资源按其来源不同可划分为六类:1高温烟气的余热2高温产品和炉渣的余热3冷却介质的余热4可燃废气、废液和废料的余热5废汽、废水余热6化学反应余热余热资源按其温度划分可分为三类: 7高温余热(温度高于500℃的余热资源)8中温余热(温度在200-500℃的余热资源)低温余热(温度 低于200℃的烟 气及低于100℃ 的液体) 行业余热资源来源占燃料消耗量的比例治金轧钢加热炉、均热炉、平炉、转炉高炉、焙烧窑等33%以上化工化学反应热,如造气、变换气、合成气等的物理显热;可燃化学热,如炭黑尾气、电石气等的燃料热15%以上建材高温烟气、窑顶冷却、高温产品等约40%玻搪玻璃熔窑、搪瓷窑、坩埚窑等约20%造纸烘缸、蒸锅、废气、黑液等约15%纺织烘干机、浆纱机、蒸煮锅等约15%机械煅造加热炉、冲天炉、热处理炉及汽锤排汽等约15% 、管路敷设技术通过管线敷设技术不仅可以解决吊顶层配置不规范高中资料试卷问题,而且可保障各类管路习题到位。在管路敷设过程中,要加强看护关于管路高中资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保护层防腐跨接地线弯曲半径标高等,要求技术交底。管线敷设技术中包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处理;同一线槽内,强电回路须同时切断习题电源,线缆敷设完毕,要进行检查和检测处理。、电气课件中调试对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料试卷相互作用与相互关系,根据生产工艺高中资料试卷要求,对电气设备进行空载与带负荷下高中资料试卷调控试验;对设备进行调整使其在正常工况下与过度工作下都可以正常工作;对于继电保护进行整核对定值,审核与校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。对于调试过程中高中资料试卷技术问题,作为调试人员,需要在事前掌握图纸资料、设备制造厂家出具高中资料试卷试验报告与相关技术资料,并且了解现场设备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。、电气设备调试高中资料试卷技术电力保护装置调试技术,电力保护高中资料试卷配置技术是指机组在进行继电保护高中资料试卷总体配置时,需要在最大限度内来确保机组高中资料试卷安全,并且尽可能地缩小故障高中资料试卷破坏范围,或者对某些异常高中资料试卷工况进行自动处理,尤其要避免错误高中资料试卷保护装置动作,并且拒绝动作,来避免不必要高中资料试卷突然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到准确灵活。对于差动保护装置高中资料试卷调试技术是指发电机一变压器组在发生内部故障时,需要进行外部电源高中资料试卷切除从而采用高中资料试卷主要保护装置。

工业烟气余热回收利用方案优化分析

龙源期刊网 https://www.360docs.net/doc/8e8246202.html, 工业烟气余热回收利用方案优化分析 作者:罗先辉 来源:《科技与创新》2015年第14期 当前,我国资源、能源问题日益严峻,引起了国家与各地政府的高度关注。在节能减排的背景下,为了节约资源,实现社会经济的可持续发展,对工业烟气余热进行回收利用成为了大势所趋。在工业生产中,对烟气余热进行回收利用不仅节约了能源,保护了生态环境,还能为我国经济社会的建设与发展提供强大动力支持。 1;;工业余热回收利用现状 工业余热主要是指在工作生产过程中使用的热能转换设备和相关机械设备中未被利用的能量。总体来看,我国余热资源较为丰富。相关研究资料显示,我国余热资源数量平均高达 4.0×107;t标准煤。 工业部门的余热资源平均率为7.3%,但是回收利用率却只为34.9%.我国余热资源之所以回收利用率较低,主要原因是过多的余热量以各种形式浪费掉。在工业未来发展中,可以看出余热资源存在巨大的回收利用潜力。随着科学技术的发展,通过有效的管理、设备改造升级、节能操作等手段,可以使余热资源得到有效利用,余热资源利用回收率将会大幅提高。在现代工业发展中,充分利用余热资源,对提高资源平均利用率具有重要意义,同时这也是工业发展中亟需解决的问题。 2;;利用烟气余热的原则 3;;设计工业烟气余热回收利用优化方案 烟气回收工作中使用的主要设备是余热回收换热器,它是工业生产中的主要节能设备,在提高工业烟气热效率的同时,还能够大幅提升能量的有效能效率。因而在设计工业烟气余热回收利用优化方案时,就需要对换热器进行优化。 3.1;;确定优化目标 余热回收换热器最优方案受到多种因素的影响,包括能源价格、原材料价格、安装费用、贷款方式和利率等。另外,技术因素也会对其产生影响,例如换热器性能和使用寿命。 当前比较明显的优化目标方案主要有换热器回收预热年净收益最大目标函数、基于相对费用参数的换热器优化目标函数、最小投资回收年限目标函数等。这些目标函数的取法各有利弊,利用追求年净收益最大和相对费用参数的目标函数对预热回收效果进行了定量研究,但是能量、质量没有得到准确反映;而换热器优化目标函数虽然对能量的考虑更全面,但在投资经济效果方面存在欠缺。

锅炉余热回收

锅炉烟气余热回收 简介: 工业燃油、燃气、燃煤锅炉设计制造时,为了防止锅炉尾部受热面腐蚀和堵灰,标准状态排烟温度一般不低于180℃,最高可达250℃,高温烟气排放不但造成大量热能浪费,同时也污染环境。热管余热回收器可将烟气热量回收,回收的热量根据需要加热水用作锅炉补水和生活用水,或加热空气用作锅炉助燃风或干燥物料。节省燃料费用,降低生产成本,减少废气排放,节能环保一举两得。改造投资3-10个回收,经济效益显著。 (一)气—气式热管换热器 (1)热管空气预热器系列 应用场合:从烟气中吸收余热,加热助燃空气,以降低燃料消耗,改善燃烧工况,从而达到节能的目的;也可从烟气中吸收余热,用于加热其他气体介质如煤气等。 设备优点: *因为属气/气换热,两侧皆用翅片管,传热效率高,为普通空预器的5-8倍; *因为烟气在管外换热,有利于除灰; *因每支热管都是独立的传热元件,拆卸方便,且允许自由膨胀; *通过设计,可调节壁温,有利于避开露点腐蚀 结构型式:有两种常用的结构型式,即:热管垂直放置型,烟气和空气反向水平流动,热管倾斜放置型,烟气和空气反向垂直上下流动。 (二)气—液式热管换热器 应用场合:从烟气中吸收热量,用来加热给水,被加热后的水可以返回锅炉(作为省煤器),也可单独使用(作为热水器),从而提高能源利用率,达到节能的目的。 设备优点: *烟气侧为翅片管,水侧为光管,传热效率高; *通过合理设计,可提高壁温,避开露点腐蚀; *可有效防止因管壁损坏而造成冷热流体的掺混; 结构型式:根据水侧加热方式的不同,有两种常用的结构型式:水箱整体加热式(多采用热管立式放置)和水套对流加热式(多采用热管倾斜放置)

空压机余热回收方案设计

空压机余热利用中央热水系统设计方案 致: 根据贵方员工宿舍中央热水系统工程项目的邀请,设计施工方市森茂节能环保工程,按贵方要求,为该公司员工的热水工程提供空压机余热利用中央热水系统,设计方案包括如下容。 第一部分工程概述(P2-4) 第二部分空压机余热利用装置的综合优势(P5-6) 第三部分工程设计方案详解(P7-11) 第四部分施工组织计划(P12-13) 第五部分售后服务(P14) 第六部分经济效益分析(P15-P16) 后附:工程概算报价单 1份 工程图纸 1

第一部分工程概述 1.1用户需求 1.1.1现用户热水使用情况 现贵司要求我公司对员工楼热水供应系统提供设计方案,贵司现有员工3000人左右,员工宿舍楼2栋,每栋共20层,现需增加空压机余热回收系统供热水。 1.1.2 空压机机使用情况 现对贵司9台旧空压机及新增4台新空压机进行余热回收改造,空压机余热回收机放置于污水处理厂旁的空压机房,一般情况下13台空压机每天工作24个小时。1.1.3 热水工程改造需求 本着降低企业运营成本及环保的目的,贵司现要求我公司对其热水系统进行改造。改造方式为利用螺杆式空压机余热加热热水,实现零费用获取热水的效果。 本工程对13台空压机加装余热利用装置。分两套系统安装,本工程完工后,基本满足3000人的热水供应,供水标准为33KG/人,总供水量约100吨/日,供水方式为不定时不定量,热水温度在55℃以上。 1.2 工程总方案 根据贵公司的实际情况,我公司为贵公司设计热水系统,将对贵公司现有的13台螺杆式空压机加装余热利用装置,所得热水储存于宿舍楼楼顶的保温水箱,再将热水管道接入宿舍楼各宿舍洗手间。 1.2.1循环加热输送管道 本工程热泵为我公司的螺杆式空压机余热利用装置,因输送管道过长,所以在空压机房及厂房楼顶各安装了两个周转箱,保暖水箱里的水通过循环水泵送入余热利用装置加热,再送回保暖水箱,如此不断往复循环,保证水箱里面的水不断得到加热。 根据贵公司的实际情况,我公司为贵公司设计热水系统,将对贵公司现有的13台螺杆式空压机加装13台“森茂”牌空压机余热利用主机,自来水经冷水管的补水电磁阀输送到保温水箱,经主机换热器与空压机的高温油进行热交换,冷水温度慢慢升高,最终的热水温度即为显示面板控制器所指定的温度。所得热水储存于宿舍楼楼顶的保温水

离心压缩机余热回收工程技术方案

离心压缩机余热回收工程技术方案 编制单位: 编制日期:

目录 一、项目概况 (1) 二、项目建设的必要性 (1) 三、项目建设内容 (2) (一)项目设计原则 (2) (二)建设内容 (3) (三)工艺流程简述 (4) (四)产品特点............... 错误!未定义书签。 四、热工计算 (6) (一)基本参数 (6) (二)设计计算书 (6) (三)主要设备 (7) 五、经济效益分析 (10)

一、项目概况 有限公司现有三台空压机常年运行,空压机采用离心式两级压缩工艺,提供总容量为800Nm3/min,0.35MPa的压缩空气供生产使用,根据工艺和设备的要求,二级入口风温不可高于65℃。空压机压缩空气二级出口温度为夏季140℃,现生产工艺是将风温降到60℃以下。 有四台三级离心压缩空压机,提供总容量为730Nm3/min,0.75MPa的压缩空气供生产使用,根据工艺和设备的要求,二、三级入口风温不可高于65℃,空压机压缩空气三级出口温度夏季为140℃,现在的运行方式是将三级出口风温降到60℃以下外供。 二、项目建设的必要性 国民经济和社会发展第“十二五”规划纲要提出:“面对日趋强化的资源环境约束,必须增强危机意识,树立绿色、低碳发展理念,以节能减排为重点,健全激励和约束机制,加快构建资源节约、环境友好的生产方式和消费模式,增强可持续发展能力。” “十二五”期间的节能指标为:单位GDP能耗降低率为17%。在能源费用日趋增高的今天,节能降耗也是企业降低运行成本,提高经济效益的一个有效途径。 本项目中,空压机作为压缩空气的生产设备,在制取压缩空气的过程中,不可避免的要产生大量热量,受生产工艺的制约,

烟气余热回收技术方案

烟气余热回收利用改造项目 技术方案 *** 节能科技有限公司 二O 一二年

、运行现状 锅炉房配备2.1MW锅炉2台(一用一备),供热面积5万m2;**炉配备2.1MW 锅炉2台(一用一备),供热面积4.5万m2。经监测,**锅炉房2台锅炉正常运行排烟温度在150--170 C,平均热效率在89%, **锅炉房2台锅炉正常运行排烟温度在160-180C,平均热效率在88%,(标准应不高于160C)。锅炉系统运行进出水温差较小,排烟热损失较大,同时影响锅炉热效率的提高,回收利用潜力明显。 二、技术介绍 烟气冷凝回收利用技术是国家第一批特种设备节能技术推荐目录中的成熟技术。 有着显著的节能效益。主要原理: 1m3天然气燃烧后会放出9450kcal的热量,其中显热为8500kcal,水蒸气含有的热量(潜热)为950kcal。对于传统燃气锅炉可利用的热能就是8500kcal的显热,供热行业中 常规计算天然气热值一般以8500kcal/nm3为基础计算。这样,天然气的实际总发热量 9450kcal与天然气的显热8500kcal比例关系以百分数表示就为:111%,其中显热部分占100%,潜热部分占11%,所以对于传统燃气锅炉来说还是有很多热量白白浪费掉。 普通天然气锅炉的排烟温度一般在120--250 C,这些烟气含有8%--15%的显热和 11%的水蒸气潜热。加装烟气冷凝器的主要目的就是通过冷凝器把烟气中的水蒸气变成凝结水,最大限度地回收烟气中含有的潜热和显热,使回收热量后排烟温度可降至100C左右,同时烟气冷却后产生的凝结水得到及时有效地排出( 1 nm3天然气完全燃 烧后,可产生1.66kg水),并且大大减少了co2、co、nox等有害物质向大气的排放,起到了明显的节能、降耗、减排及保护锅炉设备的作用。从而达到节能增效的目的。 三、改造方案 3.1、设备选型 烟气余热回收器选用瑞典爱瑞科(AIREC)瑞典 板式烟气热回收器 AIREC公司是世界上唯一一家钎焊式模块化非对称流量板式换 热器的专业生产制造商,凭借独到的设计理念,雄厚的产品开 发能力和多年行业丰富的实践经验使AIREC成为在非对称流量 换热领域的真正领导者。 irCross21由多块板片重叠冲压在一起,在真空和高温 的环境下,板片用铜或镍焊接在一起,具有很高的机械强度, 更大的传热面积,更高的效率,更轻便小巧。AIREC通过继承 CBE(钎焊式换热器)的技术特点,独特的换热器设计板纹,

相关文档
最新文档