八年级数学上册第十五章整式整章水平测试A
人教版八年级上册数学第15章《分式》单元测试卷(含答案解析)

人教版八年级上册数学第15章《分式》单元测试卷一.选择题(共10小题,满分30分)1.下列式子中,属于分式的是()A.B.C.D.2.分式的值是零,则x的值为()A.3B.﹣3C.3或﹣3D.03.已知某新型感冒病毒的直径约为0.000002022米,将0.000002022用科学记数法表示为()A.2.022×10﹣5B.0.2022×10﹣5C.2.022×10﹣6D.20.22×10﹣74.计算的结果是()A.B.C.D.5.在①x2﹣x+,②﹣3=a+4,③+5x=6,④=1中,其中关于x的分式方程的个数为()A.1B.2C.3D.46.如果把分式中的x、y的值都扩大2倍,那么分式的值()A.扩大2倍B.扩大4倍C.扩大6倍D.不变7.若将分式与通分,则分式的分子应变为()A.6m2﹣6mn B.6m﹣6nC.2(m﹣n)D.2(m﹣n)(m+n)8.分式,的最简公分母是()A.a B.ab C.3a2b2D.3a3b39.计算结果等于2的是()A.|﹣2|B.﹣|2|C.2﹣1D.(﹣2)0 10.已知,则的值是()A.66B.64C.62D.60二.填空题(共10小题,满分30分)11.分式的最简公分母是.12.要使分式有意义,则分式中的字母b满足条件.13.若表示一个整数,则整数x可取的个数有个.14.约分:=.15.方程的解是.16.若解分式方程产生增根,则m=.17.用漫灌方式给绿地浇水,a天用水10吨,改用喷灌方式后,10吨水可以比原来多用5天,那么喷灌比漫灌平均每天节约用水吨.18.已知若x﹣=3,则x2+=.19.将分式化为最简分式,所得结果是.20.扶贫工作小组对果农进行精准扶贫,帮助果农将一种有机生态水果拓宽了市场.与去年相比,今年这种水果的产量增加了1000千克,每千克的平均批发价比去年降低了1元,批发销售总额比去年增加了20%.已知去年这种水果批发销售总额为10000元,则这种水果今年每千克的平均批发价是元.三.解答题(共7小题,满分90分)21.神舟十三号飞船搭载实验项目中,四川省农科院生物技术研究所共有a粒水稻种子,每粒种子质量大约0.0000325千克;甘肃省天水市元帅系苹果的b粒干燥种粒,每粒种子质量大约0.002275千克,参与航天搭载诱变选育.(1)用科学记数法表示上述两个数.(2)若参与航天搭载这两包种子的质量相等,求的值.(3)若这两包种子的质量总和为1.04千克,水稻种子粒数是苹果种子粒数10倍,求a,b的值.22.若式子无意义,求代数式(y+x)(y﹣x)+x2的值.23.下列分式中,哪些是最简分式?,,;,,,.24.(1)计算:;(2)解不等式组:.25.若关于x 的方程有增根,求实数m的值.26.一船在河流上游A港顺流而下直达B港,用一个小时将货物装船后返航,已知船在静水中的速度是50千米/时,A、B两地距离为150千米,则该船从A港出发到返回A港共用了7.25小时,如果设水流速度是x千米/时,那么x应满足怎样的方程?27.阅读理解材料:为了研究分式与分母x的变化关系,小明制作了表格,并得到如下数据:x…﹣4﹣3﹣2﹣101234…10.50.0.25……﹣0.25﹣0.﹣0.5﹣1无意义从表格数据观察,当x>0时,随着x 的增大,的值随之减小,并无限接近0;当x<0时,随着x 的增大,的值也随之减小.材料2:对于一个分子、分母都是多项式的分式,当分母的次数高于分子的次数时,我们把这个分式叫做真分式.当分母的次数不低于分子的次数时,我们把这个分式叫做假分式.有时候,需要把一个假分式化成整式和真分式的代数和,像这种恒等变形,称为将分式化为部分分式.如:.根据上述材料完成下列问题:(1)当x>0时,随着x的增大,1+的值(增大或减小);当x<0时,随着x的增大,的值(增大或减小);(2)当x>1时,随着x的增大,的值无限接近一个数,请求出这个数;(3)当0≤x≤2时,求代数式值的范围.。
2024-2025学年八年级数学上学期期中模拟卷(冀教版,八上第12~15章)(考试版A4)

2024-2025学年八年级数学上学期期中模拟卷(冀教版)(满分120分,时间120分钟)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:冀教版八年级上册第十二章~第十五章。
5.难度系数:0.65。
第Ⅰ卷一、选择题(本大题共16个小题,共38分,1~6小题每题3分,7~16小题每题2分.每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.在实数15,0,p )A .1B .2C .3D .42.若分式32x x +-有意义,则x 应满足的条件是( )A .2x =B .2x ¹C .3x =-D .3x ¹-3.下列计算正确的是( )A =B =C D 4=4.某校为了丰富学生的校园生活,准备购买一批陶笛.已知A 型陶笛比B 型陶笛的单价低20元,用2700元购买A 型陶笛与用4500元购买B 型陶笛的数量相同,设A 型陶笛的单价为x 元,根据题意列出正确的方程是( )A .2700450020x x=-B .2700450020x x =-C .2700450020x x =+D .2700450020x x =+5.若23(4)270a b -++=,则2023()a b -+的值为( )A .2-B .1-C .1D .26.用※定义一种新运算:对于任意实数m 和n ,规定2m n m n mn =-※,如:21212120=´-´=※.则(的值为( )A +B -C .D .7.若关于x 的方程311x m x x -=--产生增根,则m 的值是( )A .3-B .2-C .2D .08.若 6的整数部分是m ,小数部分是n ,则n m -为( )A 10B .10C 2D .89.如图,在Rt ABC △中,90C Ð=°,12cm AC =,6cm BC =,一条线段PQ AB =,P ,Q 两点分别在线段AC 和AC 的垂线AX 上移动,若以A 、B 、C 为顶点的三角形与以A 、P 、Q 为顶点的三角形全等,则AP 的值为( )A .6cmB .12cmC .12cm 或6cmD .以上答案都不对10.已知()()341212A B m m m m m -+=----,则常数A ,B 的值分别是( )A .1A =,2B =B .2A =,1B =C .1A =-,2B =-D .2A =-,1B =-11.如图,小虎用10块高度都是3cm 的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC BC =,90ACB Ð=°),点C 在DE 上,点A 和B 分别与木墙的顶端重合,则两堵木墙之间的距离DE 的长度为( )A .30cmB .27cmC .24cmD .21cm12.如图1,已知Rt ABC △、画一个Rt A B C ¢¢¢V ,使得Rt Rt A B C ABC ¢¢¢△≌△.在已有90MB N ¢Ð=°的条件下,图2,图3分别是嘉嘉、琪琪两位同学的画图过程.下列说法错误的是( )A .嘉嘉第一步作图时,是以B ¢为圆心,线段BC 的长为半径画弧B .嘉嘉作图判定两个三角形全等的依据是HLC .琪琪第二步作图时,是以C ¢为圆心、线段AC 的长为半径画弧D .琪琪作图判定两个三角形全等的依据是SAS13.根据分式的性质,可以将分式22211m m M m -+=-(m 为整数)进行如下变形:22211(1)2211111m m m m M m m m m -+-+-====--+++,其中m 为整数.结论Ⅰ:依据变形结果可知,M 的值可以为0;结论Ⅱ:若使M 的值为整数,则m 的值有3个.A .Ⅰ和Ⅱ都对B .Ⅰ和Ⅱ都不对C .Ⅰ不对Ⅱ对D .Ⅰ对Ⅱ不对14.如图,给出下列四组条件:①AB DE =,BC EF =,AC DF =;②AB DE =, B E Ð=Ð,BC EF =;③B E Ð=Ð,BC EF =,C F Ð=Ð;④AB DE =,AC DF =,B E Ð=Ð.其中,能使ABC DEF ≌△△的条件共有( )A .1组B .2组C .3组D .4组15.如图,在ABC V 中,50ABC Ð=°,30C Ð=°,作BD 平分ABC Ð交边AC 于D ,过A 作AE BD ^于E ,延长AE 交边BC 于点F ,连接DF ,则CDF Ð的度数为( )A .50°B .60°C .65°D .70°16.如图,在ABC V 中,45ABC Ð=°,CD AB ^于点D ,BE 平分ABC Ð,且BE AC ^于点E ,与CD 相交于点F ,DH BC ^于点H ,交BE 于点G .下列结论:①BD CD =;②AD CF BD +=;③12CE BF =;④AE CF =.其中正确的是( )A .①②B .①③C .①②③D .①②③④第Ⅱ卷二、填空题(本大题共3个小题,共10分;17小题2分,18~19小题各4分,每空2分,答案写在答题卡上)17.若关于x 的分式方程1322m x x x --=--的解为正数,则m 的取值范围是 .18.我市某中学举办剪纸艺术大赛,要求参赛作品的面积在220dm 以上,如图是小悦同学的参赛作品(单位:dm ).(1)小悦的作品 (填“是”或“否)符合参赛标准;(2)小涵给小悦提出建议:在参赛作品周围贴上金色彩条,这样参赛作品更漂亮,则需要彩条的长度约为 dm 1.41»).19.添加辅助线是很多同学感觉比较困难的事情.如图1,在Rt ABC △中,90ABC Ð=°,BD 是高,E 是ABC V 外一点,BE BA =,E C Ð=Ð,若25DE BD =,16AD =,20BD =,求BDE V 的面积,同学们可以先思考一下……,小颖思考后认为可以这样添加辅助线:在BD 上截取BF DE =.(如图2).同学们,根据小颖的提示,聪明的你可以求得:(1)BDEV≌.(2)BDEV的面积为.三、解答题(本大题共7个小题,共72分,解答应写出文字说明、证明过程或演算步骤)20.(本小题满分9分)计算:221.(本小题满分9分)先化简,再求值:3444x xx x-----,其中x=解:原式34(4)(4)44x xx xx x--=×--×---34x x=-+-1=-(1)求原式正确的化简结果;(2)老师说:“虽然该过程有错误,但最后所求的值是正确的.”求图中被污染的x的值.某校为美化校园,计划对面积为22000m 的区域进行绿化,安排甲、乙两个工程队完成,已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为2480m 区域的绿化时,甲队比乙队少用6天.(1)求甲乙两工程队每天能完成绿化的面积分别是多少2m ?(2)在该次校园绿化工程中,设安排甲队工作y 天①再安排乙队工作_____天,完成该工程(用含有y 的式子表示)②若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.12万元,要使这次的绿化总费用不超过7.6万元,乙队的工作天数不超过34天,如何安排甲队的工作天数?23.(本小题满分10分)如图,在ABC V 中,2AB AC ==,40B Ð=°,点D 在线段BC 上运动(点D 不与点B ,C 重合),连接AD ,作40ADE Ð=°,DE 交线段AC 于点E .(1)当115BDA Ð=°时,EDC Ð=_____ °,AED =∠_____ °.(2)若2DC =,试说明ABD DCE ≌△△.(3)在点D 的运动过程中,ADE V 的形状可以是等腰三角形吗?若可以,求BDA Ð的度数;若不可以,请说明理由.嘉琪在学习《二次根式》时,发现一些含有根号的式子也可以写成完全平方式的形式,如(231+=,善于思考的嘉琪进行了如下探索:设(2a m +=+(其中a ,b ,m ,n 均为正整数),则有2222a m n +=+.所以222,2=+=a m n b mn .这样,嘉琪找到了把类似a +琪的方法探索并解决问题:(1)当a ,b ,m ,n 均为正整数时,若(2a m +=+,用含m ,n 的式子分别表示a 和b ;(2)利用所探索的结论,找一组满足(1)中关系式(2a m +=+的正整数a ,b .m .n ;(3)若(2a m +=+.且a ,b ,m ,n 均为正整数,求a 的值.25.(本小题满分12分)我们给出定义:若一个分式约分后是一个整式,则称这个分式为“巧分式”,约分后的整式称为这个分式的“巧整式”.例如:24842x x x x -=-,则称分式2482x x x --是“巧分式”,4x 为它的“巧整式”.根据上述定义,解决下列问题.(1)下列分式中是“巧分式”的有__________(填序号);①(1)(23)(2)(1)(2)x x x x x --+-+;②253x x ++;③22x y x y-+.(2)若分式24x x m x n-++(m 、n 为常数)是一个“巧分式”,它的“巧整式”为7x -,求m 、n 的值;(3)若分式322x x A -+的“巧整式”为1x -,请判断32242x x x A++是否是“巧分式”,并说明理由.【问题提出】如图1,在ABC V 中,90,BAC AB AC Ð=°=,直线l 经过点A ,分别从点,B C 向直线l 作垂线,垂足分别为,D E .求证:ABD CAE △△≌;【变式探究】如图2,在ABC V 中,AB AC =,直线1经过点A ,点,D E 分别在直线l 上,如果CEA ADB BAC Ð=Ð=Ð,猜想DE BD CE ,,有何数量关系,并给予证明;【拓展应用】小明在科技创新大赛上创作了一幅机器人图案,大致图形如图3所示,以ABC V 的边AB AC ,为一边向外作BAD V 和CAE V ,其中90BAD CAE Ð=Ð=°,,,AB AD AC AE AG ==是边BC 上的高.延长GA 交DE 于点H .(1)求证:点,D E 到直线H G 的距离相等;(2)经测量,50cm DE =,求HE 的长.。
人教版初中八年级数学上册第十五章《分式》经典测试(含答案解析)

一、选择题1.若整数a 使得关于x 的方程3222a x x-=--的解为非负数,且使得关于y 的一元一次不等式组322222010y y y a --⎧+>⎪⎪⎨-⎪≤⎪⎩至少有3个整数解,则所有符合条件的整数a 的和为( )A .23B .25C .27D .28B解析:B【分析】表示出不等式组的解集,由不等式至少有3个整数解确定出a 的值,再由分式方程的解为非负数以及分式有意义的条件求出满足题意整数a 的值,进而求出之和.【详解】 解:322222010y y y a --⎧+>⎪⎪⎨-⎪≤⎪⎩, 不等式组整理得:2y y a -⎧⎨≤⎩>, 由不等式组至少有3个整数解,得到-2<y≤a ,解得:a≥1,即整数a=1,2,3,4,5,6,…,3222a x x-=--, 去分母得:2(x-2)-3=-a ,解得:x=72a -, ∵72a -≥0,且72a -≠2, ∴a≤7,且a≠3,由分式方程的解为非负数以及分式有意义的条件,得到a 为1,2,4,5,6,7, 之和为1+2+4+5+6+7=25.故选:B .【点睛】此题考查了解分式方程,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键. 2.2020年新冠肺炎疫情影响全球,某企业临时增加甲、乙两个厂房生产口罩,甲厂房每天生产的数量是乙厂房每天生产数量的2倍,两厂房各加工6000箱口罩,甲厂房比乙厂房少用5天.则甲、乙两厂房每天各生产的口罩箱数为( )A .1200,600B .600,1200C .1600,800D .800,1600A解析:A【分析】 先设乙厂房每天生产x 箱口罩,则甲厂房每天生产2x 箱口罩,根据工作时间=工作总量÷工作效率且两厂房各加工6000箱口罩时甲厂房比乙厂房少用5天,可得出关于x 的分式方程,解方程即可得出结论.【详解】解:设乙厂房每天生产x 箱口罩,则甲厂房每天生产2x 箱口罩, 依题意得:6000600052x x-=, 解得:x =600, 经检验,x =600是原分式方程的解,且符合题意,∴2x =1200.故答案选:A .【点睛】该题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键. 3.已知2,1x y xy +==,则y x x y +的值是( ) A .0B .1C .-1D .2D 解析:D【分析】 将y x x y+进行通分化简,整理出含已知条件形式的分式,即可得出答案. 【详解】 解:2222()2221=21y x y x x y xy x y xy xy ++--⨯+=== 故选D .【点睛】本题考查了分式的混合运算,熟练运用完全平方公式是解题的关键.4.若方程21224k x x -=--有增根,则k =( ) A .4-B .14-C .4D .14B 解析:B【分析】先根据题意对原分式方程去分母,化为整式方程,然后根据增根的情况代入整式方程求解即可.【详解】去分母得:()()22421x k x --+=, 整理得:22290x kx k ---=,∵原分式方程有增根,∴240x -=,解得增根即为:2x =±,当2x =时,代入整式方程得:82290k k ---=,解得: 14k =-, 当2x =-时,代入整式方程无意义,∴14k =-故选:B【点睛】本题考查分式方程的增根,熟记增根是使最简公分母为零的数同时是对应整式方程的解,两者缺一不可.5.如图,若a 为负整数,则表示2a 111a a 1⎛⎫÷- ⎪-+⎝⎭的值的点落在( )A .段①B .段②C .段③D .段④C 解析:C【分析】将所给式子化简,根据a 为负整数,确定化简结果的范围,再从所给图中可得正确答案.【详解】 解:2a 111a a 1⎛⎫÷- ⎪-+⎝⎭=()()a a 111a 1a a 1a 1+⎛⎫÷- ⎪+-++⎝⎭=()()aa 1a 1a a 1÷+-+ =()()a a 11a 1a a+⋅+- =11a -; ∵a 为负整数,且a 1≠-,∴1a -是大于1的正整数,则1101a 2<<-.故选C .【点睛】本题考查了分式的化简及分式加减运算,同时考查了分式值的估算,总体难度中等. 6.下列各式计算正确的是( )A .()23233412ab a b -=- B .()222(2)2224x xy y x y xy x --++=+-C .()2422842a ba b b -÷=- D .()325339a b a b -=- A解析:A【分析】根据单项式乘单项式,幂的乘方,单项式除单项式,单项式乘多项式运算法则判断即可.【详解】 A 、()23233412a b a b -=-,故这个选项正确;B 、()222(2)2224x xy y x y xy x --++=--,故这个选项错误;C 、()24222842a b a b b -÷=-,故这个选项错误;D 、()3263327a b a b -=-,故这个选项错误; 故选:A .【点睛】本题考查了单项式乘单项式,幂的乘方,单项式除单项式,单项式乘多项式,重点是掌握相关的运算法则.7.若实数a 使关于x 的不等式组313212x x a xx +⎧+≥⎪⎪⎨+⎪-≥⎪⎩有解且最多有4个整数解,且使关于y 的方程3233y a y y --++ 1=的解是整数,则符合条件的所有整数a 的个数是( ) A .4B .3C .2D .1D 解析:D【分析】解不等式组得到a+2≤x ≤﹣3,利用不等式组有解且最多有4个整数解得到﹣7<a+2≤﹣3,解关于a 的不等式组得到整数a 为﹣8,﹣7,﹣6,﹣5,再解分式方程得到y =12a +且y ≠﹣3,利用分式方程的解为整数且12a +≠﹣3即可确定符合条件的所有整数a 的值. 【详解】解:313212x x a x x +⎧+≥⎪⎪⎨+⎪-≥⎪⎩①②, 由①得:x ≤﹣3,由②得:x ≥a+2,∴a+2≤x ≤﹣3,因为不等式组有解且最多有4个整数解,所以﹣7<a+2≤﹣3,解得﹣9<a ≤﹣5,整数a 为﹣8,﹣7,﹣6,﹣5, 方程3233y a y y --++ 1=去分母得3y ﹣a +2=y +3, 解得y =12a +且y ≠﹣3, ∴12a +≠﹣3, 解得a ≠﹣7,当a =﹣8时,y =﹣3.5(不是整数,舍去),当a =﹣6时,y =﹣2.5(不是整数,舍去),当a =﹣5时,y =﹣2(是整数,符合题意),所以符合条件的所有整数a 为﹣5.故选:D .【点睛】本题考查了分式方程的解:求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解.也考查了解一元一次不等式组的整数解.8.2a ab b a++-的结果是( ). A .2a- B .4a C .2b a b -- D .b a- C 解析:C【分析】根据分式的加减运算的法则计算即可.【详解】 222()()a a b a b a b a b b a a b a b a b+-++=-=-----. 故选:C【点睛】本题考查了分式加减运算的法则,熟记法则是解题的关键.9.如果关于x 的不等式组0243(2)x m x x -⎧>⎪⎨⎪-<-⎩的解集为1x >,且关于x 的分式方程1322x m x x -+=--有非负整数解,则符合条件的所有m 的取值之和为( ) A .8-B .7-C .15D .15- B解析:B【分析】解出不等式组,求出不等式组的解集,确定m 的取值范围,再解出分式方程,找到分式方程的非负整数解,进而求出m 的值即可.【详解】 解:0243(2)x m x x -⎧>⎪⎨⎪-<-⎩①②,解不等式①得:x m >,解不等式②得:1x >,不等式组的解集为1x >,∴1m ;1322x m x x -+=-- 方程两边同时乘以()2x -得:()132x m x --=-; 解得:52m x +=, ∴25m x =-,1m ,∴251x -≤,∴3x ≤,分式方程有非负整数解且20x -≠,∴x 的值为:0,1,3,此时对应的m 的值为:5-,3-,1,∴符合条件的所有m 的取值之和为:()5317-+-+=-.故选:B .【点睛】本题考查了分式方程的解以及不等式的解集,求得m 的取值范围以及求出分式方程的解是解题的关键.10.使分式2221x x x ---的值为0的所有x 的值为( ) A .2或1- B .2-或1 C .2 D .1C解析:C【分析】先根据分式为零的条件列出不等式组,然后再求解即可.【详解】解:∵2221x x x ---=0 ∴222=010x x x ⎧--⎨-≠⎩,解得x=2. 故答案为C .【点睛】本题主要考查了分式为零的条件,根据分式为零的条件列出不等式组是解答本题的关键.二、填空题11.规定一种新的运算“ JX x A B →+∞”,其中A 和B 是关于x 的多项式,当A 的次数小于B 的次数时. 0JX x A B →+∞=;当A 的次数等于B 的次数时, JX x A B→+∞的值为A 、B 的最高次项的系数的商,当A 的次数大于B 的次数时, JX x A B →+∞不存在,例如: 201JX x x →+∞=-,2 2212312JXx x x x →+∞+=+-,若223410211A x x B x x -⎛⎫=-÷ ⎪--⎝⎭,则 JX x A B →+∞的值为__________.【分析】根据已知条件化简分式即可求出答案【详解】解:∵的次数等于的次数故答案为:【点睛】本题考查了分式的混合运算熟练分解因式是解题的关键 解析:12【分析】根据已知条件,化简分式即可求出答案.【详解】 解:223410(2)11A x xB x x -=-÷-- ()()()225223111x x x x x x ---⎛⎫=÷ ⎪-+-⎝⎭ ()()()1125112252x x x x x x x x +--+⎛⎫=⨯= ⎪--⎝⎭ 12x x+=, ∵A 的次数等于B 的次数,∴12x A JX B →+∞=, 故答案为:12. 【点睛】 本题考查了分式的混合运算,熟练分解因式是解题的关键.12.已知关于x 的分式方程239133x mx x x ---=--无解,则m 的值为______.1或4【分析】先去分母将原方程化为整式方程根据一元一次方程无解的条件得出一个m 值再根据分式方程无解的条件得出一个m 值即可【详解】解:去分母得:2x-3-mx+9=x-3整理得:(m-1)x=9∴当m解析:1或4【分析】先去分母,将原方程化为整式方程,根据一元一次方程无解的条件得出一个m 值,再根据分式方程无解的条件得出一个m 值即可.【详解】解:去分母得:2x-3- mx+9 =x-3,整理得:(m-1)x=9,∴当m-1=0,即m=1时,方程无解;当m-1≠0时,由分式方程无解,可得x-3=0,即x=3,把x=3代入(m-1)x=9,解得:m=4,综上,m 的值为1或4.故答案为:1或4.【点睛】本题考查了分式方程的解,熟练掌握分式方程及整式方程无解的条件是解题的关键. 13.若分式方程13322a x x x--=--有增根,则a 的值是________.【分析】分式方程去分母转化为整式方程由分式方程有增根求出x 的值代入整式方程计算即可求出a 的值【详解】去分母得:1-3x+6=-3a+x 由分式方程有增根得到x−2=0即x =2把x =2代入得:1-6+6 解析:13【分析】分式方程去分母转化为整式方程,由分式方程有增根求出x 的值,代入整式方程计算即可求出a 的值.【详解】去分母得:1-3x+6=-3a+x ,由分式方程有增根,得到x−2=0,即x =2,把x =2代入得:1-6+6=-3a+2,解得:a =13, 故答案为:13. 【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.14.A B 两地相距36千米,一艘轮船从A 地顺流行至B 地,又立即从B 地逆流返回A 地,共用9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x 千米时,则可列方程为__________.【分析】设该轮船在静水中的速度为x 千米/时则一艘轮船从A 地顺流航行至B 地已知水流速度为4千米/时所花时间为;从B 地逆流返回A 地水流速度为4千米/时所花时间为根据题意列方程即可【详解】解:设该轮船在静 解析:3636944x x +=+- 【分析】设该轮船在静水中的速度为x 千米/时,则一艘轮船从A 地顺流航行至B 地,已知水流速度为4千米/时,所花时间为364x +;从B 地逆流返回A 地,水流速度为4千米/时,所花时间为364x -根据题意列方程3636944x x +=+-即可. 【详解】解:设该轮船在静水中的速度为x 千米时,根据题意列方程得:3636944x x +=+- 【点睛】本题考查列分式方程解应用题,关键是正确列出分式方程,找出题干中等量关系式即可. 15.分式2222,39a b b c ac的最简公分母是______.【分析】常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母这样的公分母叫做最简公分母【详解】分式的分母分别是3b2c9ac2故最简公分母是9ab2c2故答案为:9ab2c2【点睛】本题考查了解析:229ab c【分析】常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.【详解】分式222239a b b c ac、的分母分别是3b 2c 、9ac 2,故最简公分母是9ab 2c 2. 故答案为:9ab 2c 2.【点睛】 本题考查了最简公分母的定义及求法.通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母. 一般方法:①如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数,相同字母的最高次幂,所有不同字母都写在积里. ②如果各分母都是多项式,就可以将各个分母因式分解,取各分母数字系数的最小公倍数,凡出现的字母(或含字母的整式)为底数的幂的因式都要取最高次幂. 16.计算:()222333a b a b --⋅=_______________.【分析】根据单项式乘单项式计算法则以及幂的乘方与积的乘方负整数指数幂计算即可【详解】原式=故答案为:【点睛】本题主要考查了单项式乘单项式幂的乘方与积的乘方负整数指数幂属于基础计算题 解析:3a b【分析】根据单项式乘单项式计算法则以及幂的乘方与积的乘方,负整数指数幂,计算即可.【详解】原式=44334343113333a a b a b a b a b b----+-=== 故答案为:3a b. 【点睛】 本题主要考查了单项式乘单项式,幂的乘方与积的乘方,负整数指数幂,属于基础计算题.17.甲、乙二人做某种机械零件,已知甲每小时比乙少做8个,甲做160个所用的时间比乙做160个所用的时间多1小时,设甲每小时做x 个零件,列方程为________.【分析】设甲每小时做x 个零件根据甲做160个所用的时间比乙做160个所用的时间多1小时得出方程解答即可【详解】解:设甲每小时做个零件则乙每小时做个零件依题意得:即故答案为:【点睛】本题考查了由实际问 解析:16016018x x -=+ 【分析】设甲每小时做x 个零件,根据甲做160个所用的时间比乙做160个所用的时间多1小时得出方程解答即可.【详解】解:设甲每小时做x 个零件,则乙每小时做(8)x +个零件,依题意,得:16016018x x -=+, 即16016018x x -=+. 故答案为:16016018x x -=+. 【点睛】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.18.已知1112a b -=,则ab a b-的值是________.-2【分析】先把所给等式的左边通分再相减可得再利用比例性质可得再利用等式性质易求的值【详解】解:∵∴∴即∴故答案为:-2【点睛】本题考查了分式的加减法代数式求值解题的关键是通分得出是解题关键解析:-2【分析】 先把所给等式的左边通分,再相减,可得12b a ab -=,再利用比例性质可得()2ab a b =--,再利用等式性质易求ab a b -的值. 【详解】解:∵1112a b -=, ∴12b a ab -=, ∴()2ab b a =-,即()2ab a b =--, ∴2ab a b=--. 故答案为:-2.【点睛】 本题考查了分式的加减法,代数式求值,解题的关键是通分,得出12b a ab -=是解题关键. 19.某公司生产了A 型、B 型两种计算机,它们的台数相同,但总价值和单价不同.已知A 型计算机总价值为102万元;B 型计算机总价值为81.6万元,且单价比A 型机便宜了2400元.问A 型、B 型两种计算机的单价各是多少万元.若设A 型计算机的单价是x 万元,请你根据题意列出方程________.【分析】设A 型计算机的单价是x 万元/台则B 型计算机的单价是(x-024)万元/台根据单价=总价÷数量即可得出关于x 的分式方程此题得解【详解】解:设型计算机的单价是万元/台则型计算机的单价是解析:10281.6x x 0.24=- 【分析】设A 型计算机的单价是x 万元/台,则B 型计算机的单价是(x-0.24)万元/台,根据单价=总价÷数量即可得出关于x 的分式方程,此题得解.【详解】解:设A 型计算机的单价是x 万元/台,则B 型计算机的单价是()x 0.24-万元/台, 根据题意得:10281.6x x 0.24=-. 故答案为:10281.6x x 0.24=-. 【点睛】 本题考查了由实际问题抽象出分式方程,根据数量关系单价=总价÷数量列出关于x 的分式方程是解题的关键.20.若关于x 的分式方程11222mx x x-=---无解,则m =______.2或1【分析】将分式方程化成整式方程按照一元一次方程无解的条件及分式方程无解的条件求得m 的值即可【详解】解:方程两边同时乘以(x ﹣2)得:1﹣mx =-1﹣2(x ﹣2)整理得:(2﹣m )x =2∵无解∴解析:2或1【分析】将分式方程化成整式方程,按照一元一次方程无解的条件及分式方程无解的条件求得m 的值即可.【详解】 解:方程11222mx x x-=---两边同时乘以(x ﹣2)得: 1﹣mx =-1﹣2(x ﹣2),整理得:(2﹣m )x =2,∵无解,∴当2﹣m =0,即m =2时,方程无解;当x ﹣2=0时,方程也无解,此时x =2,则2(2﹣m )=2,解得m =1.故答案为:2或1.【点睛】 本题考查了分式方程的解,明确分式方程和整式方程无解的条件是解题的关键.21.某商店购进 A B 、两种商品,购买1个A 商品比购买1个B 商品多花10元,并且花费300元购买A 商品和花费100元购买B 商品的数量相等(1)求购买一个A 商品和一个B 商品各需要多少元(2)商店准备购买A B 、两种商品共80个,若A 商品的数量不少于B 商品数量的4倍,并且购买A B 、商品的总费用不低于1000元且不高于1060元,那么商店有哪几种购买方案? 解析:(1)购买一个A 商品需要15元,购买一个B 商品需要5元;(2)商店有3种购买方案,方案①:购进A 商品66个,B 商品14个;方案②:购进A 商品65个,B 商品15个;方案③:购进A 商品64个,B 商品16个【分析】(1)设购买一个B 商品需要x 元,则购买一个A 商品需要()10x +元,列出分式方程求解;(2)设购买B 商品m 个,则购买A 商品()80m -个,根据题意列出不等式组求出m 的范围,取整数解.【详解】解:()1设购买一个B 商品需要x 元,则购买一个A 商品需要()10x +元,依题意, 得:30010010x x=+, 解得:5x =,经检验, = 5x 是原方程的解,且符合题意, 1015x ∴+=,答:购买一个A 商品需要15元,购买一个B 商品需要5元;()2设购买B 商品m 个,则购买A 商品()80m -个,依题意,得:()()804158051000158051060m m m m m m ⎧-≥⎪-+≥⎨⎪-+≥⎩,解得:1416m ≤≤, m 为整数,14m ∴=或15或16,∴商店有3种购买方案,方案①:购进A 商品66个,B 商品14个,方案②:购进A 商品65个,B 商品15个,方案③:购进A 商品64个,B 商品16个.【点睛】本题考查分式方程的应用和不等式的应用,解题的关键是掌握根据题意列分式方程和不等式的方法.22.解方程(1)22211x x x =-+. (2)2127111x x x +=+--. 解析:(1)无解;(2)2x =【分析】(1)先把分式方程化为整式方程,然后解方程,再进行检验,即可得到答案; (2)先把分式方程化为整式方程,然后解方程,再进行检验,即可得到答案;【详解】(1)解:原方程可变形为()()()21111x x x x =+-+, 方程两边同乘最简公分母()()11x x x +-,得21x x =-.解得:1x =-.检验:把1x =-代入最简公分母()()11x x x +-,得()()()()11111110x x x +-=--+--=,因此,1x =-是增根,从而原方程无解.(2)原方程可变形为:()()1271111x x x x +=+-+- 方程两边同乘最简公分母()()11x x +-,得()1217x x -++=解得,2x =检验:把2x =代入最简公分母()()11x x +-,得()()113130x x +-=⨯=≠因此,2x =是原方程的解.【点睛】本题考查了解分式方程,解题的关键是掌握解分式方程的步骤,注意解分式方程需要检验.23.(1)计算:22y x x y x y-++ (2)解方程:4322x x x=+-- 解析:(1)y x -;(2)5x =. 【分析】(1)根据分式运算的性质,结合平方差公式计算,即可得到答案;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】(1)22y x x y x y-++, =22y x x y-+, =()()x y x y x y +--+,=()x y y x --=-,y x =-;(2)4322x x x=+--, 去分母得()4=32x x --,去括号得436x x =--,移项合并得210x =,系数化1得5x =,当x=5时,25230x -=-=≠,所以x=5是原方程的解.【点睛】本题考查了分式的混合运算及解分式方程,能正确根据分式的运算法则进行化简以及掌握解分式方程的方法是解答此题的关键,注意解分式方程要验根.24.解方程:(1)3311x x x +=-- (2)23425525x x x +=-+- 解析:(1)3x =;(2)1x =【分析】(1)先去分母,再解整式方程求解,检验解是否为原方程的解即可;(2)先去分母,再解整式方程求解,检验解是否为原方程的解即可.【详解】解:(1)方程两边同乘1x -,得33(1)x x +=-,解得3x =,检验:当3x =时10x -≠,∴原分式方程的解为3x =;(2)方程两边同乘(5)(5)x x -+,得3(5)4(5)2x x ++-=,解得1x =,检验:当1x =时,(5)(5)0x x -+≠,∴原分式方程的解为1x =.【点睛】此题考查解分式方程,掌握解方程的步骤:先去分母,再解整式方程求解,检验解是否为原方程的解.25.某快餐店欲购进A ,B 两种型号的餐盘,每个A 种型号的餐盘比每个B 种型号的餐盘费用多5元,且用120元购进的A 种型号的餐盘与用90元购进的B 种型号的餐盘的数量相同.(1)问A ,B 两种型号的餐盘单价为多少元?(2)若该快餐店决定在成本不超过1900元的前提下购进A ,B 两种型号的餐盘100个,则最多购进A 种型号餐盘多少个?解析:(1)A 种型号的餐盘单价为20元,B 种型号的餐盘单价为15元;(2)最多购进A 种型号餐盘80个【分析】(1)设A 型号的餐盘单价为x 元,则B 型号的餐盘单价为(x ﹣5)元,根据用120元购进的A 种型号的餐盘与用90元购进的B 种型号的餐盘的数量相同这个等量关系列出方程即可;(2)设购进A 种型号餐盘m 个,结合“该快餐店决定在成本不超过1900元的前提购进A 、B 两种型号的餐盘100个”列出不等式并解答.【详解】解:(1)设A 种型号的餐盘单价为x 元,则B 种型号的餐盘单价为(5x -)元, 由题意可列方程120905x x =-, 解得20x .经检验,20x 是原分式方程的解,则520515x -=-=.答:A 种型号的餐盘单价为20元,B 种型号的餐盘单价为15元.(2)设购进A 种型号餐盘m 个,则购进B 种型号餐盘()100m -个.依题意可得()20151001900m m +-≤,解得80m ≤.答:最多购进A 种型号餐盘80个.【点睛】本题考查了分式方程的应用和一元一次不等式的应用.解决本题的关键是读懂题意,找到符合题意的数量关系.准确的解分式方程或不等式是需要掌握的基本计算能力. 26.秋冬来临之际,天气开始慢慢变冷,某商家抓住商机,在十一月份力推甲、乙两款儿童棉服.已知十一月份甲款棉服的销售总额为8400元,乙款棉服的销售总额为9000元,乙款棉服的单价是甲款棉服单价的1.2倍,乙款棉服的销售数最比甲款棉服的销售数量少6件.(1)求十一月份甲款棉服的单价是多少元?(2)十二月份,为了加大推销力度,该商家将甲款棉服的单价在十一月份的基础上下调了%a ,结果甲款棉服的销量比十一月份多卖了24件;乙款棉服的单价在十一月份的基础上下调3%2a ,结果乙款棉服的销量比十一月份多卖了50件.要使十二月份的总销售额不低于22200元,求a 的最大值,解析:(1)十一月份甲款棉服的单价是150元;(2)20【分析】(1)设十一月份甲款棉服的单价是x 元,则十一月份乙款棉服的单价是1.2x 元,根据题意列方程即可得到结论;(2)根据不等量关系,列出关于a 的不等式,即可得到结论.【详解】(1)设十一月份甲款棉服的单价是x 元,则十一月份乙款棉服的单价是1.2x 元,根据题意得,8400900061.2x x-=, 解得:x =150,经检验:x =150是原方程的根, 答:十一月份甲款棉服的单价是150元;(2)由题意得:150(1-%a )(8400÷150+24)+1.2×150(1-3%2a )(8400÷150-6+50)≥22200,解得:a≤20,∴a 的最大值为20.【点睛】本题考查了分式方程的应用,一元一次不等式的应用,正确的理解题意,列出方程和不等式,是解题的关键.27.为了安全与方便,某自助加油站只提供两种自助加油方式:“每次定额只加200元”与“每次定量只加40升”.自助加油站规定每辆车只能选择其中一种自助加油方式,那么哪种加油方式更合算呢?请以两种加油方式各加油两次予以说明.(分析问题)“更合算”指的是两次加油后平均油价更低由于汽油单价会变,不妨设第一次加油时油价为x 元/升,第二次加油时油价为y 元/升.①两次加油,每次只加200元的平均油价为:_______________元/升.②两次加油,每次只加40升的平均油价为:_______________元/升.(解决问题)请比较两种平均油价,并用数学语言说明哪种加油方式更合算.解析:【分析问题】①2xy x y +;②2x y +;【解决问题】22x y xy x y +≥+,当x y =时,两种加油方式均价相等;当x y ≠时,每次加200元更合算【分析】分析问题:①计算出两次加油的总价400元,总的加油量为200200+xy ⎛⎫ ⎪⎝⎭升,从而得到两次加油的平均价格;②计算出两次加油的总价()4040x y +元,总的加油量为80升,从而得到两次加油的平均价格; 解决问题:利用作差法可得22x y xy x y +-+()()22x y x y -=+,再判断()()22x y x y -+的符号,从而可得结论.【详解】解:分析问题:① 第一次加油时油价为x 元/升, ∴ 第一次加油的数量为:200x升,第二次加油时油价为y 元/升,∴ 第二次加油的数量为:200y 升, 所以两次加油的平均价格为每升:()200+2004004002200200200200200xy xy x y x y x y x y xy===++++(元) 故答案为:2xy x y+ ②两次加油,每次只加40升的总价分别为:40x 元,40y 元, 所以两次加油的平均价格为每升:()40404080802x y x y x y +++==元, 故答案为:2x y +. 解决问题:()()()()()222422422x y x y x y xy xy x y x xy y x y x y +++-=--=++++()()22x y x y -=+ x ,y 为两次加油的汽油单价,故0x y +>,()20x y -≥ ()()22022x y x y xy x y x y -+∴-=≥+-,即22x y xy x y +≥+. 结论:当x y =时,两种加油方式均价相等;当x y ≠时,每次加200元更合算.【点睛】本题考查的是列代数式,分式的化简,分式的加减运算的应用,分式除法的应用,代数式的值的大小比较,掌握以上知识是解题的关键.28.先化简,再求值:213(1)211x x x x x +--÷-+-,其中x =12. 解析:1x x -,-1. 【分析】 先计算括号内,再将除法化为乘法,分别因式分解后约分,将x =12代入计算即可. 【详解】 解:原式=222113211x x x x x x x -+---÷-+- =2233211x x x x x x --÷-+- =2(3)1(1)3x x x x x ---- =1x x -, 当x =12时, 原式=121112=--. 【点睛】本题考查分式的化简求值.属于常考题型,熟练掌握分式混合运算的法则是解题的关键.。
华师大版八年级数学上册《整式的乘除》单元试卷检测练习及答案解析

华师大版八年级数学上册《整式的乘除》单元试卷检测练习及答案解析一、选择题1、下列运算正确的是()A.(a3)2=a6B.2a+3a=5a2C.a8÷a4=a2D.a2·a3=a62、若、、是正整数,则=()A.B.C.D.3、若,,则等于()A.B.C.2 D.4、计算的结果是()A.B.C.D.5、若,,则代数式的值等于()A.B.C.D.26、若(x2+px+q)(x2+7)的计算结果中,不含x2项,则q的值是()A.0 B.7 C.-7 D.±77、已知x+y=-5,x-y=2,则x2-y2=()A.. B.C.D.8、如果是一个完全平方式,那么的值是().A.B.C.D.9、计算(36x6-16x2)÷4x2的结果为()A.9x3﹣4x2B.9x4+4 C.9x3+4x D.9x4﹣4 10、某同学粗心大意,因式分解时,把等式x4-■=(x2+4)(x+2)(x-▲)中的两个数字弄污了,则式子中的■,▲对应的一组数字可以是( )A.8,1 B.16,2C.24,3 D.64,8二、填空题11、分解因式:3a3-3a=______.12、已知x a=3,x b=4,则x3a﹣2b的值是_____.13、计算:=_______.14、若的结果中不含x的一次项,则=________.15、已知x﹣y=4,则代数式x2﹣2xy+y2﹣25的值为_____.16、已知一个三角形的面积为8x3y2-4x2y3,一条边长为8x2y2,则这条边上的高为___________.17、计算:(﹣a)2÷(﹣a)= ,0.252007×(﹣4)2008= .18、已知,则=______.19、计算的结果是_______.20、若=7,则___________.三、计算题21、计算:(1)(2)(3)(4)22、因式分解:⑴⑵⑶⑷四、解答题23、一个三角形的底边长为,高为,该三角形面积为S,试用含的代数式表示S,并求当时,S的值.24、先化简,再求值:,其中x =-1,y =.25、计算:(1)已知a+b=-3,ab=5,求多项式4a2b+4ab2-4a-4b的值;(2)已知x2-3x-1=0,求代数式3-3 x2+9x的值?26、已知(x2+px+8)与(x2﹣3x+q)的乘积中不含x3和x2项,求p、q的值.27、阅读:将代数式转化为的形式,(期中为常数),则其中.(1)仿照此法将代数式化为的形式,并指出的值.(2)若代数式可化为的形式,求的值.参考答案1、A2、C3、A4、B5、B6、C7、D8、D9、D10、B11、3a(a+1)(a-1)12、13、214、-815、-916、2x-y17、﹣a,﹣4.18、-219、.20、±321、(1)1;(2);(3);(4)2.22、⑴==⑵==⑶===4⑷=== 23、.24、原式==025、(1)-48;(2)026、p=3,q=1.27、①;②答案详细解析【解析】1、分析:结合选项分别进行幂的乘方、合并同类项、同底数幂的乘除法等运算,然后选择计算正确选项即可.详解:A、(a3)2=a6,原式计算正确,故本选项正确;B、2a+3a=5a,原式计算错误,故本选项错误;C、a8÷a4=a4,原式计算错误,故本选项错误;D、a2·a3=a5,原式计算错误,故本选项错误.故选A.点睛:本题考查了幂的乘方乘方,合并同类项,同底数幂的乘除法. 熟练掌握它们的计算法则是计算正确的关键.2、分析:首先根据同底数幂的乘法将括号里面的进行计算,然后根据积的乘方计算法则得出答案.详解:原式=,故选C.点睛:本题主要考查的是同底数幂的乘法以及幂的乘方计算,属于基础题型.解决这个问题的关键就是明确幂的计算法则.3、分析:先把23m﹣2n化为(2m)3÷(2n)2,再求解.详解:∵2m=3,2n=5,∴23m﹣2n=(2m)3÷(2n)2=27÷25=.故选A.点睛:本题主要考查了同底数幂的除法及幂的乘方与积的乘方,解题的关键是把23m﹣2n化为(2m)3÷(2n)2.4、试题解析:故选B.5、∵,,∴(x-1)(y+1)=xy+x-y-1=.故选B.6、(x2+px+q)(x2+7)=x4+7x2+px3+7px+qx2+7q=x4+px3+(7+q)x2+7px+7q,因为计算结果中不含x2项,所以7+q=0,所以q=-7;故选C.7、本题考查平方差公式进行因式分解,因为x2-y2=(x+y)(x-y),将x+y=-5,x-y=2,代入得: -5×2=-10,因此,正确选项是D.8、∵形如的式子叫完全平方式,而,∴若是完全平方式,则,∴,故选D.9、多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加.所以(36x6-16x2)÷4x2= 9x4﹣4考点:整式的除法.10、由(x2+4)(x+2)(x-▲)得出▲=2,则(x2+4)(x+2)(x-2)=(x2+4)(x2-4)=x4-16,则■=16.故选B.【点睛】此题考查了学生用平方差公式分解因式的掌握情况,灵活性比较强.11、分析:提取公因式法和公式法相结合进行因式分解即可.详解:原式故答案为:点睛:考查因数分解,提取公因式法和公式法相结合进行因式分解.注意分解一定要彻底.12、分析:直接利用同底数幂的除法运算法则计算得出答案.详解:∵x a=3,x b=4,∴x3a﹣2b=(x a)3÷(x b)2=33÷42=.故答案为:.点睛:本题主要考查了同底数幂的乘除运算,正确将原式变形是解题的关键.13、分析:先把改写成2100=,然后逆用积的乘方公式(ab)m=a m·b m,即a m·b m=(ab)m解答.详解:====2.点睛:本题考查了偶次幂的性质和积的乘方运算,解答本题的关键是逆用乘方运算公式.14、试题解析:结果中不含的一次项.故答案为:15、解: x2﹣2xy+y2﹣25=(x﹣y)2﹣25 =42﹣25=﹣9,故答案为:﹣9.16、∵三角形的面积为8x3y2-4x2y3,一条边长为8x2y2,∴这条边上的高为2(8x3y2-4x2y3) ÷8x2y2=16x3y2÷8x2y2-8x2y3÷8x2y2=2x-y,故答案为:2x-y.17、试题分析:根据同底数幂的除法底数不变指数相减,可得答案;根据同底数幂的乘法底数不变指数相加,可得积的乘方,根据积的乘方,可得答案.解:(﹣a)2÷(﹣a)=﹣a,0.252007×(﹣4)2008=[0.25×(﹣4)]2007×(﹣4)=﹣4,故答案为:﹣a,﹣4.18、本题利用拆常数项凑完全平方的方法进行求解,,可变形为:,即,根据非负数的非负性可得:解得: :,所以19、原式===12017=-.故答案为-.点睛:积的乘方公式:(ab)n=a n b n(n为正整数)的逆运算:a n b n = (ab)n(n为正整数)也成立.20、(x+)2=x2+2+=7+2=9,x+=±3.故答案为±3.点睛:(1)(x+)2=x2+2+;(x-)2=x2-2+.21、试题分析:(1)原式=;(2)原式=;(3)原式=;(4)原式=.考点:整式的混合运算.22、试题解析:点睛:因式分解:把一个多项式分解成几个整式的积的形式.因式分解的主要方法:提公因式法,公式法,十字相乘法,分组分解法.23、分析:利用三角形的面积公式得到三角形的面积S=(4a+2)(2a-1),然后利用平方差公式计算可得用含a的代数式表示S;再将a=2代入计算即可求解.详解:,当时,.点睛:本题考查了多项式乘多项式,平方差公式的知识,解决此类问题的关键是牢记平方差公式.24、分析:首先根据乘法公式将括号去掉,然后进行合并同类项,最后根据多项式除以单项式的法则得出答案,将x和y的值代入化简后的式子进行计算得出答案.详解:原式===,将x =,y =代入上式,原式=0.点睛:本题主要考查的是多项式的乘法和除法的计算法则,属于基础题型.在解决这个问题的时候,公式的应用是非常关键的.25、分析:(1)、首先进行分组分解,然后提取公因式,最后利用整体代入的思想进行求解;(2)、首先提取公因式-3,然后整体代入进行求解.详解:(1)、解:原式 ="4" ab(a+b)-4(a+b)="(4" ab-4)(a+b)=4(ab-1)(a +b)当a+b=-3,ab=5时,原式=4×(5-1)×(-3)=4×4×(-3)=-48(2)、原式=-3(x2-3x-1),当x2-3x-1="0," 原式=-3×0=0.点睛:本题主要考查的是利用因式分解进行简便计算,属于基础题型.解决这个问题的关键就是将所求的代数式进行因式分解.26、试题分析:根据整式的乘法,化简完成后,根据不含项的系数为0求解即可.试题解析:∵(x2+px+8)(x2﹣3x+q)=x4﹣3x3+qx2+px3﹣3px2+pqx+8x2﹣24x+8q=x4+(p﹣3)x3+(q﹣3p+8)x2+(pq﹣24)x+8q.∵乘积中不含x2与x3项,∴p﹣3=0,q﹣3p+8=0,∴p=3,q=1.27、试题分析:根据完全平方公式的结构,按照要求即可得出答案.试题解析:①则②则.。
初中数学八年级上册第十五章《整式的乘除与因式分解》简介

新课标人教版初中数学八年级上册第十五章《整式的乘除与因式分解》简介人教版《义务教育课程标准实验教科书?数学》第十五章是“整式的乘除与因式分解”。
本章的主要内容是整式的乘除运算、乘法公式以及因式分解。
本章内容建立在已经学习了的有理数运算、列简单的代数式、一次方程及不等式、整式的加减运算等知识的基础上。
整式的乘除运算和因式分解是基本而重要的代数初步知识,这些知识是以后学习分式和根式运算、函数等知识的基础,在后续的数学学习中具有重要意义,同时,这些知识也是学习物理、化学等学科及其他科学技术不可缺少的数学基础知识.本章共安排了4个小节,教学时间约需13课时(供参考):15.1 整式的乘法4课时15.2 乘法公式2课时15.3 整式的除法2课时15.4 因式分解3课时数学活动小结2课时一、教科书内容和课程学习目标(一)本章知识结构框图(二)教科书内容本章共包括4节15.1 整式的乘法整式的乘法是整式四则运算的重要组成部分。
本节分为四个小节,主要内容是整式的乘法,这些内容是在学生掌握了有理数运算、整式加减运算等知识的基础上学习的。
其中,幂的运算性质,即同底数幂的乘法、幂的乘方和积的乘方是整式乘法的基础,教科书把它们依次安排在前三个小节中,教学中应适当复习幂、指数、底数等概念,特别要弄清正整数指数幂的意义。
在学生掌握了幂的运算性质后,作为它们的一个直接应用,教科书在第四小节安排一般整式乘法的教学内容。
首先是单项式与单项式相乘,由于进行单项式与多项式、多项式与多项式相乘的前提是熟练地进行单项式与单项式相乘,因此,对于单项式与单项式相乘的教学应该予以充分重视。
在学生掌握了单项式与单项式相乘的基础上,教科书利用分配律等进一步引入单项式与多项式相乘、多项式与多项式相乘,这样使整式乘法运算的教学从简到繁,由易到难,层层递进。
15.2乘法公式本节分为两个小节,分别介绍平方差公式与完全平方公式。
乘法公式是整式乘法的特殊情形,是在学习了一般的整式乘法知识的基础上学习的,运用乘法公式能简化一些特定类型的整式相乘的运算问题,教科书在本节开始首先指出了这一点。
北京市西城区八年级数学_学习·探究·诊断(上册)第十五章_整式

第十五章 整式测试1 整式的乘法 学习要求会进行整式的乘法计算.课堂学习检测一、填空题 1.(1)单项式相乘,把它们的________分别相乘,对于只在一个单项式里含有的字母,则________.(2)单项式与多项式相乘,就是用单项式去乘________,再把所得的积________. (3)多项式与多项式相乘,先用________乘以________,再把所得的积________. 2.直接写出结果: (1)5y ·(-4xy 2)=________;(2)(-x 2y )3·(-3xy 2z )=________; (3)(-2a 2b )(ab 2-a 2b +a 2)=________;(4)=-⋅-+-)21()864(22x x x ________;(5)(3a +b )(a -2b )=________;(6)(x +5)(x -1)=________. 二、选择题3.下列算式中正确的是( ) A .3a 3·2a 2=6a 6 B .2x 3·4x 5=8x 8 C .3x ·3x 4=9x 4 D .5y 7·5y 3=10y 10 4.(-10)·(-0.3×102)·(0.4×105)等于( ) A .1.2×108 B .-0.12×107 C .1.2×107 D .-0.12×108 5.下面计算正确的是( ) A .(2a +b )(2a -b )=2a 2-b 2 B .(-a -b )(a +b )=a 2-b 2 C .(a -3b )(3a -b )=3a 2-10ab +3b 2 D .(a -b )(a 2-ab +b 2)=a 3-b 3 6.已知a +b =m ,ab =-4,化简(a -2)(b -2)的结果是( ) A .6 B .2m -8 C .2m D .-2m 三、计算题 7.)21).(43).(32(222z xy z yz x --8.[4(a -b )m -1]·[-3(a -b )2m ]9.2(a 2b 2-ab +1)+3ab (1-ab ) 10.2a 2-a (2a -5b )-b (5a -b )11.-(-x )2·(-2x 2y )3+2x 2(x 6y 3-1) 12.)214)(221(-+x x13.(0.1m -0.2n )(0.3m +0.4n ) 14.(x 2+xy +y 2)(x -y )四、解答题15.先化简,再求值.(1)),43253(4)12(562---+-+--n m m n m m m 其中m =-1,n =2;(2)(3a +1)(2a -3)-(4a -5)(a -4),其中a =-2.16.小明同学在长a cm ,宽cm 43a 的纸上作画,他在纸的四周各留了2cm 的空白,求小明同学作的画所占的面积.综合、运用、诊断一、填空题17.直接写出结果:(1)=⨯⨯⨯)1031()103(322______;(2)-2[(-x )2y ]2·(-3x m y n )=______; (3)(-x 2y m )2·(xy )3=______;(4)(-a 3-a 3-a 3)2=______;(5)(x +a )(x +b )=______;(6)=+-)31)(21(n m ______;(7)(-2y )3(4x 2y -2xy 2)=______; (8)(4xy 2-2x 2y )·(3xy )2=______. 二、选择题18.下列各题中,计算正确的是( )A .(-m 3)2(-n 2)3=m 6n 6B .[(-m 3)2(-n 2)3]3=-m 18n 18C .(-m 2n )2(-mn 2)3=-m 9n 8D .(-m 2n )3(-mn 2)3=-m 9n 919.若(8×106)(5×102)(2×10)=M ×10a ,则M 、a 的值为( )A .M =8,a =8B .M =8,a =10C .M =2,a =9D .M =5,a =1020.设M =(x -3)(x -7),N =(x -2)(x -8),则M 与N 的关系为( )A .M <NB .M >NC .M =ND .不能确定 21.如果x 2与-2y 2的和为m ,1+y 2与-2x 2的差为n ,那么2m -4n 化简后的结果为( )A .-6x 2-8y 2-4B .10x 2-8y 2-4C .-6x 2-8y 2+4D .10x 2-8y 2+4 22.如图,用代数式表示阴影部分面积为( )A .ac +bcB .ac +(b -c )C .ac +(b -c )cD .a +b +2c (a -c )+(b -c )三、计算题23.-(-2x 3y 2)2·(1.5x 2y 3)2 24.)250(241)2)(5(54423x .x x x x -⋅-⋅--25.4a -3[a -3(4-2a )+8]26.)3()]21(2)3([322b a b b a b ab -⋅---四、解答题27.在(x 2+ax +b )(2x 2-3x -1)的积中,x 3项的系数是-5,x 2项的系数是-6,求a 、b的值.拓展、探究、思考28.通过对代数式进行适当变形求出代数式的值. (1)若2x +y =0,求4x 3+2xy (x +y )+y 3的值;(2)若m 2+m -1=0,求m 3+2m 2+2008的值.29.若x =2m +1,y =3+4m ,请用含x 的代数式表示y .测试2 乘法公式学习要求会用平方差公式、完全平方公式进行计算,巩固乘法公式的使用.课堂学习检测一、填空题 1.计算题: (y +x )(x -y )=______;(x +y )(-y +x )=______; (-x -y )(-x +y )=______;(-y +x )(-x -y )=______; 2.直接写出结果: (1)(2x +5y )(2x -5y )=________; (2)(x -ab )(x +ab )=______;(3)(12+b 2)(b 2-12)=________; (4)(a m -b n)(b n +a m )=______; (5)(3m +2n )2=________; (6)=-2)32(ba ______;(7)( )2=m 2+8m +16;(8)2)325.1(b a -=______;3.在括号中填上适当的整式: (1)(m -n )( )=n 2-m 2; (2)(-1-3x )( )=1-9x 2. 4.多项式x 2-8x +k 是一个完全平方式,则k =______. 5.-+=+222)1(1x x x x ______=2)1(xx -+______. 二、选择题6.下列各多项式相乘,可以用平方差公式的有( ) ①(-2ab +5x )(5x +2ab ) ②(ax -y )(-ax -y ) ③(-ab -c )(ab -c ) ④(m +n )(-m -n ) A .4个 B .3个 C .2个 D .1个 7.下列计算正确的是( ) A .(5-m )(5+m )=m 2-25 B .(1-3m )(1+3m )=1-3m 2 C .(-4-3n )(-4+3n )=-9n 2+16 D .(2ab -n )(2ab +n )=2a 2b 2-n 2 8.下列等式能够成立的是( ) A .(a -b )2=(-a -b )2 B .(x -y )2=x 2-y 2 C .(m -n )2=(n -m )2 D .(x -y )(x +y )=(-x -y )(x -y ) 9.若9x 2+4y 2=(3x +2y )2+M ,则 M 为( ) A .6xy B .-6xy C .12xy D .-12xy 10.如图2-1所示的图形面积由以下哪个公式表示( ) A .a 2-b 2=a (a -b )+b (a -b ) B .(a -b )2=a 2-2ab +b 2 C .(a +b )2=a 2+2ab +b 2D .a 2-b 2=a (a +b )-b (a +b )图2-1三、计算题 11.(x n -2)(x n +2) 12.(3x +0.5)(0.5-3x )13.)3243)(4332(m n n m +-+ 14.323.232x y y x +- 15.(3mn -5ab )2 16.(-4x 3-7y 2)2 17.(5a 2-b 4)2四、解答题18.用适当的方法计算. (1)1.02 ×0.98(2)13111321⨯(3)2)2140((4)20052-4010×2006+2006219.若a +b =17,ab =60,求(a -b )2和a 2+b 2的值.综合、运用、诊断一、填空题 20.(a +2b +3c )(a -2b -3c )=(______)2-(______)2; (-5a -2b 2)(______)=4b 4-25a 2. 21.x 2+______+25=(x +______)2; x 2-10x +______=(______-5)2;x 2-x +______=(x -______)2; 4x 2+______+9=(______+3)2. 22.若x 2+2ax +16是一个完全平方式,是a =______. 二、选择题23.下列各式中,能使用平方差公式的是( )A .(x 2-y 2)(y 2+x 2)B .(0.5m 2-0.2n 3)(-0.5m 2+0.2n 3)C .(-2x -3y )(2x +3y )D .(4x -3y )(-3y +4x )24.下列等式不能恒成立的是( )A .(3x -y )2=9x 2-6xy +y 2B .(a +b -c )2=(c -a -b )2C .(0.5m -n )2=0.25m 2-mn +n 2D .(x -y )(x +y )(x 2-y 2)=x 4-y 425.若,51=+a a 则221aa +的结果是( )A .23B .8C .-8D .-2326.(a +3)(a 2+9)(a -3)的计算结果是( )A .a 4+81B .-a 4-81C .a 4-81D .81-a 4 三、计算题 27.(x +1)(x 2+1)(x -1)(x 4+1) 28.(2a +3b )(4a +5b )(2a -3b )(4a -5b ) 29.(y -3)2-2(y +2)(y -2) 30.(x -2y )2+2(x +2y )(x -2y )+(x +2y )2四、计算题31.当a =1,b =-2时,求)212]()21()21[(2222b a b a b a --++的值.拓展、探究、思考32.巧算:).200811()411)(311)(211(2222----33.计算:(a +b +c )2.34.若a 4+b 4+a 2b 2=5,ab =2,求a 2+b 2的值.35.若x 2-2x +10+y 2+6y =0,求(2x +y )2的值.36.若△ABC 三边a 、b 、c 满足a 2+b 2+c 2=ab +bc +ca .试问△ABC 的三边有何关系?测试3 整式的除法学习要求1.会进行单项式除以单项式的计算. 2.会进行多项式除以单项式的计算.课堂学习检测一、判断题1.x 3n ÷x n =x 3 ( )2.x xy y x 2121)(2-=÷- ( )3.26÷42×162=512 ( ) 4.(3ab 2)3÷3ab 3=9a 3b 3 ( )二、填空题5.直接写出结果: (1)(28b 3-14b 2+21b )÷7b =______; (2)(6x 4y 3-8x 3y 2+9x 2y )÷(-2xy )=______; (3)=-÷-+-)32()32752(32224y y x y x xy y ______. 6.已知A 是关于x 的四次多项式,且A ÷x =B ,那么B 是关于x 的______次多项式.三、选择题7.25a 3b 2÷5(ab )2的结果是( ) A .a B .5a C .5a 2b D .5a 28.已知7x 5y 3与一个多项式之积是28x 7y 3+98x 6y 5-21x 5y 5,则这个多项式是( ) A .4x 2-3y 2 B .4x 2y -3xy 2 C .4x 2-3y 2+14xy 2 D .4x 2-3y 2+7xy 3 四、计算题9.3422383ab b a ÷10.22425.0)21(y x y x ÷-11.)21()52(232434x y a y x a -÷- 12.26)(310)(5y x y x -÷- 13.35433660)905643(ax .ax .x a x a ÷-+-14.[2m (7n 3m 3)2+28m 7n 3-21m 5n 3]÷(-7m 5n 3)五、解答题15.先化简,再求值:[5a 4·a 2-(3a 6)2÷(a 2)3]÷(-2a 2)2,其中a =-5.16.已知长方形的长是a +5,面积是(a +3)(a +5),求它的周长.17.月球质量约5.351×1022千克,地球质量约5.977×1024千克,问地球质量约是月球质量的多少倍?(结果保留整数).综合、运用、诊断一、填空题18.直接写出结果:(1)[(-a 2)3-a 2(-a 2)]÷(-a 2)=______.(2)=-÷-+---++)3()31581(1115n n n n x x x x ______. 19.若m (a -b )3=(a 2-b 2)3,那么整式m =______. 二、选择题20.)(yz x z y x 3224214-÷-的结果是( ) A .8xyz B .-8xyz C .2xyzD .8xy 2z 221.下列计算中错误..的是( ) A .4a 5b 3c 2÷(-2a 2bc )2=ab B .(-24a 2b 3)÷(-3a 2b )·2a =16ab 2 C .214)21(4222-=÷-⋅y x y y x D .3658410221)()(a a a a a a =÷÷÷÷22.当43=a 时,代数式(28a 3-28a 2+7a )÷7a 的值是( ) A .425B .41C .49-D .-4三、计算题 23.7m 2·(4m 3p 4)÷7m 5p 24.(-2a 2)3[-(-a )4]2÷a 825.)43(]19)38[(23554y x xy z y x -⋅÷- 26.x m +n (3x n y n )÷(-2x n y n )27.])(21[)(122+++÷+n n y x y x 28.mmm m )42(372-⨯⨯29.[(m +n )(m -n )-(m -n )2+2n (m -n )]÷4n30.87232232429]31.)3(2)3[(y x y y x x x y x ÷-⋅-四、解答题 31.求1,61=-=y x 时,(3x 2y -7xy 2)÷6xy -(15x 2-10x )÷10x -(9y 2+3y )÷(-3y )的值.32.若,72288223b b a b a n m =÷求m 、n 的值.拓展、探究、思考33.已知x 2-5x +1=0,求221xx +的值.34.已知x 3=m ,x 5=n ,试用m 、n 的代数式表示x 14.35.已知除式x -y ,商式x +y ,余式为1,求被除式.测试4 提公因式法学习要求能够用提公因式法把多项式进行因式分解. 一、填空题1.因式分解是把一个______化为______的形式.2.ax 、ay 、-ax 的公因式是______;6mn 2、-2m 2n 3、4mn 的公因式是______. 3.因式分解a 3-a 2b =______. 二、选择题4.下列各式变形中,是因式分解的是( )A .a 2-2ab +b 2-1=(a -b )2-1 B.)11(22222xx x x +=+C .(x +2)(x -2)=x 2-4D .x 4-1=(x 2+1)(x +1)(x -1) 5.将多项式-6x 3y 2 +3x 2y 2-12x 2y 3分解因式时,应提取的公因式是( ) A .-3xy B .-3x 2y C .-3x 2y 2 D .-3x 3y 36.多项式a n -a 3n +a n +2分解因式的结果是( ) A .a n (1-a 3+a 2) B .a n (-a 2n +a 2) C .a n (1-a 2n +a 2) D .a n (-a 3+a n ) 三、计算题 7.x 4-x 3y 8.12ab +6b9.5x 2y +10xy 2-15xy 10.3x (m -n )+2(m -n )11.3(x -3)2-6(3-x ) 12.y 2(2x +1)+y (2x +1)213.y (x -y )2-(y -x )3 14.a 2b (a -b )+3ab (a -b )15.-2x 2n -4x n16.x (a -b )2n +xy (b -a )2n+1四、解答题17.应用简便方法计算:(1)2012-201 (2)4.3×199.8+7.6×199.8-1.9×199.8(3)说明3200-4×3199+10×3198能被7整除.综合、运用、诊断一、填空题18.把下列各式因式分解:(1)-16a 2b -8ab =______;(2)x 3(x -y )2-x 2(y -x )2=______. 19.在空白处填出适当的式子:(1)x (y -1)-( )=(y -1)(x +1);(2)=+c b ab 3294278( )(2a +3bc ). 二、选择题20.下列各式中,分解因式正确的是( )A .-3x 2y 2+6xy 2=-3xy 2(x +2y )B .(m -n )3-2x (n -m )3=(m -n )(1-2x )C .2(a -b )2-(b -a )=(a -b )(2a -2b )D .am 3-bm 2-m =m (am 2-bm -1)21.如果多项式x 2+mx +n 可因式分解为(x +1)(x -2),则m 、n 的值为( )A .m =1,n =2B .m =-1,n =2C .m =1,n =-2D .m =-1,n =-2 22.(-2)10+(-2)11等于( )A .-210B .-211C .210D .-2 三、解答题23.已知x ,y 满足⎩⎨⎧=-=+,13,62y x y x 求7y (x -3y )2-2(3y -x )3的值.24.已知x +y =2,,21-=xy 求x (x +y )2(1-y )-x (y +x )2的值拓展、探究、思考25.因式分解:(1)ax +ay +bx +by ; (2)2ax +3am -10bx -15bm .测试5 公式法(1)学习要求能运用平方差公式把简单的多项式进行因式分解.课堂学习检测一、填空题1.在括号内写出适当的式子:(1)0.25m 4=( )2;(2)=n y 294( )2;(3)121a 2b 6=( )2. 2.因式分解:(1)x 2-y 2=( )( ); (2)m 2-16=( )( ); (3)49a 2-4=( )( );(4)2b 2-2=______( )( ). 二、选择题3.下列各式中,不能用平方差公式分解因式的是( ) A .y 2-49x 2B .4491x - C .-m 4-n 2D .9)(412-+q p4.a 2-(b -c )2有一个因式是a +b -c ,则另一个因式为( ) A .a -b -c B .a +b +c C .a +b -c D .a -b +c 5.下列因式分解错误..的是( ) A .1-16a 2=(1+4a )(1-4a ) B .x 3-x =x (x 2-1) C .a 2-b 2c 2=(a +bc )(a -bc ) D .)l .032)(32l .0(l 0.09422n m m n n m -+=- 三、把下列各式因式分解6.x 2-25 7.4a 2-9b 28.(a +b )2-649.m 4-81n 410.12a 6-3a 2b 211.(2a -3b )2-(b +a )2四、解答题12.利用公式简算:(1)2008+20082-20092;(2)3.14×512-3.14×492.13.已知x +2y =3,x 2-4y 2=-15,(1)求x -2y 的值;(2)求x 和y 的值.综合、运用、诊断一、填空题14.因式分解下列各式:(1)m m +-3161=______; (2)x 4-16=______;(3)11-+-m m a a=______;(4)x (x 2-1)-x 2+1=______.二、选择题15.把(3m +2n )2-(3m -2n )2分解因式,结果是( )A .0B .16n 2C .36m 2D .24mn16.下列因式分解正确的是( )A .-a 2+9b 2=(2a +3b )(2a -3b )B .a 5-81ab 4=a (a 2+9b 2)(a 2-9b 2)C .)21)(21(212212a a a -+=- D .x 2-4y 2-3x -6y =(x -2y )(x +2y -3)三、把下列各式因式分解 17.a 3-ab 2 18.m 2(x -y )+n 2(y -x )19.2-2m 4 20.3(x +y )2-2721.a 2(b -1)+b 2-b 3 22.(3m 2-n 2)2-(m 2-3n 2)2四、解答题 23.已知,4425,7522==y x 求(x +y )2-(x -y )2的值.拓展、探究、思考24.分别根据所给条件求出自然数x 和y 的值:(1)x 、y 满足x 2+xy =35;(2)x 、y 满足x 2-y 2=45.测试6 公式法(2)学习要求能运用完全平方公式把多项式进行因式分解.课堂学习检测一、填空题1.在括号中填入适当的式子,使等式成立: (1)x 2+6x +( )=( )2;(2)x 2-( )+4y 2=( )2; (3)a 2-5a +( )=( )2;(4)4m 2-12mn +( )=( )2 2.若4x 2-mxy +25y 2=(2x +5y )2,则m =______. 二、选择题3.将a 2+24a +144因式分解,结果为( ) A .(a +18)(a +8) B .(a +12)(a -12) C .(a +12)2 D .(a -12)2 4.下列各式中,能用完全平方公式分解因式的有( )①9a 2-1; ②x 2+4x +4; ③m 2-4mn +n 2; ④-a 2-b 2+2ab ; ⑤;913222n mn m +-⑥(x -y )2-6z (x +y )+9z 2. A .2个 B .3个 C .4个 D .5个5.下列因式分解正确的是( )A .4(m -n )2-4(m -n )+1=(2m -2n +1)2B .18x -9x 2-9=-9(x +1)2C .4(m -n )2-4(n -m )+1=(2m -2n +1)2D .-a 2-2ab -b 2=(-a -b )2 三、把下列各式因式分解 6.a 2-16a +64 7.-x 2-4y 2+4xy 8.(a -b )2-2(a -b )(a +b )+(a +b )2 9.4x 3+4x 2+x10.计算:(1)2972 (2)10.32四、解答题11.若a 2+2a +1+b 2-6b +9=0,求a 2-b 2的值.综合、运用、诊断一、填空题12.把下列各式因式分解:(1)49x 2-14xy +y 2=______;(2)25(p +q )2+10(p +q )+1=______;(3)a n +1+a n -1-2a n =______; (4)(a +1)(a +5)+4=______. 二、选择题13.如果x 2+kxy +9y 2是一个完全平方公式,那么k 是( )A .6B .-6C .±6D .18 14.如果a 2-ab -4m 是一个完全平方公式,那么m 是( )A .2161bB .2161b -C .281b D .281b - 15.如果x 2+2ax +b 是一个完全平方公式,那么a 与b 满足的关系是( )A .b =aB .a =2bC .b =2aD .b =a 2 三、把下列各式因式分解 16.x (x +4)+4 17.2mx 2-4mxy +2my 218.x 3y +2x 2y 2+xy 319.2341x x x -+四、解答题20.若,31=+x x 求221xx +的值.21.若a 4+b 4+a 2b 2=5,ab =2,求a 2+b 2的值.拓展、探究、思考22.(m 2+n 2)2-4m 2n 2 23.x 2+2x +1-y 2 24.(a +1)2(2a -3)-2(a +1)(3-2a )+2a -325.x2-2xy+y2-2x+2y+126.已知x3+y3=(x+y)(x2-xy+y2)称为立方和公式,x3-y3=(x-y)(x2+xy+y2)称为立方差公式,据此,试将下列各式因式分解:(1)a3+8 (2)27a3-1测试7 十字相乘法学习要求能运用公式x2+(a+b)x+ab=(x+a)(x+b)把多项式进行因式分解.课堂学习检测一、填空题1.将下列各式因式分解:(1)x2-5x+6=______;(2)x2-5x-6=______;(3)x2+5x+6=______;(4)x2+5x-6=______;(5)x2-2x-8=______;(6)x2+14xy-32y2=______.二、选择题2.将a2+10a+16因式分解,结果是()A.(a-2)(a+8)B.(a+2)(a-8)C.(a+2)(a+8)D.(a-2)(a-8)3.因式分解的结果是(x-3)(x-4)的多项式是()A.x2-7x-12 B.x2-7x+12C.x2+7x+12D.x2+7x-124.如果x2-px+q=(x+a)(x+b),那么p等于()A.ab B.a+bC.-ab D.-a-b5.若x2+kx-36=(x-12)(x+3),则k的值为()A.-9B.15C.-15 D.9三、把下列各式因式分解6.m2-12m+20 7.x2+xy-6y28.10-3a-a2 9.x2-10xy+9y210.(x-1)(x+4)-36 11.ma2-18ma-40m12.x3-5x2y-24xy2四、解答题13.已知x+y=0,x+3y=1,求3x2+12xy+13y2的值.综合、探究、检测一、填空题14.若m2-13m+36=(m+a)(m+b),贝a-b=______.15.因式分解x(x-20)+64=______.二、选择题16.多项式x2-3xy+ay2可分解为(x-5y)(x-by),则a、b的值为()A.a=10,b=-2 B.a=-10,b=-2C.a=10,b=2D.a=-10,b=217.若x2+(a+b)x+ab=x2-x-30,且b<a,则b的值为()A.5B.-6C.-5D.618.将(x+y)2-5(x+y)-6因式分解的结果是()A.(x+y+2)(x+y-3)B.(x+y-2)(x+y+3)C.(x+y-6)(x+y+1)D.(x+y+6)(x+y-1)三、把下列各式因式分解19.(x2-2)2-(x2-2)-220.(x2+4x)2-x2-4x-20拓展、探究、思考21.因式分解:4a2-4ab+b2-6a+3b-4.22.观察下列各式:1×2×3×4+1=52;2×3×4×5+1=112;3×4×5×6+1=192;判断是否任意四个连续正整数之积与1的和都是某个正整数的平方,并说明理由.。
第15章 分式 人教版八年级数学上册单元测试卷(含详解)
第15章《分式》单元测试卷一、单选题(本大题共10小题,每小题3分,共30分)1.分式中,当时,下列结论正确的是()A.分式的值为零B.分式无意义C.若时,分式的值为零D.若时,分式的值为零2.能使等式成立的x的取值范围是( )A .B.C.D.3.分式的值为整数,则整数a的值为()A.1,2,4B.C.0,1,3D.4.若运算的结果为整式,则“□”中的式子可能是()A .B.C.D.5.解分式方程时,下列去分母变形正确的是()A .B.C.D.6.已知关于的分式方程的解是非负数,则的取值范围是()A .B.C.且D.且7.已知正整数,的最大公约数是3,最小公倍数是60,若,则().A.B.C.D.或8.在平面直角坐标系中,过点的直线交x轴、y轴于点,,则的最小值为()A.B.C.D.以上均不正确9.若关于x的不等式组恰有3个整数解,且关于y的分式方程的解是非负数,则符合条件的所有整数a的和是( )A.6B.10C.8D.210.如图,分别表示某一品牌燃油汽车和电动汽车所需费用y(单位:元)与行驶路程S (单位:千米)的关系,已知燃油汽车每千米所需的费用比燃气汽车每千米所需的费用的2倍少0.1元,设电动汽车每千米所需的费用为x元,则可列方程为( )A.B.C.D.二、填空题(本大题共8小题,每小题4分,共32分)11.要使分式有意义,则x的取值范围是.12.若是方程的根,则代数式的值是.13.若,则.14.若关于x的方程无解,则a的值是15.定义:若两个分式A与B满足:,则称A与B这两个分式互为“美妙分式”.若分式与互为“美妙分式”,且a,b均为不等于0的实数,则分式.16.如图,在中,平分,于,若,,,则的面积为.17.人们把这个数叫做黄金分割数,著名数学家华罗庚的优选法中的0.618就应用了黄金分割数.设,,记,,……,,则的值为.18.元代的《四元玉鉴》是一部成就辉煌的数学名著.该著有一道“买椽多少”问题:“六贯二百一十钱,遣人去买几株椽、每株椽钱三文足,无钱准与一株椽”.大意是:用6210文钱买一批椽.如果每株椽的运费是3文,那么少拿一株椽后,剩下椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设6210元能够买珠椽,则列出分式方程为.三、解答题(本大题共6小题,共58分)19.(8分)计算∶(1);(2)20.(8分)化简求值:先化简,再从,中选择一个合适的数代入并求值.21.(10分)解下列分式方程:(1);(2)22.(10分)某工厂计划生产一种创新产品,若生产一件这种产品需A种原料1.2千克、B种原料1千克.已知A种原料每千克的价格比B种原料每千克的价格多10元.(1)为使每件产品的成本价不超过34元,那么购入的B种原料每千克的价格最高不超过多少元?(2)将这种产品投放市场批发销售一段时间后,为拓展销路又开展了零售业务,每件产品的零售价比批发价多30元.现用10000元通过批发价购买该产品的件数与用16000元通过零售价购买该产品的件数相同,那么这种产品的批发价是多少元?23.(10分)关于的方程:的解为;的解为或;的解为;的解为;…根据材料解决下列问题:(1)方程的解是___________;(2)猜想方程的解,并将所得的解代入方程中检验;(3)由上述的观察、比较、猜想、验证,可以得出结论:如果方程的左边是未知数与其倒数的倍数的和,方程右边的形式与左边完全相同,只有把其中的未知数换成某个常数,那么这样的方程可以直接得解.请用这个结论解关于的方程:.24.(12分)阅读材料:已知,为非负实数,,当且仅当“”时,等号成立.这个结论就是著名的“均值不等式”,“均值不等式”在一类最值问题中有着广泛的应用.例:已知,求代数式最小值.解:令,,则由,得.当且仅当,即时,代数式取到最小值,最小值为6.根据以上材料解答下列问题:【灵活运用】(1)已知,则当______时,代数式到最小值,最小值为________.(2)已知,求代数式的最小值.【拓展运用】(3)某校要对操场的一个区域进行改造,利用一面足够长的墙体将该区域用围栏围成中间隔有两道围栏的矩形花圃,如图1所示,为了围成面积为的花圃,所用的围栏至少为多少米?(4)如图2,四边形的对角线,相交于点,和的面积分别是4和12,求四边形面积的最小值.参考答案:一、单选题1.D【分析】本题主要考查分式的有意义的条件、分数值为零的条件,解答本题的关键是熟练掌握分式的分子为0,分母不为0时,分式的值为零.根据分式有意义的条件和分式值为零的条件即可求得结果.【详解】当时,,即,解得:,当,时,分式的值为零故选:D.2.C【分析】本题考查了二根式有意义的条件,分式有意义的条件.熟练掌握二根式有意义的条件,分式有意义的条件是解题的关键.由题意知,,,求解作答即可.【详解】解:由题意知,,,解得,,故选:C.3.D【分析】根据分式的值为整数可知,a+1的值为-4,-2,-1,1,2,4,计算可得答案.【详解】解:∵分式的值为整数,∴a+1是4的因数,故a+1的值为-4,-2,-1,1,2,4,∴a的值为-5,-3,-2,0,1,3,故选:D.4.D【分析】本题考查分式的乘除法和整式,根据分式的乘除法的运算法则进行解题即可得到答案.【详解】解:,∵运算的结果为整式,∴中式子一定有的单项式,∴只有D项符合,故选:D.5.A【分析】本题考查了分式方程的解法,方程两边同乘以,化成整式方程,问题得解.【详解】解:,方程两边同乘以得.故选:A6.D【分析】本题考查分式方程的解,解一元一次不等式,根据解分式方程的方法可以求得的取值范围,即可求解.解答本题的关键是明确解分式方程的方法.【详解】解:,方程两边同乘以,得,移项及合并同类项,得,∵分式方程的解是非负数,,∴,解得,且,故选:D.7.D【分析】先由、是正整数,、的最大公约数是3,最小公倍数是60,得到、的值,然后代入求出代数式的值.【详解】解:、都是正整数,它们的最大公约数是3,所以设,、都是正整数,且由于、的最小公倍数是60,所以即由于、互质,、都是正整数,,或,.即:或当时,原式;当时原式故选:D8.B【分析】首先求出,所在直线的解析式为,然后将代入得到,然后代入变形为,利用换元法和完全平方公式得到,然后利用平方的非负性求解即可.【详解】设,所在直线的解析式为∴,解得∴∴将代入得整理得,即∴设∴原式∵∴∴的最小值为∴的最小值为.∴的最小值为.故选:B.9.A【分析】本题考查了不等式组的取值范围,分式方程的解,分式方程的非负整数与a的整数解容易混淆,仔细辩解是解决本题的关键.分别解不等式组的两个不等式,根据“该不等式组有且仅有3个整数解”,得到关于a的不等式组,解之,解分式方程,结合“该分式方程解是非负数”,得到a的值,即可得到答案.【详解】解:解不等式得:,解不等式得:,∵该不等式组有且仅有3个整数解,∴该不等式组的整数解为:2,3,4,则,解得:,解分式方程得:且,∵该分式方程有非负数解,且,则,1,2,3,符合条件的所有整数a的和是.故选:A.10.A【分析】本题考查了列分式方程、函数图象,读懂函数图象,正确获取信息是解题关键.先求出燃油汽车每千米所需的费用为元,再根据函数图象可得燃油汽车所需费用为25元时与燃气汽车所需费用为10元时,所行驶的路程相等,据此列出方程即可得.【详解】解:由题意得:燃油汽车每千米所需的费用为元,由函数图象可知,燃油汽车所需费用为25元时与燃气汽车所需费用为10元时,所行驶的路程相等,则可列方程为,故选:A.二、填空题11.x≠-3且【分析】根据,且计算即可,本题考查了分式有意义条件,熟练掌握是解题的关键.【详解】分式有意义.故,且,解得x≠-3,且故答案为:x≠-3且.12.【分析】本题考查代数式求值,涉及方程根的定义、整体代入法求代数式值、分式的混合运算等知识,根据题中所给代数式的结构特征,结合已知条件,恒等变形代值求解即可得到答案,熟练掌握分式混合运算法则化简求值是解决问题的关键.【详解】解:是方程的根,,即,,故答案为:.13.2【分析】本题主要考查了求代数式的值、分式的加减及解二元一次方程组,熟练掌握分式的加减法法则是解题的关键.由,从而有,进而构造二元一次方程组求得m,n的值代入原式即可得解.【详解】解:∵,,∴,∴,解得,∴,故答案为:2.14.1和2【分析】本题主要考查了分式方程无解的情况,分式方程无解有两种情况,第一分式方程本身无解,第二分式方程有增根,据此求解即可.【详解】解:去分母得:,移项,合并同类项得:,当,即时,此时方程无解;当,即时,,∵此时方程无解,方程有增根,∴,解得,经检验,是原方程的解;综上所述,或.故答案为:1和2.15.或【分析】本题考查了分式的加减法和实数的性质,绝对值的意义,熟练掌握分式加减法的法则,对新定义的理解是解题关键.根据分式与互为“美妙分式”,得到,求出①,②,分别把①②代入分式中求出结果即可.【详解】与互为“美妙分式”,,,或,或,、均为不等于的实数,①,②,把①代入,把②代入,综上:分式的值为或.故答案为:或.16.【分析】过点作于点,利用角平分线性质则有,然后根据面积公式即可求解.【详解】如图,过点作于点,∵是的角平分线,,∴,∴.故答案为:.17.【分析】本题考查分式的加减法和二次根式的运算.找出规律是解题的关键.利用分式的加减法则分别可求,,•••,,利用规律求解即可.【详解】解:∵,∴,,……,……∴.故答案为:.18.【分析】本题考查了从实际问题中抽象出分式方程,正确理解题意找出等量关系是解题关键.设6210元购买椽的数量为株,根据单价总价数量,求出一株椽的价钱为,再根据少拿一株椽后剩下的椽的运费恰好等于一株椽的价钱,即可列出分式方程,得到答案.【详解】解:设6210元购买椽的数量为株,则一株椽的价钱为,由题意得:,故答案为:.三、解答题19.(1)解:原式;(2)原式.20.解:原式,,,,∵,∴,当时,原式;当时,原式.21.(1)解:去分母得:,去括号得:,移项得:,合并同类项得:,检验,当时,,∴是原方程的解;(2)解:去分母得:,去括号得:,移项得:,合并同类项得:,系数化为1得:检验,当时,,∴不是原方程的解;∴原方程无解.22.(1)设种原料每千克的价格为元,则种原料每千克的价格为元,根据题意得:,解得:.答:购入种原料每千克的价格最高不超过10元.(2)设这种产品的批发价为元,则零售价为元,根据题意得:,解得:,经检验,是原方程的根,且符合实际.答:这种产品的批发价为50元.23.(1)解:由可得,∴该方程的解为:或;(2)方程的解为:或,检验:当时,左边右边,故是方程的解,当时,左边右边,故也是方程的解;(3)原方程可化为:,所以或,解得:或,经检验,或是原方程的解,故答案为:或.24.解:(1)令,,则由,得.当且仅当,即时,代数式取到最小值,最小值为.故答案为:,;(2)令,,则由,得.当且仅当,即时,代数式取到最小值,最小值为.∴代数式的最小值为(3)设花圃的宽为米,则长为米,所用的围栏令,,则由,得.当且仅当,即时,代数式取到最小值,最小值为.故:所用的围栏至少为米(4)作,如图所示:由题意得:∵∴四边形面积令,,则由,得.当且仅当,即时,代数式取到最小值,最小值为.∴四边形面积的最小值为。
人教版八年级数学上册 第 15 章《分式》 单元测试题(配套练习附答案)
【解析】
【分析】
原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,将x的值代入计算即可求出值.
【详解】解:原式
当x=1时,原式= .
【点睛】本题考查了分式的化简求值,解题的关键是熟练的掌握分式的化简求值.
19.开学初,小芳和小亮去学校商店购买学习用品,小芳用30元钱购买钢笔的数量是小亮用25元钱购买笔记本数量的2倍,已知每支钢笔的价格比每本笔记本的价格少2元
11.当a=______时, 的值为零.
【答案】﹣1.
【解析】
【分析】
根据分式的值为零的条件列式计算即可.
【详解】由题意得:a2﹣1=0,a﹣1≠0,
解得:a=﹣1.
故答案为:﹣1.
【点睛】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:①分子为0;②分母不为0.这两个条件缺一不可.
(1)求每支钢笔和每本笔记本各是多少元;
(2)学校运动会后,班主任再次购买上述价格的钢笔和笔记本共50件作为奖品,奖励给校运动会中表现突出的同学,总费用不超过200元.请问至少要买多少支钢笔?
【答案】(1)每支钢笔3元,每本笔记本5元;(2)至少要买25支钢笔.
【解析】
【分析】
(1)根据小芳用30元钱购买钢笔的数量是小亮用25元钱购买笔记本数量的2倍,已知每支钢笔的价格比每本笔记本的价铬少2元,可以得到相应的方程,解方程即可求得每支钢笔和每本笔记本各是多少元;
2018-2019年人教版八年级数学上册 第 15 章《分式》经典题型单元测试题
第Ⅰ卷(选择题)
一.选择题(每小题3分,共10小题)
1.若把 变形为 ,则下列方法正确的是
A.分子与分母同时乘 B.分子与分母同时除以
人教版八年级数学上册第十五章达标检测卷附答案
人教版八年级数学上册第十五章达标检测卷一、选择题(每题3分,共30分) 1.下列各式不是分式的是( )A.xyB.3x xC.xπD.x -1x2.如果分式x -3x +3的值为0,那么x 的值为( )A .-3B .3C .-3或3D .无法确定3.使分式x +3x 有意义的x 的取值范围是( )A .x ≥-3B .x ≥-3且x ≠0C .x ≠0D .x >0 4.下列分式是最简分式的是( )A.22a +4 B.-bc ab 2c 3 C.a +b a 2-b 2 D.a +b a 2+b 25.已知a =2-2,b =(3-1)0,c =(-1)3,则a ,b ,c 的大小关系是( )A .a >b >cB .b >a >cC .c >a >bD .b >c >a6.石墨烯是现在世界上最薄的纳米材料,其理论厚度仅为 0.000__000__000__34m ,横线上的数用科学记数法表示为( )A .3.4×10-9B .0.34×10-9C .3.4×10-10D .3.4×10-11 7.如果a 2+2a -1=0,那么⎝ ⎛⎭⎪⎫a -4a ·a 2a -2的值是( )A .-3B .-1C .1D .38.某厂计划加工180万个医用口罩,第一周按原计划的速度生产,一周后以原来速度的1.5倍生产,结果比原计划提前一周完成任务.若设原计划每周生产x 万个口罩,则可列方程为( )A.180-x x =180-x 1.5x +1 B.180-x x =180-x1.5x -1 C.180x =1801.5x +2 D.180x =1801.5x -29.对于非零实数a ,b ,规定:a *b =1b -1-1a +1.若(2x -1)*2=2,则x 的值为( )A .-2 B.12 C .-12 D .不存在10.分式方程x x -1-1=m (x -1)(x +2)有增根,则m 的值为( ) A .0或3 B .1 C .1或-2 D .3 二、填空题(每题3分,共30分) 11.计算:(-x )3÷(-x )5=________.12.计算:3(x -1)2-3x(1-x )2=________.13.计算:1a -2÷aa 2-4=________.14.已知分式x +2bx -a,当x =2时,分式的值为0;当x =3时,分式无意义,则ab =________.15.若1m +1n =2,则分式5m +5n -2mn -m -n 的值为________.16.若关于x 的方程x +m x -3+3m3-x=3的解为正数,则m 的取值范围是______________.17.已知a 2-5a +1=0,则a 2+1a2=________.18.猜数游戏中,小明写出如下一组数:25,47,811,1619,3235,…,小亮猜想出第六个数是6467.根据此规律,第n 个数是__________. 19.某自来水公司水费收费标准如下:若每户每月用水不超过5 m 3,则每立方米收费1.5元;若每户每月用水超过5 m 3,则超出部分每立方米收取较高的费用.1月份,张家用水量是李家用水量的23,张家当月水费是17.5元,李家当月水费是27.5元,则超出5 m 3的部分每立方米收费________元.20.数学家们在研究15,12,10这三个数的倒数时发现:112-115=110-112,因此就将具有这样性质的三个数称为调和数,如6,3,2也是一组调和数.现有一组调和数:x ,5,3(x >5),则x =________.三、解答题(21题12分,22,24题每题6分,23,25题每题8分,其余每题10分,共60分)21.计算:(1)|-7|-(1-π)0+⎝ ⎛⎭⎪⎫13-1; (2)⎝ ⎛⎭⎪⎫1x 2-4+4x +2÷1x -2;(3)x 2x -2-x -2; (4)⎝ ⎛⎭⎪⎫aa -b -2b a -b ·ab a -2b ÷⎝ ⎛⎭⎪⎫1a +1b .22.先化简⎝ ⎛⎭⎪⎫1+2x -3÷x 2-1x 2-6x +9,再从不等式组⎩⎨⎧-2x <4,3x <2x +4的整数解中选一个合适的x 的值代入求值.23.解分式方程:(1)2x =3x +2; (2)x x -2-1x 2-4=1.24.工程队计划修建一条长1 200米的公路,采取新的施工方式后,实际每天修建公路的长度比原计划增加15米,从而缩短了工期.设原计划每天修建公路x米,问:(1)原计划修建这条公路需要多少天?实际修建这条公路用了多少天?(2)实际修建这条公路的工期比原计划缩短了多少天?25.为了对学生进行革命传统教育,红旗中学开展了“清明节祭扫”活动.全校学生从学校同时出发,步行4 000 m到达烈士纪念馆,学校要求八(1)班提前到达目的地,做好活动的准备工作,行走过程中,八(1)班步行的平均速度是其他班的1.25倍,结果比其他班提前10 min到达,分别求八(1)班、其他班步行的平均速度.26.某商家第一次用11 000元购进某款机器人进行销售,很快销售一空,商家又用24 000元第二次购进同款机器人,所购进数量是第一次的2倍,但单价贵了10元.(1)求该商家第一次购进机器人多少个;(2)若所有机器人都按相同的标价销售,要求全部销售完毕的利润率不低于20%(不考虑其他因素),那么每个机器人的标价至少是多少元?27.定义:如果一个分式能化成一个整式与一个分子为常数的分式的和的形式,那么称这个分式为“和谐分式”.如:x +1x -1=x -1+2x -1=x -1x -1+2x -1=1+2x -1,则x +1x -1是“和谐分式”. (1)下列分式中,属于“和谐分式”的是__________(填序号); ①x +1x ;②x +2x 2;③x +2x +1;④y 2+1y 2.(2)将“和谐分式”a 2-2a +3a -1化成一个整式与一个分子为常数的分式的和的形式:a 2-2a +3a -1=____________________;(3)应用:先化简3x +6x +1-x -1x ÷x 2-1x 2+2x,并回答:x 取什么整数时,该式的值为整数.答案一、1.C 2.B 3.B 4.D 5.B 6.C 7.C 8.A 9.C 10.D 二、11.1x 2 12.-3x -1 13.a +2a14.1315.-4 【点拨】由1m +1n =2,可得m +n =2mn . 则5m +5n -2mn -m -n =5(m +n )-2mn -(m +n )=10mn -2mn -2mn=-4.16.m <92且m ≠32 【点拨】去分母得x +m -3m =3x -9,整理得2x =-2m +9,解得x =-2m +92. ∵关于x 的方程x +m x -3+3m 3-x =3的解为正数,∴-2m +92>0,解得m <92.由x ≠3得-2m +92≠3,解得m ≠32,故m 的取值范围是m <92且m ≠32.17.23 18.2n2n +319.220.15 【点拨】由题意可知,15-1x =13-15,解得x =15,经检验x =15是该方程的根.三、21.解:(1)原式=7-1+3=9; (2)原式=1+4(x -2)(x +2)(x -2)·(x -2)=4x -7x +2;(3)原式=x 2x -2-(x +2)(x -2)x -2=x 2-x 2+4x -2=4x -2;(4)原式=a -2b a -b ·ab a -2b ÷b +a ab =ab a -b ·ab a +b =a 2b 2a 2-b 2.22.解:原式=x -3+2x -3·(x -3)2(x +1)(x -1)=x -3x +1.解不等式组⎩⎨⎧-2x <4,3x <2x +4,得-2<x <4.∴其整数解为-1,0,1,2,3. ∵要使原式有意义, ∴x 可取0,2. 取x =0,则x -3x +1=-3(或取x =2,则x -3x +1=2-32+1=-13). 23.解:(1)方程两边乘x (x +2), 得2(x +2)=3x ,解得x =4. 检验:当x =4时,x (x +2)≠0, ∴原分式方程的解为x =4. (2)方程两边乘(x +2)(x -2), 得x (x +2)-1=(x +2)(x -2), 整理,得2x =-3, 解得x =-32.检验:当x =-32时,(x +2)(x -2)≠0, ∴x =-32是原分式方程的解.24.解:(1)原计划修建这条公路需要1 200x 天.实际修建这条公路用了1 200x +15天.(2)1 200x -1 200x +15=1 200(x +15)x (x +15)- 1 200x x (x +15)=18 000x 2+15x (天).答:实际修建这条公路的工期比原计划缩短了18 000x 2+15x天.25.解:设其他班步行的平均速度为x m /min ,则八(1)班步行的平均速度为1.25x m /min .依题意,得4 000x -4 0001.25x =10, 解得x =80.经检验,x =80是原方程的解,且符合题意. ∴1.25x =100.答:八(1)班步行的平均速度为100 m /min ,其他班步行的平均速度为80 m /min . 26.解:(1)设该商家第一次购进机器人x 个. 依题意,得11 000x +10=24 0002x , 解得x =100.经检验,x =100是所列方程的解,且符合题意. 答:该商家第一次购进机器人100个. (2)设每个机器人的标价是a 元.依题意,得(100+200)a -(11 000+24 000)≥(11 000+24 000)×20%,解得a ≥140. 答:每个机器人的标价至少是140元. 27.解:(1)①③④ (2)a -1+2a -1(3)原式=3x +6x +1-x -1x ·x (x +2)(x +1)(x -1)=3x +6x +1-x +2x +1=2x +4x +1=2(x +1)+2x +1=2+2x +1, ∴当x +1=±1或x +1=±2时,原式的值为整数,此时x =0或-2或1或-3. 又∵原式有意义, ∴x ≠0,1,-1,-2. ∴x =-3.八年级数学上册期中达标测试卷一、选择题(1~10小题各3分,11~16小题各2分,共42分) 1.4的算术平方根是( )A .±2B. 2C .±2D .22.下列分式的值不可能为0的是()A.4x-2B.x-2x+1C.4x-9x-2D.2x+1x3.如图,若△ABC≌△CDA,则下列结论错误的是()A.∠2=∠1 B.∠3=∠4C.∠B=∠D D.BC=DC(第3题)(第5题)4.小亮用天平称得一个鸡蛋的质量为50.47 g,用四舍五入法将50.47精确到0.1为()A.50 B.50.0C.50.4 D.50.55.如图,已知∠1=∠2,AC=AE,添加下列一个条件后仍无法确定△ABC≌△ADE的是()A.∠C=∠E B.BC=DEC.AB=AD D.∠B=∠D6.如图,点A,D,C,E在同一条直线上,AB∥EF,AB=EF,∠B=∠F,AE =10,AC=7,则AD的长为()A.5.5 B.4 C.4.5 D.3(第6题)(第8题)7.化简x2x-1+11-x的结果是()A.x+1 B.1x+1C.x-1 D.xx-18.如图,数轴上有A,B,C,D四点,根据图中各点的位置,所表示的数与5-11最接近的点是()A .AB .BC .CD .D9.某工厂新引进一批电子产品,甲工人比乙工人每小时多搬运30件电子产品,已知甲工人搬运300件电子产品所用的时间与乙工人搬运200件电子产品所用的时间相同.若设乙工人每小时搬运x 件电子产品,则可列方程为( ) A.300x =200x +30B.300x -30=200x C.300x +30=200x D.300x =200x -3010.如图,这是一个数值转换器,当输入的x 为-512时,输出的y 是( )(第10题)A .-32B.32C .-2D .211.如图,从①BC =EC ;②AC =DC ;③AB =DE ;④∠ACD =∠BCE 中任取三个为条件,余下一个为结论,则可以构成的正确说法的个数是( ) A .1B .2C .3D .4(第11题) (第12题)12.如图,在△MPN 中,H 是高MQ 和NR 的交点,且MQ =NQ ,已知PQ =5,NQ =9,则MH 的长为( ) A .3B .4C .5D .613.若△÷a 2-1a =1a -1,则“△”是( )A.a +1aB.a a -1C.a a +1D.a -1a14.以下命题的逆命题为真命题的是( )A .对顶角相等B.同位角相等,两直线平行C.若a=b,则a2=b2D.若a>0,b>0,则a2+b2>015.x2+xx2-1÷x2x2-2x+1的值可以是下列选项中的()A.2 B.1 C.0 D.-116.定义:对任意实数x,[x]表示不超过x的最大整数,如[3.14]=3,[1]=1,[-1.2]=-2.对65进行如下运算:①[65]=8;②[8]=2;③[2]=1,这样对65运算3次后的结果就为1.像这样,一个正整数总可以经过若干次运算后使结果为1.要使255经过运算后的结果为1,则需要运算的次数是() A.3 B.4 C.5 D.6二、填空题(17小题3分,18,19小题每空2分,共11分)17.如图,要测量河两岸相对的两点A,B间的距离,先在AB的垂线BF上取两点C,D,使BC=CD,再作出BF的垂线DE,使点A,C,E在同一条直线上,可以证明△ABC≌△EDC,从而得到AB=DE,因此测得DE的长就是AB的长,判定△ABC≌△EDC,最恰当的理由是____________.(第17题)18.已知:7.2≈2.683,则720≈______,0.000 72≈__________.19.一艘轮船在静水中的最大航速为30 km/h,它以最大航速沿江顺流航行120 km 所用的时间与以最大航速逆流航行60 km所用的时间相同,如果设江水的流速为x km/h,根据题意可列方程为________________,江水的流速为________km/h.三、解答题(20小题8分,21~23小题各9分,24,25小题各10分,26小题12分,共67分)20.解分式方程.(1)3x-2=2-xx-2;(2)21+2x-31-2x=64x2-1.21.已知(3x+2y-14)2+2x+3y-6=0.求:(1)x+y的平方根;(2)y-x的立方根.22.有这样一道题:“计算x2-2x+1x2-1÷x-1x2+x-x的值,其中x=2 020.”甲同学把“x=2 020”错抄成“x=2 021”,但他的计算结果也是正确的.你说说这是怎么回事?23.如图,AB∥CD,AB=CD,AD,BC相交于点O,BE∥CF,BE,CF分别交AD于点E,F.求证:(1)△ABO≌△DCO;(2)BE=CF.(第23题)24.观察下列算式:①2×4×6×8+16=(2×8)2+16=16+4=20;②4×6×8×10+16=(4×10)2+16=40+4=44;③6×8×10×12+16=(6×12)2+16=72+4=76;④8×10×12×14+16=(8×14)2+16=112+4=116;….(1)根据以上规律计算: 2 016×2 018×2 020×2 022+16;(2)请你猜想2n(2n+2)(2n+4)(2n+6)+16(n为正整数)的结果(用含n的式子表示).25.下面是学习分式方程的应用时,老师板书的问题和两名同学所列的方程.根据以上信息,解答下列问题:(1)冰冰同学所列方程中的x表示______________________________________,庆庆同学所列方程中的y表示_____________________________________;(2)从两个方程中任选一个,写出它的等量关系;(3)解(2)中你所选择的方程,并回答老师提出的问题.26.如图①,AB=7 cm,AC⊥AB,BD⊥AB,垂足分别为A,B,AC=5 cm.点P 在线段AB上以2 cm/s的速度由点A向点B运动,同时,点Q在射线BD上运动.它们运动的时间为t s(当点P运动至点B时停止运动,同时点Q停止运动).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等?并判断此时线段PC和线段PQ的位置关系,请分别说明理由.(2)如图②,若“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA=60°”,点Q的运动速度为x cm/s,其他条件不变,当点P,Q运动到某处时,有△ACP与△BPQ 全等,求出相应的x,t的值.(第26题)答案一、1.D 2.A 3.D 4.D 5.B6.D 【点拨】∵AB ∥EF ,∴∠A =∠E .又AB =EF ,∠B =∠F ,∴△ABC ≌△EFD (ASA).∴AC =DE =7.∴AD =AE -DE =10-7=3.7.A 8.D 9.C 10.A 11.B 12.B13.A 【点拨】∵△÷a 2-1a =1a -1, ∴△=1a -1·a 2-1a=a +1a . 14.B 15.D 16.A二、17.ASA 18.26.83;0.026 8319.12030+x =6030-x;10 【点拨】根据题意可得12030+x =6030-x,解得x =10, 经检验,x =10是原方程的解,所以江水的流速为10 km/h.三、20.解:(1)去分母,得3=2(x -2)-x .去括号,得3=2x -4-x .移项、合并同类项,得x =7.经检验,x =7是原方程的解.(2)去分母,得2(1-2x )-3(1+2x )=-6.去括号,得2-4x -3-6x =-6,移项、合并同类项,得-10x =-5.解得x =12.经检验,x =12是原方程的增根,∴原分式方程无解.21.解:∵(3x +2y -14)2+2x +3y -6=0,(3x +2y -14)2≥0,2x +3y -6≥0,∴3x +2y -14=0,2x +3y -6=0.解⎩⎨⎧3x +2y -14=0,2x +3y -6=0,得⎩⎨⎧x =6,y =-2.(1)x +y =6+(-2)=4,∴x +y 的平方根为±4=±2.(2)y -x =-8,∴y -x 的立方根为3-8=-2.22.解:∵x 2-2x +1x 2-1÷x -1x 2+x -x =(x -1)2(x +1)(x -1)·x (x +1)x -1-x =x -x =0, ∴该式的结果与x 的值无关,∴把x 的值抄错,计算的结果也是正确的.23.证明:(1)∵AB ∥CD ,∴∠A =∠D ,∠ABO =∠DCO .在△ABO 和△DCO 中,⎩⎨⎧∠A =∠D ,AB =CD ,∠ABO =∠DCO ,∴△ABO ≌△DCO (ASA).(2)∵△ABO ≌△DCO ,∴BO =CO .∵BE ∥CF ,∴∠OBE =∠OCF ,∠OEB =∠OFC .在△OBE 和△OCF 中,⎩⎨⎧∠OBE =∠OCF ,∠OEB =∠OFC ,OB =OC ,∴△OBE ≌△OCF (AAS),∴BE =CF .24.解:(1) 2 016×2 018×2 020×2 022+16 =(2 016×2 022)2+16=4 076 352+4=4 076 356. (2)2n (2n +2)(2n +4)(2n +6)+16=2n (2n +6)+4=4n 2+12n +4.25.解:(1)小红步行的速度;小红步行的时间(2)冰冰用的等量关系:小红乘公共汽车的时间+小红步行的时间=小红上学路上的时间.庆庆用的等量关系:公共汽车的速度=9×小红步行的速度.(上述等量关系,任选一个就可以)(3)选冰冰的方程:38-29x +2x =1,去分母,得36+18=9x ,解得x =6,经检验,x =6是原分式方程的解.答:小红步行的速度是6 km/h ;选庆庆的方程:38-21-y=9×2y , 去分母,得36y =18(1-y ),解得y =13,经检验,y =13是原分式方程的解, ∴小红步行的速度是2÷13=6(km/h).答:小红步行的速度是6 km/h.(对应(2)中所选方程解答问题即可)26.解:(1)△ACP ≌△BPQ ,PC ⊥PQ .理由如下:∵AC ⊥AB ,BD ⊥AB ,∴∠A =∠B =90°.由题意知AP =BQ =2 cm ,∵AB =7 cm ,∴BP =5 cm ,∴BP =AC .在△ACP 和△BPQ 中,∵⎩⎨⎧AP =BQ ,∠A =∠B ,AC =BP ,∴△ACP ≌△BPQ .∴∠C =∠BPQ .易知∠C +∠APC =90°,∴∠APC +∠BPQ =90°,∴∠CPQ =90°,∴PC ⊥PQ .(2)由题意可知AP =2t cm ,BP =(7-2t )cm ,BQ =xt cm. ①若△ACP ≌△BPQ ,则AC =BP ,AP =BQ ,∴5=7-2t ,2t =xt ,解得x =2,t =1;②若△ACP ≌△BQP ,则AC =BQ ,AP =BP ,∴5=xt ,2t =7-2t ,解得x =207,t =74.综上,当△ACP 与△BPQ 全等时,x =2,t =1或x =207,t =74.。
八年级数学(上册)第15章整式测试题-初中二年级数学试题练习、期中期末试卷-初中数学试卷
八年级数学(上册)第15章整式测试题-初中二年级数学试题练习、期中期末试卷、测验题、复习资料-初中数学试卷-试卷下载人教实验版八年级数学(上册)第15章整式测试题班级姓名学号(时间:120分钟满分:120分)题号一二三总分得分一、填空题(每小题3分,共30分)1、.2、.3、,则4、5、如果,,,那么6、已知与的和为单项式,则它们的和是7、8、分解因式:9、10、多项式加上一个单项式后,使它能成为一个整式的完全平方,则加上的单项式可以是二、选择题(每小题3分,共30分)11、三个单项式①②③,按系数从大到小排列是()A. ③①②B. ③②①C.①②③D. ①③②12、计算等于()A.0B.C.D.13、若,,则等于()A.B. C.D.14、如果,则等于()A.B. C. D.15、已知,,则的值为()A. B. C. D.16、下面四个式子从左边向右边不是分解因式的,共有()个(1)(2)(3)(4)A.1B.2C.3D.417、计算的结果是()A. B. C. D.18、多项式分解因式的结果是()A. B.C. D.19、如果是一个完全平方式,那么为()A. B. C. D.20、如图所示,一个直径为厘米的圆,从中挖去直径为厘米和厘米的两个圆,则剩余(阴影部分)的面积为()A. B.C.D.三、解答题(共60分)21、(每小题4分,共16分)计算:(1)(2)(3)(4)22、(每小题4分,共8分)因式分解:(1)(2)23、(每小题5分,共10分)先化简,再求值:(1),其中,(2),其中,24、(5分)解放程:25、(6分)若一个三角形周长为49,第一条边长为,第二条边长是第一条边长的2倍少,试求第三条边长。
26、(7分)英才小学图书馆藏书约册,学校现有师生约有人,每个教师或学生假期平均最多可借阅多少册图书?27、(8分)根据图中的数据,请用多种方法计算它的面积。
欢迎下载使用,分享让人快乐。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学上册第十五章整章水平测试A
一、试试你的身手(每小题3分,共30分) 1.4x 4y 2÷(-2xy )= . 2.2211______(______3)924y x x y ⎛⎫
++=-
⎪⎝⎭
3.x 2-6x +k 2分解因式后为(x -3)2,则k = .
4.当k = 时,(k -2)a 2+5a +6是a 的一次多项式. 5.如果2x +y =4,xy =3,那么2x 2y +xy 2的值为 .
6.某车间加工三块长方形钢板,它们的长分别是1.28米,1.64米,2.08米,宽都是0.25米,每平方米钢板价值440元,则这三块钢板的价值为 元. 7.观察: 1×3+1=4=22 2×4+1=9=32 3×5+1=16=42 4×6+1=25=52 ……
你发现了什么规律?根据你发现的规律,请你用含一个字母的等式将上面各式呈现的规律表示出来 .
8.分解因式x 3-x 2= .
9.10m =6,10n =9,则102m -n = .
10.如图1,一块长方形绿地,长比宽多4m ,在它的中央布置一个长方形花坛,四周铺成草地.已知草地的宽都是2m ,总面积是80m 2,则这块长方形绿地的长是 m . 二、相信你的选择(每小题3分,共30分)
1.单项式2
12ab -
的系数和次数分别为( ) A .12-,2 B .12-,3 C .12
,2
D .
1
2
,3 2.多项式3a 4-2a 2+9是( ) A .三次三项式 B .三次四项式 C .四次三项式 D .四次四项式 3.下列各式计算结果正确的是( ) A .a 2·a 3=a 5 B .b ·b =2b C .a ·a 3=a 3 D .a 3·a 4=a 12 4.下列各式从左到右的变形中,是因式分解的是( ) A .(x +1)(x +2)=x 2+3x -2 B .2a (b +c)=2ab +2a c
C .m 2-n 2
=(m +n )(m -n ) D .x 2-4+2x =(x +2)(x -2)+2x 5.下列各式中,计算结果不可能为a 14的是( ) A .(a 7)7 B .a 5·(a 3)3 C .(a 2)7 D .(a 7)2 6.两整式相乘的结果为a 2-a -12的是( ) A .(a -6)(a +2) B .(a -3)(a +4) C .(a +6)(a -2) D .(a +3)(a -4) 7.在x 2+2xy -y 2,-x 2-y 2+2xy ,x 2+xy +y 2,4x 2+1+4x 中,能用完全平方公式分解因式的有( ) A .1个 B .2个 C .3个 D .4个
8.某天数学课上老师讲了整式的加减运算,小颖回到家后拿出自己的课堂笔记,认真地复习老师在课堂上所讲的内容,她突然发现一道题目: (2a 2+3ab -b 2)-(-3a 2+ab +5b 2) = 5a 2 - 6b 2,
横线上方的空白被墨水弄脏了,请问横线上的一项是( ) A .-ab B .+ab C .+4ab D .+2ab
9.如图2,在边长为a 的正方形中挖掉一个边长为b 的小正方形(a >b ),把余下的部分剪拼成一个长方形(如图3),通过两个图阴影部分的面积,验证一个等式,则这个等式是( ) A .a 2-b 2=(a +b )(a -b ) B .(a +b )2=a 2+2ab +b 2 C .(a -b )2=a 2+2ab +b 2 D .(a +2b )(a -b )=a 2+ab -2b 2
10.如果代数式2x 2+3x +7的值为8,那么代数式4x 2+6x -9的值是( ) A .7 B .-7 C .17 D .-17 三、挑战你的技能(共40分) 1.(8分)如图4所示,有一位狡猾的地主, 把一块边长为a 米的正方形土地.租给李老汉种植.今年,他对李老汉说:“我把你这块地的一边减少4米,另一边增加4米,继续租给你,你也没有吃亏,你看如何?”李老汉一听,觉得好象没有吃亏,就答应了.同学们,你们觉得李老汉有没有吃亏?
2.(8分)数学课上老师出了一道题:计算[8(a +b )5-4(a +b )4+(-a -b )3]÷[2(a +b )3].爱好数学的小明马上举手,下面是小明同学的解题过程. [8(a +b )5-4(a +b )4+(-a -b )3]÷[2(a +b )3] =[8(a +b )5-4(a +b )4+(a +b )3]÷8(a +b )3
211()()28
a b a b =+-++.
小亮也举起了手,说小明的解题过程不对,并指了出来,老师肯定了小亮的回答.你知道小
明错在哪儿吗?请你指出来,并写出正确结果. 3.(8分)小颖要计算一个L 形花坛的面积,在动手测量前她依花坛形状画了如下示意图,并用字母表示了将要测量的边长(如图5所标示),她在列式进行面积计算时,发现还需要再测量一条边的长度,你认为她还需测哪条边的长度?请你在图中标出来,并用字母n 表示,
然后再求出这个花坛的面积.
4.(8分)把下表中含有一个相同字母的两个一次二项式相乘的过程填写在相应的栏目中,观察所得乘积的二次项系数、一次项系数、常数项是怎样确定的,并写出你得到了怎样的规律.
含有一个相同字母的 两个一次二项式相乘
乘法展开
得到的乘积
二次项 一次项 常数项
(x +2)(x +3) (x +2)(x -3) (x -2)(x +3) (x -2)(x -3) (x +a )(x +b )
5.(8分)先化简,再求值:5x (2x +1)-(2x +3)(5x -1),其中x =13.
四、拓广探索(共20分) 1.(10分)观察下面的几个算式,你发现了什么规律? ①16×14=224=1×(1+1)×100+6×4. ②23×27=621=2×(2+1)×100+3×7. ③32×38=1216=3×(3+1)×100+2×8. ……
(1)按照上面的规律,仿照上面的书写格式,迅速写出81×89的结果. (2)简单叙述以上所发现的规律. 2.(10分)图6是一个长为2m 、宽为2n 的长方形, 沿图中虚线用剪刀均分成四块小长方形, 然后按图7的形状拼成一个正方形.
(1)你认为图7中的阴影部分的正方形的边长等于多少? (2)请用两种不同的方法求图6中阴影部分的面积.
(3)观察图7你能写出下列三个代数式之间的等量关系吗?
代数式:(m +n )2,(m -n )2,mn .
(4)根据(3)题中的等量关系,解决如下问题: 若a +b =7,ab =5,则(a -b )2= .
参考答案: 一、1.3
2x y -
2.3x ,12
y -
3.3±
4.2 5.12 6.550
7.2(2)1(1)n n n ++=+ 8.2(1)x x -
9.4
10.14
二、1~5.BCACA 6~10.DBDAB 三、1.李老汉吃亏了.
2.第一处:22
()()a b a b --=+错了; 第二处:23
2()8()a b a b +=+错了; 正确的结果为2
14()2()2
a b a b +-+-
3.还需要知道AF (或ED )的长度.标在图中略.若AF n =,这个花坛的面积为am bn mn +- 4.略
5.原式83101x =-+=- 四、1.(1)7209; (2)略 2.(1)m n -;
(2)方法1:2
()m n -,方法2:2
()4m n mn +-; (3)2
2()()4m n m n mn -=+-; (4)2()29a b -=。