高考文科数学重点题型(含解析)
高考文科数学专题一:集合题型总结含解析

第一章 集合第一节 集合的含义、表示及基本关系练习一组1.已知A ={1, 2}, B ={}|x x A Î, 则集合A 与B 的关系为________. 解析:由集合B ={}|x x A Î知, B ={1, 2}.答案:A =B2.若{}2,|a a R x x NÆØ, 则实数a 的取值范围是________.解析:由题意知, 2x a £有解, 故0a ³.答案:0a ³3.已知集合A ={}2|21,y y x x x R =--?, 集合B ={}|28x x-#, 则集合A 与B 的关系是________.解析:y =x 2-2x -1=(x -1)2-2≥-2, ∴A ={y|y ≥-2}, ∴BA . 答案:BA4.已知全集U =R , 则正确表示集合M ={-1, 0, 1}和N ={}2|0x x x +=关系的韦恩(Venn)图是________.解析:由N={}2|0x x x +=, 得N ={-1, 0}, 则N M .答案:②5知集合A ={}|5x x >, 集合B ={}|x x a >, 若命题“x ∈A ”是命题“x ∈B ”的充分不必要条件, 则实数a 的取值范围是________.解析:命题“x ∈A ”是命题“x ∈B ” 的充分不必要条件, ∴A B , ∴a <5. 答案:a <56.已知m ∈A , n ∈B , 且集合A ={x |x =2a , a ∈Z }, B ={x |x =2a +1, a ∈Z }, 又C ={x |x =4a +1, a ∈Z }, 判断m +n 属于哪一个集合?解:∵m ∈A , ∴设m =2a 1, a 1∈Z , 又∵n ∈B , ∴设n =2a 2+1, a 2∈Z , ∴m +n =2(a 1+a 2)+1, 而a 1+a 2∈Z , ∴m +n ∈B .练习二组1.设a , b 都是非零实数, y =a |a |+b |b |+ab |ab |可能取的值组成的集合是________. 解析:分四种情况:(1)a >0且b >0;(2)a >0且b <0;(3)a <0且b >0;(4)a <0且b <0, 讨论得y =3或y =-1.答案:{3, -1}2.已知集合A ={-1, 3, 2m -1}, 集合B ={3, m 2}.若B ⊆A , 则实数m =________. 解析:∵B ⊆A , 显然m 2≠-1且m 2≠3, 故m 2=2m -1, 即(m -1)2=0, ∴m =1.答案:1 3.设P , Q 为两个非空实数集合, 定义集合P +Q ={a +b |a ∈P , b ∈Q }, 若P ={0, 2, 5}, Q ={1, 2, 6}, 则P +Q 中元素的个数是________个.解析:依次分别取a =0, 2, 5;b =1, 2, 6, 并分别求和, 注意到集合元素的互异性, ∴P +Q ={1, 2, 6, 3, 4, 8, 7, 11}.答案:84.已知集合M ={x |x 2=1}, 集合N ={x |ax =1}, 若N M , 那么a 的值是________.解析:M ={x |x =1或x =-1}, N M , 所以N =∅时, a =0;当a ≠0时, x =1a=1或-1, ∴a =1或-1.答案:0, 1, -15.满足{1}A ⊆{1, 2, 3}的集合A 的个数是________个.解析:A 中一定有元素1, 所以A 有{1, 2}, {1, 3}, {1, 2, 3}.答案:36.已知集合A ={x |x =a +16, a ∈Z }, B ={x |x =b 2-13, b ∈Z }, C ={x |x =c 2+16, c ∈Z }, 则A 、B 、C 之间的关系是________.解析:用列举法寻找规律.答案:A B =C7.集合A ={x ||x |≤4, x ∈R }, B ={x |x <a }, 则“A ⊆B ”是“a >5”的________.解析:结合数轴若A ⊆B ⇔a ≥4, 故“A ⊆B ”是“a >5”的必要但不充分条件.答案:必要不充分条件8.设集合M ={m |m =2n , n ∈N , 且m <500}, 则M 中所有元素的和为________.解析:∵2n <500, ∴n =0, 1, 2, 3, 4, 5, 6, 7, 8.∴M 中所有元素的和S =1+2+22+…+28=511.答案:5119.设A 是整数集的一个非空子集, 对于k ∈A , 如果k -1∉A , 且k +1∉A , 那么称k 是A 的一个“孤立元”.给定S ={1, 2, 3, 4, 5, 6, 7, 8}, 由S 的3个元素构成的所有集合中, 不含“孤立元”的集合共有________个.解析:依题可知, 由S 的3个元素构成的所有集合中, 不含“孤立元”, 这三个元素一定是相连的三个数.故这样的集合共有6个.答案:610.已知A ={x , xy , lg(xy )}, B ={0, |x |, y }, 且A =B , 试求x , y 的值.解:由lg(xy )知, xy >0, 故x ≠0, xy ≠0, 于是由A =B 得lg(xy )=0, xy =1.∴A ={x , 1, 0}, B ={0, |x |, 1x}. 于是必有|x |=1, 1x=x ≠1, 故x =-1, 从而y =-1.11.已知集合A ={x |x 2-3x -10≤0},(1)若B ⊆A , B ={x |m +1≤x ≤2m -1}, 求实数m 的取值范围;(2)若A ⊆B , B ={x |m -6≤x ≤2m -1}, 求实数m 的取值范围;(3)若A =B , B ={x |m -6≤x ≤2m -1}, 求实数m 的取值范围.解:由A ={x |x 2-3x -10≤0}, 得A ={x |-2≤x ≤5},(1)∵B ⊆A , ∴①若B =∅, 则m +1>2m -1, 即m <2, 此时满足B ⊆A .②若B ≠∅, 则⎩⎪⎨⎪⎧ m +1≤2m -1,-2≤m +1,2m -1≤5.解得2≤m ≤3.由①②得, m 的取值范围是(-∞, 3].(2)若A ⊆B , 则依题意应有⎩⎪⎨⎪⎧ 2m -1>m -6,m -6≤-2,2m -1≥5.解得⎩⎪⎨⎪⎧ m >-5,m ≤4,m ≥3.故3≤m ≤4,∴m 的取值范围是[3, 4].(3)若A =B , 则必有⎩⎪⎨⎪⎧m -6=-2,2m -1=5,解得m ∈∅., 即不存在m 值使得A =B .12.已知集合A ={x |x 2-3x +2≤0}, B ={x |x 2-(a +1)x +a ≤0}.(1)若A 是B 的真子集, 求a 的取值范围;(2)若B 是A 的子集, 求a 的取值范围;(3)若A =B , 求a 的取值范围.解:由x 2-3x +2≤0, 即(x -1)(x -2)≤0, 得1≤x ≤2, 故A ={x |1≤x ≤2}, 而集合B ={x |(x -1)(x -a )≤0},(1)若A 是B 的真子集, 即A B , 则此时B ={x |1≤x ≤ a }, 故a >2.(2)若B 是A 的子集, 即B ⊆A , 由数轴可知1≤a ≤2.(3)若A =B , 则必有a =2第二节 集合的基本运算练习一组1.设U =R , A ={}|0x x >, B ={}|1x x >, 则A ∩∁U B =____.解析:∁U B ={x |x ≤1}, ∴A ∩∁U B ={x |0<x ≤1}.答案:{x |0<x ≤1}2.设集合A ={4, 5, 7, 9}, B ={3, 4, 7, 8, 9}, 全集U =A ∪B , 则集合∁U (A ∩B )中的元素共有________个.解析:A ∩B ={4, 7, 9}, A ∪B ={3, 4, 5, 7, 8, 9}, ∁U (A ∩B )={3, 5, 8}.答案:33.已知集合M ={0, 1, 2}, N ={}|2,x x a a M =?, 则集合M ∩N =________.解析:由题意知, N ={0, 2, 4}, 故M ∩N ={0, 2}.答案:{0, 2}4.设A , B 是非空集合, 定义A ⓐB ={x |x ∈A ∪B 且x ∉A ∩B }, 已知A ={x |0≤x ≤2}, B ={y |y ≥0}, 则A ⓐB =________.解析:A ∪B =[0, +∞), A ∩B =[0, 2], 所以A ⓐB =(2, +∞).答案:(2, +∞)5.某班共30人, 其中15人喜爱篮球运动, 10人喜爱乒乓球运动, 8人对这两项运动都不喜爱, 则喜爱篮球运动但不喜爱乒乓球运动的人数为________.解析:设两项运动都喜欢的人数为x , 画出韦恩图得到方程15-x +x +10-x +8=30x =3, ∴喜爱篮球运动但不喜爱乒乓球运动的人数为15-3=12(人).答案:126.已知集合A ={x |x >1}, 集合B ={x |m ≤x ≤m +3}.(1)当m =-1时, 求A ∩B , A ∪B ;(2)若B ⊆A , 求m 的取值范围.解:(1)当1m =-时, B ={x |-1≤x ≤2}, ∴A ∩B ={x |1<x ≤2}, A ∪B ={x |x ≥-1}.(2)若B ⊆A , 则1m >, 即m 的取值范围为(1, +∞)练习二1.若集合M ={x ∈R |-3<x <1}, N ={x ∈Z |-1≤x ≤2}, 则M ∩N =________.解析:因为集合N ={-1, 0, 1, 2}, 所以M ∩N ={-1, 0}.答案:{-1, 0}2.已知全集U ={-1, 0, 1, 2}, 集合A ={-1, 2}, B ={0, 2}, 则(∁U A )∩B =________.解析:∁U A ={0, 1}, 故(∁U A )∩B ={0}.答案:{0}3.若全集U =R , 集合M ={x |-2≤x ≤2}, N ={x |x 2-3x ≤0}, 则M ∩(∁U N )=________.解析:根据已知得M ∩(∁U N )={x |-2≤x ≤2}∩{x |x <0或x >3}={x |-2≤x <0}.答案:{x |-2≤x <0}4.集合A ={3, log 2a }, B ={a , b }, 若A ∩B ={2}, 则A ∪B =________.解析:由A ∩B ={2}得log 2a =2, ∴a =4, 从而b =2, ∴A ∪B ={2, 3, 4}. 答案:{2, 3, 4}5.已知全集U =A ∪B 中有m 个元素, (∁U A )∪(∁U B )中有n 个元素.若A ∩B 非空, 则A ∩B 的元素个数为________.解析:U =A ∪B 中有m 个元素,∵(∁U A )∪(∁U B )=∁U (A ∩B )中有n 个元素, ∴A ∩B 中有m -n 个元素.答案:m -n6.设U ={n |n 是小于9的正整数}, A ={n ∈U |n 是奇数}, B ={n ∈U |n是3的倍数}, 则∁U (A ∪B )=________.解析:U ={1, 2, 3, 4, 5, 6, 7, 8}, A ={1, 3, 5, 7}, B ={3, 6}, ∴A ∪B ={1, 3, 5, 6, 7},得∁U (A ∪B )={2, 4, 8}.答案:{2, 4, 8}7.定义A ⊗B ={z |z =xy +x y, x ∈A , y ∈B }.设集合A ={0, 2}, B ={1, 2}, C ={1}, 则集合(A ⊗B )⊗C 的所有元素之和为________.解析:由题意可求(A ⊗B )中所含的元素有0, 4, 5, 则(A ⊗B )⊗C 中所含的元素有0, 8, 10, 故所有元素之和为18.答案:188.若集合{(x , y )|x +y -2=0且x -2y +4=0}{(x , y )|y =3x +b }, 则b =________.解析:由⎩⎪⎨⎪⎧ x +y -2=0,x -2y +4=0.⇒⎩⎪⎨⎪⎧x =0,y =2.点(0, 2)在y =3x +b 上, ∴b =2.9.设全集I ={2, 3, a 2+2a -3}, A ={2, |a +1|}, ∁I A ={5}, M ={x |x =log 2|a |}, 则集合M 的所有子集是________.解析:∵A ∪(∁I A )=I , ∴{2, 3, a 2+2a -3}={2, 5, |a +1|}, ∴|a +1|=3, 且a 2+2a -3=5, 解得a =-4或a =2, ∴M ={log 22, log 2|-4|}={1, 2}.答案:∅, {1}, {2}, {1, 2}10.设集合A ={x |x 2-3x +2=0}, B ={x |x 2+2(a +1)x +(a 2-5)=0}.(1)若A∩B={2},求实数a的值;(1)若A=∅,求实数a的取值范围;(2)若A是单元素集,求a的值及集合A;11.已知函数f(x)=6x+1-1的定义域为集合A,函数g(x)=lg(-x2+2x+m)的定义域为集合B.(1)当m=3时,求A∩(∁R B);(2)若A∩B={x|-1<x<4},求实数m的值.解:A={x|-1<x≤5}.(1)当m=3时,B={x|-1<x<3},则∁R B={x|x≤-1或x≥3},∴A∩(∁R B)={x|3≤x≤5}.(2)∵A={x|-1<x≤5},A∩B={x|-1<x<4},∴有-42+2×4+m=0,解得m=8,此时B={x|-2<x<4},符合题意.。
2023年高考数学(全国甲卷)文科数学(含答案及详细解析)

2023年高考数学真题试卷(全国甲卷)文科数学一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集,集合,则()A.B.C.D.2.()A.B.1C.D.3.已知向量,则()A.B.C.D.4.某校文艺部有4名学生,其中高一、高二年级各2名.从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为()A.B.C.D.5.记为等差数列的前项和.若,则()A.25B.22C.20D.156.执行下边的程序框图,则输出的()A.21B.34C.55D.897.设为椭圆的两个焦点,点在上,若,则()A.1B.2C.4D.58.曲线在点处的切线方程为()A.B.C.D.9.已知双曲线的离心率为,其中一条渐近线与圆交于A,B两点,则()A.B.C.D.10.在三棱锥中,是边长为2的等边三角形,,则该棱锥的体积为()A.1B.C.2D.311.已知函数.记,则()A.B.C.D.12.函数的图象由的图象向左平移个单位长度得到,则的图象与直线的交点个数为()A.1B.2C.3D.4二、填空题:本大题共4小题,每小题5分,共20分.13.记为等比数列的前项和.若,则的公比为.14.若为偶函数,则.15.若x,y满足约束条件,则的最大值为.16.在正方体中,为的中点,若该正方体的棱与球的球面有公共点,则球的半径的取值范围是.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.记的内角的对边分别为,已知.(1)求;(2)若,求面积.18.如图,在三棱柱中,平面.(1)证明:平面平面;(2)设,求四棱锥的高.19.一项试验旨在研究臭氧效应,试验方案如下:选40只小白鼠,随机地将其中20只分配到试验组,另外20只分配到对照组,试验组的小白鼠饲养在高浓度臭氧环境,对照组的小白鼠饲养在正常环境,一段时间后统计每只小白鼠体重的增加量(单位:g).试验结果如下:对照组的小白鼠体重的增加量从小到大排序为15.218.820.221.322.523.225.826.527.530.132.634.334.835.635.635.836.237.340.543.2试验组的小白鼠体重的增加量从小到大排序为7.89.211.412.413.215.516.518.018.819.219.820.221.622.823.623.925.128.232.336.5(1)计算试验组的样本平均数;(2)(ⅰ)求40只小白鼠体重的增加量的中位数m,再分别统计两样本中小于m与不小于m的数据的个数,完成如下列联表对照组试验组(ⅱ)根据(i)中的列联表,能否有95%的把握认为小白鼠在高浓度臭氧环境中与在正常环境中体重的增加量有差异?附:,0.1000.0500.0102.7063.841 6.63520.已知函数.(1)当时,讨论的单调性;(2)若,求的取值范围.21.已知直线与抛物线交于两点,.(1)求;(2)设为的焦点,为上两点,且,求面积的最小值.22.已知点,直线(为参数),为的倾斜角,与轴正半轴、轴正半轴分别交于,且.(1)求;(2)以坐标原点为极点,轴正半轴为极轴建立极坐标系,求的极坐标方程.23.已知.(1)求不等式的解集;(2)若曲线与轴所围成的图形的面积为2,求.答案解析部分1.【答案】A【解析】【解答】,故选:A【分析】先计算补集,再求并集即得答案.2.【答案】C【解析】【解答】,故选:C【分析】利用复数乘法运算计算由得出答案。
高考文科数学数列专题复习(附答案及解析)

高考文科数学数列专题复习数列常用公式数列的通项公式与前n 项的和的关系a n s , n 11s s ,n 2n n 1( 数列{a n} 的前n 项的和为s n a1 a2 a n ).等差数列的通项公式*a a1 (n 1)d dn a1 d(n N ) ;n等差数列其前n 项和公式为n(a a ) n(n 1)1 ns na1 d n2 2 d 12n (a d)n .12 2等比数列的通项公式an 1 1 n *a a1q q (n N )nq;等比数列前n 项的和公式为na (1 q )1s 1 qn , q 1或sna a q1 n1 q,q 1na ,q 1 1 na ,q 1 1一、选择题1.( 广东卷) 已知等比数列{a n} 的公比为正数,且a3 ·a9 =2 2a ,a2 =1,则a1 =5A. 12B.22C. 2D.22.(安徽卷)已知为等差数列,,则等于A. -1B. 1C. 3D.7 3(. 江西卷)公差不为零的等差数列{a n} 的前n项和为S n .若a4 是a3与a7 的等比中项, S8 32, 则S等于10A. 18B. 24C. 60D. 904(湖南卷)设S n 是等差数列a n 的前n 项和,已知a2 3,a6 11,则S7 等于【】第1页/ 共8页A .13 B.35 C.49 D.633.(辽宁卷)已知a为等差数列,且a7 -2 a4 =-1, a3 =0, 则公差d=n(A)-2 (B)-12 (C)12(D)24.(四川卷)等差数列{a n }的公差不为零,首项a1 =1,a2 是a1 和a5 的等比中项,则数列的前10 项之和是A. 90B. 100C. 145D. 1905.(湖北卷)设x R, 记不超过x 的最大整数为[ x ], 令{x }= x -[ x ],则{ 52 1} ,[ 521],521A.是等差数列但不是等比数列B.是等比数列但不是等差数列C.既是等差数列又是等比数列D.既不是等差数列也不是等比数列6.(湖北卷)古希腊人常用小石子在沙滩上摆成各种性状来研究数,例如:他们研究过图1 中的1,3,6,10,⋯,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16⋯这样的数成为正方形数。
2023年高考全国乙卷文科数学试题(含答案详解)

2023年普通高等学校招生全国统一考试(全国乙卷)文科数学一、选择题1. 232i 2i ++=( )A. 1B. 2C.D. 52. 设全集{}0,1,2,4,6,8U =,集合{}{}0,4,6,0,1,6M N ==,则M ∪C U N ( ) A. {}0,2,4,6,8B. {}0,1,4,6,8C. {}1,2,4,6,8D. U3. 如图,网格纸上绘制的一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为( )A. 24B. 26C. 28D. 304. 在ABC 中,内角,,A B C 的对边分别是,,a b c ,若cos cos a B b A c −=,且5C π=,则B ∠=( )A.10π B.5π C.310π D.25π 5. 已知e ()e 1xax x f x =−是偶函数,则=a ( )A. 2−B. 1−C. 1D. 26. 正方形ABCD 的边长是2,E 是AB 的中点,则EC ED ⋅=( )A.B. 3C. D. 57. 设O 为平面坐标系的坐标原点,在区域(){}22,14x y xy ≤+≤内随机取一点A ,则直线OA 的倾斜角不大于π4的概率为( ) A.18B.16C.14D.128. 函数()32f x x ax =++存在3个零点,则a 的取值范围是( )A. (),2−∞−B. (),3−∞−C. ()4,1−−D. ()3,0−9. 某学校举办作文比赛,共6个主题,每位参赛同学从中随机抽取一个主题准备作文,则甲、乙两位参赛同学抽到不同主题概率为( )A.56B.23C.12D.1310. 已知函数()sin()f x x ωϕ=+在区间π2π,63⎛⎫ ⎪⎝⎭单调递增,直线π6x =和2π3x =为函数()y f x =的图像的两条对称轴,则5π12f ⎛⎫−= ⎪⎝⎭( )A. B. 12−C.12D.11. 已知实数,x y 满足224240x y x y +−−−=,则x y −的最大值是( )A. 1+B. 4C. 1+D. 712. 设A ,B 为双曲线2219y x −=上两点,下列四个点中,可为线段AB 中点的是( )A. ()1,1B. ()1,2-C. ()1,3D. ()1,4−−二、填空题13.已知点(A 在抛物线C :22y px =上,则A 到C 的准线的距离为______. 14. 若π10,,tan 22⎛⎫∈= ⎪⎝⎭θθ,则sin cos θθ−=________. 15. 若x ,y 满足约束条件312937x y x y x y −≤−⎧⎪+≤⎨⎪+≥⎩,则2z x y =−的最大值为______.16. 已知点,,,S A B C 均在半径为2的球面上,ABC 是边长为3的等边三角形,SA ⊥平面ABC ,则SA =________. 三、解答题17. 某厂为比较甲乙两种工艺对橡胶产品伸缩率的处理效应,进行10次配对试验,每次配对试验选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率.甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为i x ,()1,2,,10i y i =⋅⋅⋅.试验结果如下:记1,2,,10i i i z x y i =−=⋅⋅⋅,记1210,,,z z z ⋅⋅⋅的样本平均数为z ,样本方差为2s . (1)求z ,2s ;(2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否有显著提高(如果z ≥为有显著提高)18.记n S 为等差数列{}n a 的前n 项和,已知21011,40a S ==. (1)求{}n a 的通项公式; (2)求数列{}n a 的前n 项和n T .19.如图,在三棱锥−P ABC 中,AB BC ⊥,2AB =,BC =PB PC ==,,BP AP BC 的中点分别为,,D E O ,点F 在AC 上,BF AO ⊥.(1)求证:EF //平面ADO ;(2)若120POF ∠=︒,求三棱锥−P ABC 的体积. 20.已知函数()()1ln 1f x a x x ⎛⎫=++⎪⎝⎭. (1)当1a =−时,求曲线()y f x =在点()()1,f x 处的切线方程. (2)若函数()f x 在()0,∞+单调递增,求a 的取值范围.21.已知椭圆2222:1(0)C bb x a a y +>>=,点()2,0A −在C 上.(1)求C 的方程;(2)过点()2,3−的直线交C 于,P Q 两点,直线,AP AQ 与y 轴的交点分别为,M N ,证明:线段MN 的中点为定点.【选修4-4】(10分)22.在直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为2sin 42ππρθθ⎛⎫=≤≤⎪⎝⎭,曲线2C :2cos 2sin x y αα=⎧⎨=⎩(α为参数,2απ<<π).(1)写出1C 的直角坐标方程;(2)若直线y x m =+既与1C 没有公共点,也与2C 没有公共点,求m 的取值范围.【选修4-5】(10分)23.已知()22f x x x =+− (1)求不等式()6x f x ≤−的解集;(2)在直角坐标系xOy 中,求不等式组()60f x yx y ⎧≤⎨+−≤⎩所确定的平面区域的面积.2023年普通高等学校招生全国统一考试(全国乙卷)答案详解文科数学(2023·全国乙卷·文·1·★)232i 2i ++=( )(A )1 (B )2 (C (D 答案:C解析:2322i 2i 212i i 212(1)i 12i ++=−+⨯⨯=−+⨯−⨯=−=.(2023·全国乙卷·文·2·★)设全集{0,1,2,4,6,8}U =,集合{0,4,6}M =,{0,1,6}N =,M ∪C U N 则( ) (A ){0,2,4,6,8} (B ){0,1,4,6,8} (C ){1,2,4,6,8} (D )U 答案:A解析:由题意,C U N ={2,4,8},所以M ∪C U N ={0,2,4,6,8}.(2023·全国乙卷·文·3·★) 如图,网格纸上绘制的一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为( )A.24B.26C.28D.30答案:D解析:如图所示,在长方体1111ABCD A B C D −中,2AB BC ==,13AA =,点,,,H I J K 为所在棱上靠近点1111,,,B C D A 的三等分点,,,,O L M N 为所在棱的中点,则三视图所对应的几何体为长方体1111ABCD A B C D −去掉长方体11ONIC LMHB −之后所得的几何体,该几何体的表面积和原来的长方体的表面积相比少2个边长为1的正方形, 其表面积为:()()()22242321130⨯⨯+⨯⨯−⨯⨯=.(2023·全国乙卷·文·4·★★)在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,若cos cos a B b A c −=,且5C π=则,在B =( ) (A )10π(B )5π (C )310π (D )25π 答案:C解法1:所给边角等式每一项都有齐次的边,要求的是角,故用正弦定理边化角分析, 因为cos cos a B b A c −=,所以sin cos sin cos sin A B B A C −=,故sin()sin A B C −= ①, 已知C ,先将C 代入,再利用A B C π++=将①中的A 换成B 消元, 因为5C π=,所以45A B C ππ+=−=,故45A B π=−,代入①得4sin(2)sin 55B ππ−= ②, 因为45A B π+=,所以405B π<<,故4442555B πππ−<−<,结合②可得4255B ππ−=,所以310B π=.解法2:按解法1得到sin cos sin cos sin A B B A C −=后,观察发现若将右侧sin C 拆开,也能出现左边的两项,故拆开来看,sin sin[()]sin()sin cos cos sin C A B A B A B A B π=−+=+=+,代入sin cos sin cos sin A B B A C −=得:sin cos sin cos sin cos sin cos A B B A A B B A −=+,化简得:sin cos 0B A =,因为0B π<<,所以sin 0B >,故cos 0A =,结合0A π<<可得2A π=,所以43510B A ππ=−=.(2023·全国乙卷·文·5·★★) 已知e ()e 1xax x f x =−是偶函数,则=a ( )A. 2−B. 1−C. 1D. 2答案:D解析:因为()e e 1x ax x f x =−为偶函数,则()()()()1e e e e 0e 1e 1e 1a x x x x ax ax ax x x x f x f x −−−⎡⎤−−⎣⎦−−=−==−−−, 又因为x 不恒为0,可得()1e e 0a x x −−=,即()1e e a x x −=,则()1x a x =−,即11a =−,解得2a =.(2023·全国乙卷·文·6·★)正方形ABCD 的边长是2,E 是AB 的中点,则EC ED ⋅=( ) (A(B )3 (C) (D )5 答案:B解析:如图,EC ,ED 共起点,且中线、底边长均已知,可用极化恒等式求数量积, 由极化恒等式,223EC ED EF CF ⋅=−=.A BCDE F(2023·全国乙卷·文·7·★★)设O 为平面坐标系的坐标原点,在区域(){}22,14x y xy ≤+≤内随机取一点A ,则直线OA 的倾斜角不大于π4的概率为( ) A.18B. 16C.14D.12答案:C 解析:因为区域(){}22,|14x y xy ≤+≤表示以()0,0O 圆心,外圆半径2R =,内圆半径1r =的圆环,则直线OA 的倾斜角不大于π4的部分如阴影所示,在第一象限部分对应的圆心角π4MON ∠=, 结合对称性可得所求概率π2142π4P ⨯==.(2023·全国乙卷·文·8·★★★)函数3()2f x x ax =++存在3个零点,则a 的取值范围是( ) (A )(,2)−∞− (B )(,3)−∞− (C )(4,1)−− (D )(3,0)− 答案:B解法1:观察发现由320x ax ++=容易分离出a ,故用全分离,先分析0x =是否为零点, 因为(0)20f =≠,所以0不是()f x 的零点;当0x ≠时,3322()0202f x x ax ax x a x x=⇔++=⇔=−−⇔=−−, 所以直线y a =与函数22(0)y x x x =−−≠的图象有3个交点,要画此函数的图象,需求导分析,令22()(0)g x x x x =−−≠,则3222222(1)2(1)(1)()2x x x x g x x x x x −−++'=−+==, 因为22131()024x x x ++=++>,所以()00g x x '>⇔<或01x <<,()01g x x '<⇔>,故()g x 在(,0)−∞上,在(0,1)上,在(1,)+∞上,又lim ()x g x →−∞=−∞,当x 分别从y 轴左、右两侧趋近于0时,()g x 分别趋于+∞,−∞,(1)3g =−,lim ()x g x →+∞=−∞,所以()g x 的大致图象如图1,由图可知要使y a =与()y g x =有3个交点,应有3a <−.解法2:如图2,三次函数有3个零点等价于两个极值异号,故也可直接求导分析极值,由题意,2()3f x x a '=+,要使()f x 有2个极值点,则()f x '有两个零点,所以120a ∆=−>,故0a <, 令()0f x '=可得x =322f =+=,3(((22f a =++=,故34(2)(2)4027a f f =+=+<,解得:3a <−.a=1图2图(2023·全国乙卷·文·9·★)某学校举办作文比赛,共6个主题,每位参赛同学从中随机抽取一个主题准备作文,则甲、乙两位参赛同学抽到不同主题概率为( ) A.56B.23C.12D.13答案:A解析:甲有6种选择,乙也有6种选择,故总数共有6636⨯=种, 若甲、乙抽到的主题不同,则共有26A 30=种, 则其概率为305366=,(2023·全国乙卷·文·10·★★★)已知函数()sin()f x x ωϕ=+在区间π2π,63⎛⎫⎪⎝⎭单调递增,直线π6x =和2π3x =为函数()y f x =的图像的两条对称轴,则5π12f ⎛⎫−= ⎪⎝⎭() A. B. 12−C.12D.2答案:D解析:因为()sin()f x x ωϕ=+在区间π2π,63⎛⎫⎪⎝⎭单调递增, 所以2πππ2362T =−=,且0ω>,则πT =,2π2w T ==, 当π6x =时,()f x 取得最小值,则ππ22π62k ϕ⋅+=−,Z k ∈,则5π2π6k ϕ=−,Z k ∈,不妨取0k =,则()5πsin 26f x x ⎛⎫=− ⎪⎝⎭,则5π5πsin 1232f ⎛⎫⎛⎫−=−= ⎪ ⎪⎝⎭⎝⎭,(2023·全国乙卷·文·11·★★★)已知实数x ,y 满足224240x y x y +−−−=,则x y −的最大值是( )(A )1 (B )4 (C )1+ (D )7 答案:C解法1:所给等式可配方化为平方和结构,故考虑三角换元,22224240(2)(1)9x y x y x y +−−−=⇒−+−=,令23cos 13sin x y θθ=+⎧⎨=+⎩,则23cos 13sin 1)4x y πθθθ−=+−−=−−,θ∈R ,所以当sin()14πθ−=−时,x y −取得最大值1+解法2:所给方程表示圆,故要求x y −的最大值,也可设其为t ,看成直线,用直线与圆的位置关系处理,22224240(2)(1)9x y x y x y +−−−=⇒−+−= ①,设t x y =−,则0x y t −−=,因为x ,y 还满足①,所以直线0x y t −−=与该圆有交点,从而圆心(2,1)到直线的距离3d =≤,解得:11t −≤≤+max ()1x y −=+(2023·全国乙卷·文·12·★★★★)设A ,B 为双曲线2219y x −=上两点,下列四个点中,可为线段AB 中点的是( ) A. ()1,1 B. ()1,2-C. ()1,3D. ()1,4−−答案:D解析:设()()1122,,,A x y B x y ,则AB 的中点1212,22x x y y M ++⎛⎫⎪⎝⎭,可得1212121212122,2ABy y y y y y k k x x x x x x +−+===+−+,因为,A B 在双曲线上,则221122221919y x y x ⎧−=⎪⎪⎨⎪−=⎪⎩,两式相减得()2222121209y y x x −−−=, 所以221222129AB y y k k x x −⋅==−. 对于选项A : 可得1,9AB k k ==,则:98AB y x =−,联立方程229819y x y x =−⎧⎪⎨−=⎪⎩,消去y 得272272730x x −⨯+=,此时()2272472732880∆=−⨯−⨯⨯=−<, 所以直线AB 与双曲线没有交点,故A 错误; 对于选项B :可得92,2AB k k =−=−,则95:22AB y x =−−, 联立方程22952219y x y x ⎧=−−⎪⎪⎨⎪−=⎪⎩,消去y 得245245610x x +⨯+=, 此时()224544561445160∆=⨯−⨯⨯=−⨯⨯<, 所以直线AB 与双曲线没有交点,故B 错误; 对于选项C :可得3,3AB k k ==,则:3AB y x =由双曲线方程可得1,3a b ==,则:3AB y x =为双曲线的渐近线, 所以直线AB 与双曲线没有交点,故C 错误; 对于选项D :94,4AB k k ==,则97:44AB y x =−,联立方程22974419y x y x ⎧=−⎪⎪⎨⎪−=⎪⎩,消去y 得2631261930x x +−=, 此时21264631930∆=+⨯⨯>,故直线AB 与双曲线有交两个交点,故D 正确;(2023·全国乙卷·文·13·★)已知点(A 在抛物线C :22y px =上,则A 到C 的准线的距离为______. 答案:94解析:由题意可得:221p =⨯,则25p =,抛物线的方程为25y x =,准线方程为54x =−,点A 到C 的准线的距离为59144⎛⎫−−= ⎪⎝⎭.(2023·全国乙卷·文·14·★)若(0,)2πθ∈,1tan 3θ=,则sin cos θθ−=_____.答案: 解析:已知tan θ,可先求出sin θ和cos θ, 由题意,sin 1tan cos 3θθθ==,所以cos 3sin θθ=,代入22cos sin 1θθ+=可得210sin 1θ=, 又(0,)2πθ∈,所以sin θ=,cos θ=,故sin cos θθ−=(2023·全国乙卷·文·15·★★)若x ,y 满足约束条件312937x y x y x y −≤−⎧⎪+≤⎨⎪+≥⎩,则2z x y =−的最大值为______.答案:8解析:作出可行域如下图所示:z =2x −y ,移项得y =2x −z , 联立有3129x y x y −=−⎧⎨+=⎩,解得52x y =⎧⎨=⎩,设()5,2A ,显然平移直线2y x =使其经过点A ,此时截距−z 最小,则z 最大,代入得z =8,(2023·全国乙卷·文·16·★★★)已知点S ,A ,B ,C 均在半径为2的球面上,ABC ∆是边长为3的等边三角形,SA ⊥平面ABC ,则SA =_____. 答案:2解析:有线面垂直,且ABC ∆是等边三角形,属外接球的圆柱模型,核心方程是222()2hr R +=,如图,圆柱的高h SA =,底面半径r 即为ABC ∆的外接圆半径,所以233r ==, 由题意,球的半径2R =,因为222()2hr R +=,所以23()42h +=,解得:2h =,故2SA =.(2023·全国乙卷·文·17·★★★)某厂为比较甲乙两种工艺对橡胶产品伸缩率的处理效应,进行10次配对试验,每次配对试验选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率.甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为i x ,()1,2,,10i y i =⋅⋅⋅.试验结果如下:记()1,2,,10i i i z x y i =−=⋅⋅⋅,记1210,,,z z z ⋅⋅⋅的样本平均数为z ,样本方差为2s . (1)求z ,s 2;(2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否有显著提高(如果z ≥则认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高,否则不认为有显著提高) 答案:(1)11z =,261s =;(2)认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高. 解析:(1)545533551522575544541568596548552.310x +++++++++==,536527543530560533522550576536541.310y +++++++++==,552.3541.311z x y =−=−=,i i i z x y =− 的值分别为: 9,6,8,8,15,11,19,18,20,12−,故2222222222(911)(611)(811)(811)(1511)0(1911)(1811)(2011)(1211)6110s −+−+−+−−+−++−+−+−+−==(2)由(1)知:11z =,==z ≥ 所以认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高.(2023·全国乙卷·文·18·★★★)记n S 为等差数列{}n a 的前n 项和,已知211a =,1040S =. (1)求{}n a 的通项公式; (2)求数列{}n a 的前n 项和n T .解:(1)(已知条件都容易代公式,故直接用公式翻译,求出1a 和d ) 设{}n a 的公差为d ,则2111a a d =+= ①, 101104540S a d =+= ②,联立①②解得:113a =,2d =−,所以1(1)13(1)(2)152n a a n d n n =+−=+−⨯−=−.(2)(通项含绝对值,要求和,先去绝对值,观察发现{}n a 前7项为正,从第8项起为负,故据此讨论) 当7n ≤时,0n a >,所以12n n T a a a =++⋅⋅⋅+ 2112()(13152)1422n n n a a n n a a a n n ++−=++⋅⋅⋅+===−; 当8n ≥时,12n n T a a a =++⋅⋅⋅+ 12789n a a a a a a =++⋅⋅⋅+−−−⋅⋅⋅− 127122()()n a a a a a a =++⋅⋅⋅+−++⋅⋅⋅+ 27(131)(13152)2149822n n n n ⨯++−=⨯−=−+; 综上所述,2214,71498,8n n n n T n n n ⎧−≤⎪=⎨−+≥⎪⎩.(2023·全国乙卷·文·19·★★★)如图,在三棱锥−P ABC 中,AB BC ⊥,2AB =,BC =PB PC ==,,BP AP BC 的中点分别为,,D E O ,点F 在AC 上,BF AO ⊥.(1)求证:EF //平面ADO ;(2)若120POF ∠=︒,求三棱锥−P ABC 的体积.答案:(1)证明见解析 (2解析:(1)连接,DE OF ,设AF tAC =,则(1)BF BA AF t BA tBC =+=−+,12AO BA BC =−+,BF AO ⊥, 则2211[(1)]()(1)4(1)4022BF AO t BA tBC BA BC t BA tBC t t ⋅=−+⋅−+=−+=−+=, 解得12t =,则F 为AC 的中点,由,,,D E O F 分别为,,,PB PA BC AC 的中点,于是11//,,//,22DE AB DE AB OF AB OF AB ==,即,//DE OF DE OF =,则四边形ODEF 为平行四边形,//,EF DO EF DO =,又EF ⊄平面,ADO DO ⊂平面ADO ,所以//EF 平面ADO .(2)过P 作PM 垂直FO 的延长线交于点M , 因为,PB PC O =是BC 中点,所以PO BC ⊥,在Rt PBO △中,12PB BO BC ===2PO ===, 因为,//AB BC OF AB ⊥,所以OF BC ⊥,又PO OF O ⋂=,,PO OF ⊂平面POF , 所以BC⊥平面POF ,又PM ⊂平面POF ,所以BC PM ⊥,又BC FM O =,,BC FM ⊂平面ABC ,所以PM ⊥平面ABC ,即三棱锥−P ABC 的高为PM ,因为120POF ∠=︒,所以60POM ∠=︒,所以sin 6022PM PO =︒=⨯=,又11222ABC S AB BC =⋅=⨯⨯=△所以11333P ABC ABC V S PM −=⋅=⨯=△.(2023·全国乙卷·文·20·★)已知函数1()()ln(1)f x a x x=++.(1)当1a =−时,求曲线()y f x =在点(1,(1))f 处的切线方程; (2)若函数()f x 在(0,)+∞上单调递增,求a 的取值范围. 答案:(1)()ln 2ln 20x y +−=; (2)1|2a a ⎧⎫≥⎨⎬⎩⎭. 解析:(1)当1a =−时,()()()11ln 11f x x x x ⎛⎫=−+>−⎪⎝⎭, 则()()2111ln 111x f x x x x ⎛⎫'=−⨯++−⨯ ⎪+⎝⎭, 据此可得()()10,1ln 2f f '==−,所以函数在()()1,1f 处的切线方程为()0ln 21y x −=−−,即()ln 2ln 20x y +−=. (2)由函数的解析式可得()()()2111=ln 111f x x a x x x x ⎛⎫⎛⎫'−+++⨯>− ⎪ ⎪+⎝⎭⎝⎭, 满足题意时()0f x '≥在区间()0,∞+上恒成立. 令()2111ln 101x a x x x ⎛⎫⎛⎫−+++≥ ⎪ ⎪+⎝⎭⎝⎭,则()()()21ln 10x x x ax −++++≥, 令()()()2=1ln 1g x ax x x x +−++,原问题等价于()0g x ≥在区间()0,∞+上恒成立, 则()()2ln 1g x ax x '=−+,当0a ≤时,由于()20,ln 10ax x ≤+>,故()0g x '<,()g x 在区间()0,∞+上单调递减,此时()()00g x g <=,不合题意;令()()()2ln 1h x g x ax x '==−+,则()121h x a x −'=+, 当12a ≥,21a ≥时,由于111x <+,所以()()0,h x h x '>在区间()0,∞+上单调递增, 即()g x '在区间()0,∞+上单调递增,所以()()>00g x g ''=,()g x 在区间()0,∞+上单调递增,()()00g x g >=,满足题意. 当102a <<时,由()1201h x a x =−=+'可得1=12x a−, 当10,12x a ⎛⎫∈− ⎪⎝⎭时,()()0,h x h x '<在区间10,12a ⎛⎫− ⎪⎝⎭上单调递减,即()g x '单调递减,注意到()00g '=,故当10,12x a ⎛⎫∈− ⎪⎝⎭时,()()00g x g ''<=,()g x 单调递减, 由于()00g =,故当10,12x a ⎛⎫∈− ⎪⎝⎭时,()()00g x g <=,不合题意. 综上可知:实数a 得取值范围是1|2a a ⎧⎫≥⎨⎬⎩⎭.(2023·全国乙卷·文·21·★★★)已知椭圆2222:1(0)C b b x a a y +>>=,点()2,0A −在C 上.(1)求C 的方程; (2)过点()2,3−的直线交C 于,P Q 两点,直线,AP AQ 与y 轴的交点分别为,M N ,证明:线段MN 的中点为定点.答案:(1)22194y x += (2)证明见详解解析:(1)由题意可得22223b a b c c e a ⎧⎪=⎪⎪=+⎨⎪⎪==⎪⎩,解得32a b c ⎧=⎪=⎨⎪=⎩,所以椭圆方程为22194y x +=.(2)由题意可知:直线PQ 的斜率存在,设()()()1122:23,,,,PQ y k x P x y Q x y =++,联立方程()2223194y k x y x ⎧=++⎪⎨+=⎪⎩,消去y 得:()()()222498231630k x k k x k k +++++=,则()()()2222Δ64236449317280kk k k k k =+−++=−>,解得0k <,可得()()2121222163823,4949k k k k x x x x k k +++=−=++, 因为()2,0A −,则直线()11:22y AP y x x =++, 令0x =,解得1122y y x =+,即1120,2y M x ⎛⎫⎪+⎝⎭,同理可得2220,2y N x ⎛⎫ ⎪+⎝⎭,则()()1212121222232322222y y k x k x x x x x +++++⎡⎤⎡⎤++⎣⎦⎣⎦=+++()()()()()()12211223223222kx k x kx k x x x +++++++⎡⎤⎡⎤⎣⎦⎣⎦=++()()()()1212121224342324kx x k x x k x x x x +++++=+++()()()()()()222222323843234231084949336163162344949k k k k k k k k k k k k k k k +++−++++===++−+++,所以线段PQ 的中点是定点()0,3.【选修4-4】(10分)(2023·全国乙卷·文·22·★★★)在直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为2sin 42ππρθθ⎛⎫=≤≤ ⎪⎝⎭,曲线2C :2cos 2sin x y αα=⎧⎨=⎩(α为参数,2απ<<π).(1)写出1C 的直角坐标方程;(2)若直线y x m =+既与1C 没有公共点,也与2C 没有公共点,求m 的取值范围. 答案:(1)()[][]2211,0,1,1,2x y x y +−=∈∈ (2)()(),022,−∞+∞解析:(1)因为2sin ρθ=,即22sin ρρθ=,可得222x y y +=, 整理得()2211x y +−=,表示以()0,1为圆心,半径为1的圆,又因为2cos 2sin cos sin 2,sin 2sin 1cos 2x y ======−ρθθθθρθθθ, 且ππ42θ≤≤,则π2π2≤≤θ,则[][]sin 20,1,1cos 21,2x y =∈=−∈θθ, 故()[][]221:11,0,1,1,2C x y x y +−=∈∈.(2)因为22cos :2sin x C y αα=⎧⎨=⎩(α为参数,ππ2α<<),整理得224x y +=,表示圆心为()0,0O ,半径为2,且位于第二象限的圆弧, 如图所示,若直线y x m =+过()1,1,则11m =+,解得0m =;若直线y x m =+,即0x y m −+=与2C相切,则20m =>⎩,解得m =,若直线y x m =+与12,C C均没有公共点,则m >或0m <, 即实数m 的取值范围()(),022,−∞+∞.【选修4-5】(10分)(2023·全国乙卷·文·23·★★)已知()22f x x x =+− (1)求不等式()6x f x ≤−的解集;(2)在直角坐标系xOy 中,求不等式组()60f x yx y ⎧≤⎨+−≤⎩所确定的平面区域的面积.答案:(1)[2,2]−; (2)8.解析:(1)依题意,32,2()2,0232,0x x f x x x x x −>⎧⎪=+≤≤⎨⎪−+<⎩,不等式()6f x x ≤−化为:2326x x x >⎧⎨−≤−⎩或0226x x x ≤≤⎧⎨+≤−⎩或0326x x x <⎧⎨−+≤−⎩,解2326x x x >⎧⎨−≤−⎩,得无解;解0226x x x ≤≤⎧⎨+≤−⎩,得02x ≤≤,解0326x x x <⎧⎨−+≤−⎩,得20x −≤<,因此22x −≤≤,所以原不等式的解集为:[2,2]−(2)作出不等式组()60f x yx y ≤⎧⎨+−≤⎩表示的平面区域,如图中阴影ABC ,由326y xx y=−+⎧⎨+=⎩,解得(2,8)A−,由26y xx y=+⎧⎨+=⎩, 解得(2,4)C,又(0,2),(0,6)B D,所以ABC的面积11|||62||2(2)|822ABC C AS BD x x=⨯−=−⨯−−=.。
高考数学试卷每题考点文科

一、选择题1. 【考点】集合的概念及运算题目:设集合A={x|x≤2},集合B={x|x≥3},则A∩B=()A. {x|x≤2}B. {x|x≥3}C. ∅D. {x|x≤2或x≥3}解析:本题考查集合的概念及运算。
根据集合的交集运算,A∩B表示同时属于A和B的元素,即{x|x≤2}∩{x|x≥3},由于没有任何元素同时满足x≤2和x≥3,因此A∩B=∅。
2. 【考点】函数的概念及性质题目:若函数f(x)=x²+2x-3在x=1处的导数为0,则f(x)的对称轴为()A. x=1B. x=-1C. x=0D. x=-2解析:本题考查函数的概念及性质。
首先求出f(x)的导数f'(x)=2x+2,然后令f'(1)=0,解得x=-1。
对称轴是函数图像关于x轴的对称轴,因此f(x)的对称轴为x=-1。
3. 【考点】三角函数的概念及性质题目:若sinα+cosα=√2,则sin²α+cos²α=()A. 2B. 1C. 0D. -1解析:本题考查三角函数的概念及性质。
由三角函数的和角公式sinα+cosα=√2,得到sinα=√2/2,cosα=√2/2。
根据三角函数的基本关系sin²α+cos²α=1,可得sin²α+cos²α=1。
二、填空题4. 【考点】数列的概念及性质题目:数列{an}中,a₁=1,an=an-₁+2n-1,则aₙ=()解析:本题考查数列的概念及性质。
根据递推公式an=an-₁+2n-1,可列出前几项:a₂=a₁+2=3,a₃=a₂+4=7,a₄=a₃+6=13。
观察发现,每一项都是前一项加上一个奇数,因此aₙ=1+3+5+...+(2n-1)=n²。
5. 【考点】平面几何的概念及性质题目:在直角坐标系中,点A(2,3),点B(-1,1),则线段AB的中点坐标为()解析:本题考查平面几何的概念及性质。
高三高考文科数学《三角函数》题型归纳与汇总

高三高考文科数学《三角函数》题型归纳与汇总高考文科数学题型分类汇总:三角函数篇本文旨在汇总高考文科数学中的三角函数题型,包括定义法求三角函数值、诱导公式的使用、三角函数的定义域或值域、三角函数的单调区间、三角函数的周期性、三角函数的图象变换和三角函数的恒等变换。
题型一:定义法求三角函数值这类题目要求根据三角函数的定义,求出给定角度的正弦、余弦、正切等函数值。
这类题目的难点在于熟练掌握三角函数的定义,以及对角度的准确度量。
题型二:诱导公式的使用诱导公式是指通过对已知的三角函数进行代数变形,得到新的三角函数值的公式。
这类题目需要熟练掌握各种诱导公式,以及灵活应用。
题型三:三角函数的定义域或值域这类题目要求确定三角函数的定义域或值域。
需要掌握各种三角函数的性质和图象,以及对函数的定义域和值域的概念和计算方法。
题型四:三角函数的单调区间这类题目要求确定三角函数的单调区间,即函数在哪些区间上单调递增或单调递减。
需要掌握各种三角函数的性质和图象,以及对函数单调性的判定方法。
题型五:三角函数的周期性这类题目要求确定三角函数的周期。
需要掌握各种三角函数的性质和图象,以及对函数周期的计算方法。
题型六:三角函数的图象变换这类题目要求根据给定的变换规律,确定三角函数图象的变化。
需要掌握各种三角函数的性质和图象,以及对图象变换的计算方法。
题型七:三角函数的恒等变换这类题目要求根据已知的三角函数恒等式,进行变形和推导。
需要掌握各种三角函数的恒等式,以及灵活应用。
2)已知角α的终边经过一点P,则可利用点P在单位圆上的性质,结合三角函数的定义求解.在求解过程中,需注意对角终边位置进行讨论,避免忽略或重复计算.例2已知sinα=0.8,且α∈[0,π2],则cosα=.答案】0.6解析】∵sinα=0.8,∴cosα=±√1-sin²α=±0.6XXXα∈[0,π2],∴cosα>0,故cosα=0.6易错点】忘记对cosα的正负进行讨论思维点拨】在求解三角函数值时,需注意根据已知条件确定函数值的正负,避免出现多解或无解的情况.同时,需根据角度范围确定函数值的取值范围,避免出现超出范围的情况.题型二诱导公式的使用例3已知tanα=√3,且α∈(0,π2),则sin2α=.答案】34解析】∵ta nα=√3,∴α=π/30<α<π/2,∴0<2α<πsin2α=sin(π-2α)=sinπcos2α-cosπsin2α=-sin2α2sin2α=0,∴sin2α=0sin2α=3/4易错点】忘记利用诱导公式将sin2α转化为sin(π-2α)思维点拨】在解决三角函数的复合问题时,可利用诱导公式将一个三角函数转化为其他三角函数的形式,从而简化计算.同时,需注意根据角度范围确定函数值的取值范围,避免出现超出范围的情况.题型三三角函数的定义域或值域例4已知f(x)=2sinx+cosx,则f(x)的值域为.答案】[−√5,√5]解析】∵f(x)=2sinx+cosx=√5(sin(x+α)+sin(α-x)),其中tanα=-121≤sin(x+α)≤1,-1≤sin(α-x)≤15≤f(x)≤√5f(x)的值域为[−√5,√5]易错点】忘记利用三角函数的性质将f(x)转化为含有同一三角函数的形式思维点拨】在确定三角函数的定义域或值域时,可利用三角函数的性质将其转化为含有同一三角函数的形式,从而方便计算.同时,需注意对于复合三角函数,需先将其转化为含有同一三角函数的形式,再确定其定义域或值域.题型四三角函数的单调区间例5已知f(x)=sin2x,则f(x)在区间[0,π]上的单调递增区间为.答案】[0,π/4]∪[3π/4,π]解析】∵f'(x)=2cos2x=2(2cos²x-1)=4cos²x-2f'(x)>0的充要条件为cosx12f(x)在[0,π/4]∪[3π/4,π]上单调递增易错点】忘记将f'(x)化简为含有同一三角函数的形式,或对于三角函数的单调性判断不熟练思维点拨】在求解三角函数的单调区间时,需先求出其导数,并将其化简为含有同一三角函数的形式.然后,利用三角函数的单调性进行判断,得出函数的单调区间.题型五三角函数的周期性例6已知f(x)=sin(2x+π),则f(x)的周期为.答案】π解析】∵sin(2x+π)=sin2xcosπ+cos2xsinπ=-sin2xf(x)的周期为π易错点】忘记利用三角函数的周期性质思维点拨】在求解三角函数的周期时,需利用三角函数的周期性质,即f(x+T)=f(x),其中T为函数的周期.同时,需注意对于复合三角函数,需先将其转化为含有同一三角函数的形式,再确定其周期.题型六三角函数的图象变换例7已知f(x)=sinx,g(x)=sin(x-π4),则g(x)的图象相对于f(x)的图象向左平移了.答案】π4解析】∵g(x)=sin(x-π4)=sinxcosπ4-cosxsinπ4g(x)的图象相对于f(x)的图象向左平移π4易错点】忘记利用三角函数的图象变换公式,或对于三角函数的图象不熟悉思维点拨】在求解三角函数的图象变换时,需利用三角函数的图象变换公式,即y=f(x±a)的图象相对于y=f(x)的图象向左(右)平移a个单位.同时,需对于各种三角函数的图象有一定的了解,以便准确判断图象的变化情况.题型七三角函数的恒等变换例8已知cosα=12,且α∈(0,π2),则sin2α的值为.答案】34解析】∵cosα=12,∴sinα=√3/2sin2α=2sinαcosα=√3/2×1/2=3/4易错点】忘记利用三角函数的恒等变换公式思维点拨】在求解三角函数的恒等变换时,需熟练掌握三角函数的基本恒等式和常用恒等式,从而简化计算.同时,需注意根据已知条件确定函数值的正负,避免出现多解或无解的情况.已知角α的终边所在的直线方程,可以通过设出终边上一点的坐标,求出此点到原点的距离,然后利用三角函数的定义来解决相关问题。
2023年高考数学(全国甲卷文科)真题详细解读及评析

2023年高考数学真题完全解读(全国甲卷文科)适用省份四川、广西、贵州、西藏整I试卷总评2023年高考数学全国卷全面考查了数学抽象、逻辑推理、数学建模、直观想象、数学运算和数据分析等学科核心素养,体现基础性、综合性、应用性和创新性的考查要求,突出理性思维,发挥出数学学科在人才选拔中的重要作用。
一、 题型与分值分布题型:(1)单选题12道,每题5分共60分;(2)填空题4道,每题5分共20分;(3)解答题三道,每题12分共60分;(4)选做题2道,每题10分。
二、 题目难度和复杂度三、知识点覆盖详细情况说明难度级别具体试题总分值整体评价★ ☆☆☆☆第1题、第2题、第4题、第13题、第15题25分整体试卷难度偏 易,整体复杂度不高,综合知识点大多都是2个左右★ ★☆☆☆第3题、第5题、第6题、第14题、第17题、第22题、第23题42分★ ★★☆☆第7题、第8题、第9题、第10题、第18题、第19题44分★ ★★★☆第11题、第20题、第21题29分★ ★★★★第12题、第16题10分知识点题型题目数量总分值整体评价集合单选题1个15分复数单选题1个15分平面向量单选题1个15分程序框图单选题1个15分主干知识考查全而,题目数量设置均衡;与课程标准保持了一致性。
数列单选题1个填空题1个210分三角函数单选题1个解答题1个217分概率与统计单选题1个解答题1个217分立体几何单选题1个填空题1个解答题1个322分圆锥曲线单选题2个解答题1个322分函数与导数单选题2个填空题1个解答题1个427分极坐标与参数方程选做题1个110分不等式填空题1个(线性规划问题)选做题1个215分四、高考试卷命题探究2023年高考数学全国卷在命制情境化试题过程中,通过对阅读题的分析,可以发现今年的高考命题在素材使用方而,对文字数量加以控制,阅读理解雄度也有所降低:在抽象数学问题方而,力图设置合理的思维强度和抽象程度;在解决问题方面,通过设置合适的运算过程和运算量,力求使情境化试题达到试题 要求层次与考生认知水平的契合与贴切。
2024年高考文科数学全国甲卷+答案详解

2024年高考文科数学全国甲卷+答案详解(试题部分)一、单选题1.集合{}1,2,3,4,5,9A =,{}1B x x A =+∈,则A B =( ) A .{}1,2,3,4B .{}1,2,3C .{}3,4D .{}1,2,92.设z =,则z z ⋅=( ) A .-iB .1C .-1D .23.若实数,x y 满足约束条件43302202690x y x y x y −−≥⎧⎪−−≤⎨⎪+−≤⎩,则5z x y =−的最小值为( )A .5B .12C .2−D .72−4.等差数列{}n a 的前n 项和为n S ,若91S =,37a a +=( ) A .2−B .73C .1D .295.甲、乙、丙、丁四人排成一列,丙不在排头,且甲或乙在排尾的概率是( ) A .14 B .13C .12D .236.已知双曲线2222:1(0,0)y x C a b a b−=>>的上、下焦点分别为()()120,4,0,4F F −,点()6,4P −在该双曲线上,则该双曲线的离心率为( ) A .4B .3C .2D7.曲线()631f x x x =+−在()0,1−处的切线与坐标轴围成的面积为( )A .16BC .12D. 8.函数()()2e e sin x xf x x x −=−+−在区间[ 2.8,2.8]−的大致图像为( )A .B .C .D .9.已知cos cos sin ααα=−πtan 4α⎛⎫+= ⎪⎝⎭( )A.1 B.1 CD.110.设αβ、是两个平面,m n 、是两条直线,且m αβ=.下列四个命题:①若//m n ,则//n α或//n β ②若m n ⊥,则,n n αβ⊥⊥③若//n α,且//n β,则//m n ④若n 与α和β所成的角相等,则m n ⊥ 其中所有真命题的编号是( )A .①③B .②④C .①②③D .①③④11.在ABC 中内角,,A B C 所对边分别为,,a b c ,若π3B =,294b ac =,则sin sin A C +=( ) A .32BCD二、填空题12.函数()sin f x x x =在[]0,π上的最大值是 . 13.已知1a >,8115log log 42a a −=−,则=a . 14.曲线33y x x =−与()21y x a =−−+在()0,∞+上有两个不同的交点,则a 的取值范围为 . 三、解答题15.已知等比数列{}n a 的前n 项和为n S ,且1233n n S a +=−. (1)求{}n a 的通项公式; (2)求数列{}n S 的通项公式.16.如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,四边形ABCD 与四边形ADEF 均为等腰梯形,//,//BC AD EF AD ,4,2AD AB BC EF ====,ED FB =M 为AD 的中点.(1)证明://BM 平面CDE ; (2)求点M 到ABF 的距离.17.已知函数()()1ln 1f x a x x =−−+. (1)求()f x 的单调区间;(2)若2a ≤时,证明:当1x >时,()1e xf x −<恒成立.18.设椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2M ⎛⎫ ⎪⎝⎭在C 上,且MF x ⊥轴.(1)求C 的方程;(2)过点()4,0P 的直线与C 交于,A B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q ,证明:AQ y ⊥轴. 19.在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为cos 1ρρθ=+.(1)写出C 的直角坐标方程;(2)设直线l :x ty t a =⎧⎨=+⎩(t 为参数),若C 与l 相交于AB 、两点,若2AB =,求a 的值. 20.实数,a b 满足3a b +≥. (1)证明:2222a b a b +>+;(2)证明:22226a b b a −+−≥.2024年高考文科数学全国甲卷+答案详解(答案详解)一、单选题1.集合{}1,2,3,4,5,9A =,{}1B x x A =+∈,则A B =( ) A .{}1,2,3,4 B .{}1,2,3C .{}3,4D .{}1,2,9【答案】A【解析】根据题意得,对于集合B 中的元素x ,满足11,2,3,4,5,9x +=, 则x 可能的取值为0,1,2,3,4,8,即{0,1,2,3,4,8}B =,于是{1,2,3,4}A B ⋂=. 故选A2.设z =,则z z ⋅=( ) A .-i B .1C .-1D .2【答案】D【解析】根据题意得,z =,故22i 2zz =−=. 故选D3.若实数,x y 满足约束条件43302202690x y x y x y −−≥⎧⎪−−≤⎨⎪+−≤⎩,则5z x y =−的最小值为( )A .5B .12C .2−D .72−【答案】D【解析】实数,x y 满足43302202690x y x y x y −−≥⎧⎪−−≤⎨⎪+−≤⎩,作出可行域如图:由5z x y =−可得1155y x z =−,即z 的几何意义为1155y x z =−的截距的15−, 则该直线截距取最大值时,z 有最小值,此时直线1155y x z =−过点A , 联立43302690x y x y −−=⎧⎨+−=⎩,解得321x y ⎧=⎪⎨⎪=⎩,即3,12A ⎛⎫⎪⎝⎭,则min 375122z =−⨯=−. 故选D.4.等差数列{}n a 的前n 项和为n S ,若91S =,37a a +=( ) A .2− B .73C .1D .29【答案】D【分析】可以根据等差数列的基本量,即将题目条件全转化成1a 和d 来处理,亦可用等差数列的性质进行处理,或者特殊值法处理.【解析】方法1:利用等差数列的基本量 由91S =,根据等差数列的求和公式,911989193612S a d a d ⨯=+=⇔+=, 又371111222628(936)99a a a d a d a d a d +=+++=+=+=.故选D方法2:利用等差数列的性质根据等差数列的性质,1937a a a a +=+,由91S =,根据等差数列的求和公式, 193799()9()122a a a a S ++===,故3729a a +=. 故选D方法3:特殊值法不妨取等差数列公差0d =,则9111199S a a ==⇒=,则371229a a a +==. 故选D5.甲、乙、丙、丁四人排成一列,丙不在排头,且甲或乙在排尾的概率是( ) A .14 B .13C .12D .23【答案】B【分析】分类讨论甲乙的位置,得到符合条件的情况,然后根据古典概型计算公式进行求解. 【解析】当甲排在排尾,乙排第一位,丙有2种排法,丁就1种,共2种; 当甲排在排尾,乙排第二位或第三位,丙有1种排法,丁就1种,共2种;于是甲排在排尾共4种方法,同理乙排在排尾共4种方法,于是共8种排法符合题意;基本事件总数显然是44A 24=,根据古典概型的计算公式,丙不在排头,甲或乙在排尾的概率为81243=. 故选B6.已知双曲线2222:1(0,0)y x C a b a b−=>>的上、下焦点分别为()()120,4,0,4F F −,点()6,4P −在该双曲线上,则该双曲线的离心率为( )A.4 B .3 C .2 D 【答案】C【分析】由焦点坐标可得焦距2c ,结合双曲线定义计算可得2a ,即可得离心率. 【解析】根据题意,()10,4F −、()20,4F 、()6,4P −,则1228F F c ==,110PF =,26PF ,则1221064a PF PF =−=−=,则28224c e a ===. 故选C.7.曲线()631f x x x =+−在()0,1−处的切线与坐标轴围成的面积为( )A .16B C .12D . 【答案】A【分析】先求出切线方程,再求出切线的截距,从而可求面积.【解析】()563f x x ='+,所以()03f '=,故切线方程为3(0)131y x x =−−=−,故切线的横截距为13,纵截距为1−,故切线与坐标轴围成的面积为1111236⨯⨯=故选A.8.函数()()2e e sin x xf x x x −=−+−在区间[ 2.8,2.8]−的大致图像为( )A .B .C .D .【答案】B【分析】利用函数的奇偶性可排除A 、C ,代入1x =可得()10f >,可排除D.【解析】()()()()()22e e sin e e sin x x x xf x x x x x f x −−−=−+−−=−+−=,又函数定义域为[]2.8,2.8−,故该函数为偶函数,AC 错误, 又()11πe 11111e sin11e sin 10e e 622e 42e f ⎛⎫⎛⎫=−+−>−+−=−−>−> ⎪ ⎪⎝⎭⎝⎭, D 错误.故选B.9.已知cos cos sin ααα=−πtan 4α⎛⎫+= ⎪⎝⎭( )A .1B .1CD .1【答案】B 【分析】先将cos cos sin αα−α弦化切求得tan α,再根据两角和的正切公式即可求解.【解析】因为cos cos sin ααα=−11tan =−α,tan 1⇒α=,所以tan 1tan 11tan 4α+π⎛⎫==α+ ⎪−α⎝⎭, 故选B.10.设αβ、是两个平面,m n 、是两条直线,且m αβ=.下列四个命题:①若//m n ,则//n α或//n β ②若m n ⊥,则,n n αβ⊥⊥③若//n α,且//n β,则//m n ④若n 与α和β所成的角相等,则m n ⊥ 其中所有真命题的编号是( )A .①③B .②④C .①②③D .①③④【答案】A【分析】根据线面平行的判定定理即可判断①;举反例即可判断②④;根据线面平行的性质即可判断③. 【解析】①,当n ⊂α,因为//m n ,m β⊂,则//n β,当n β⊂,因为//m n ,m α⊂,则//n α, 当n 既不在α也不在β内,因为//m n ,,m m αβ⊂⊂,则//n α且//n β,①正确; ②,若m n ⊥,则n 与,αβ不一定垂直,②错误;③,过直线n 分别作两平面与,αβ分别相交于直线s 和直线t ,因为//n α,过直线n 的平面与平面α的交线为直线s ,则根据线面平行的性质定理知//n s ,同理可得//n t ,则//s t ,因为s ⊄平面β,t ⊂平面β,则//s 平面β,因为s ⊂平面α,m αβ=,则//s m ,又因为//n s ,则//m n ,③正确;④,若,m n αβ⋂=与α和β所成的角相等,如果//,//αβn n ,则//m n ,④错误; ①③正确, 故选A.11.在ABC 中内角,,A B C 所对边分别为,,a b c ,若π3B =,294b ac =,则sin sin A C +=( )A .32BC.2D【答案】C【分析】利用正弦定理得1sin sin 3A C =,再利用余弦定理有22134a c ac +=,再利用正弦定理得到22sin sin A C +的值,最后代入计算即可. 【解析】因为29,34B b ac π==,则由正弦定理得241sin sin sin 93A CB ==. 根据余弦定理可得:22294b a c ac ac =+−=,即:22134a c ac +=,根据正弦定理得221313sin sin sin sin 412A C A C +==,所以2227(sin sin )sin sin 2sin sin 4A C A C A C +=++=, 因为,A C 为三角形内角,则sin sin 0A C +>,则sin sin A C +. 故选C. 二、填空题12.函数()sin f x x x =在[]0,π上的最大值是 . 【答案】2【分析】结合辅助角公式化简成正弦型函数,再求给定区间最值即可.【解析】()πsin 2sin 3f x x x x ⎛⎫==− ⎪⎝⎭,当[]0,πx ∈时,ππ2π,333x ⎡⎤−∈−⎢⎥⎣⎦,当ππ32x −=时,即5π6x =时,()max 2f x =.答案为:2 13.已知1a >,8115log log 42a a −=−,则=a . 【答案】64【分析】将8log ,log 4a a 利用换底公式转化成2log a 来表示即可求解. 【解析】由题28211315log log log 4log 22a a a a −=−=−,整理得()2225log 60log a a −−=, 2log 1a ⇒=−或2log 6a =,又1a >,所以622log 6log 2a ==,故6264a ==答案为:64.14.曲线33y x x =−与()21y x a =−−+在()0,∞+上有两个不同的交点,则a 的取值范围为 .【答案】()2,1−【分析】将函数转化为方程,令()2331x x x a −=−−+,分离参数a ,构造新函数()3251,g x x x x =+−+结合导数求得()g x 单调区间,画出大致图形数形结合即可求解.【解析】令()2331x x x a −=−−+,即3251a x x x =+−+,令()()32510,g x x x x x =+−+>则()()()2325351g x x x x x =+−=+−',令()()00g x x '=>得1x =,当()0,1x ∈时,()0g x '<,()g x 单调递减,当()1,x ∞∈+时,()0g x '>,()g x 单调递增,()()01,12g g ==−,因为曲线33y x x =−与()21y x a =−−+在()0,∞+上有两个不同的交点,所以等价于y a =与()g x 有两个交点,所以()2,1a ∈−.答案为:()2,1− 三、解答题15.已知等比数列{}n a 的前n 项和为n S ,且1233n n S a +=−. (1)求{}n a 的通项公式; (2)求数列{}n S 的通项公式.【答案】(1)153n n a −⎛⎫= ⎪⎝⎭(2)353232n⎛⎫− ⎪⎝⎭ 【分析】(1)利用退位法可求公比,再求出首项后可求通项; (2)利用等比数列的求和公式可求n S .【解析】(1)因为1233n n S a +=−,故1233n n S a −=−,所以()12332n n n a a a n +=−≥即153n n a a +=故等比数列的公比为53q =,故1211523333533a a a a =−=⨯−=−,故11a =,故153n n a −⎛⎫= ⎪⎝⎭.(2)根据等比数列求和公式得5113353523213n nnS ⎡⎤⎛⎫⨯−⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦==− ⎪⎝⎭−. 16.如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,四边形ABCD 与四边形ADEF 均为等腰梯形,//,//BC AD EF AD ,4,2AD AB BC EF ====,ED FB =M 为AD 的中点.(1)证明://BM 平面CDE ; (2)求点M 到ABF 的距离. 【答案】(1)见详解;【分析】(1)结合已知易证四边形BCDM 为平行四边形,可证//BM CD ,进而得证;(2)作FO AD ⊥,连接OB ,易证,,OB OD OF 三垂直,结合等体积法M ABF F ABM V V −−=即可求解. 【解析】(1)因为//,2,4,BC AD BC AD M ==为AD 的中点,所以//,BC MD BC MD =,四边形BCDM 为平行四边形,所以//BM CD ,又因为BM ⊄平面CDE ,CD ⊂平面CDE ,所以//BM 平面CDE ; (2)如图所示,作BO AD ⊥交AD 于O ,连接OF ,因为四边形ABCD 为等腰梯形,//,4,BC AD AD =2AB BC ==,所以2CD =,结合(1)BCDM 为平行四边形,可得2BM CD ==,又2AM =,所以ABM 为等边三角形,O 为AM 中点,所以OB =ADEF 为等腰梯形,M 为AD 中点,所以,//EF MD EF MD =,四边形EFMD 为平行四边形,FM ED AF ==,所以AFM △为等腰三角形,ABM 与AFM △底边上中点O 重合,OF AM ⊥,3OF ==,因为222OB OF BF +=,所以OB OF ⊥,所以,,OB OD OF 互相垂直,等体积法可得M ABF F ABM V V −−=,2112333F ABM ABM V S FO −=⋅=⋅=△,2222222cos2FA AB FBFAB FAB FA AB+−+−∠===∠=⋅11sin 222FAB S FA AB FAB =⋅⋅∠==△,设点M 到FAB 的距离为d ,则1133M FAB F ABM FAB V V S d d −−==⋅⋅==△解得d =M 到ABF17.已知函数()()1ln 1f x a x x =−−+.(1)求()f x 的单调区间;(2)若2a ≤时,证明:当1x >时,()1e x f x −<恒成立.【答案】(1)见解析(2)见解析【分析】(1)求导,含参分类讨论得出导函数的符号,从而得出原函数的单调性; (2)先根据题设条件将问题可转化成证明当1x >时,1e 21ln 0x x x −−++>即可.【解析】(1)()f x 定义域为(0,)+∞,11()ax f x a x x'−=−= 当0a ≤时,1()0ax f x x −'=<,故()f x 在(0,)+∞上单调递减;当0a >时,1,x a ∞⎛⎫∈+ ⎪⎝⎭时,()0f x '>,()f x 单调递增,当10,x a ⎛⎫∈ ⎪⎝⎭时,()0f x '<,()f x 单调递减. 综上所述,当0a ≤时,()f x 在(0,)+∞上单调递减;0a >时,()f x 在1,a ∞⎛⎫+ ⎪⎝⎭上单调递增,在10,a ⎛⎫ ⎪⎝⎭上单调递减. (2)2a ≤,且1x >时,111e ()e (1)ln 1e 21ln x x x f x a x x x x −−−−=−−+−≥−++,令1()e 21ln (1)x g x x x x −=−++>,下证()0g x >即可.11()e 2x g x x −'=−+,再令()()h x g x '=,则121()e x h x x−'=−,显然()h x '在(1,)+∞上递增,则0()(1)e 10h x h ''>=−=,即()()g x h x ='在(1,)+∞上递增,故0()(1)e 210g x g ''>=−+=,即()g x 在(1,)+∞上单调递增, 故0()(1)e 21ln10g x g >=−++=,问题得证18.设椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2M ⎛⎫ ⎪⎝⎭在C 上,且MF x ⊥轴. (1)求C 的方程;(2)过点()4,0P 的直线与C 交于,A B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q ,证明:AQ y ⊥轴.【答案】(1)22143x y += (2)见解析【分析】(1)设(),0F c ,根据M 的坐标及MF ⊥x 轴可求基本量,故可求椭圆方程. (2)设:(4)AB y k x =−,()11,A x y ,()22,B x y ,联立直线方程和椭圆方程,用,A B 的坐标表示1Q y y −,结合韦达定理化简前者可得10Q y y −=,故可证AQ y ⊥轴.【解析】(1)设(),0F c ,由题设有1c =且232b a =,故2132a a −=,故2a =,故b = 所以椭圆方程为22143x y +=. (2)直线AB 的斜率必定存在,设:(4)AB y k x =−,()11,A x y ,()22,B x y ,由223412(4)x y y k x ⎧+=⎨=−⎩可得()2222343264120k x k x k +−+−=, 故()()422Δ102443464120k k k =−+−>,故1122k −<<,又22121222326412,3434k k x x x x k k −+==++, 而5,02N ⎛⎫ ⎪⎝⎭,故直线225:522y BN y x x ⎛⎫=− ⎪⎝⎭−,故22223325252Q y y y x x −−==−−, 所以()1222112225332525Q y x y y y y y x x ⨯−+−=+=−− ()()()12224253425k x x k x x −⨯−+−=−()222212122264123225825834342525k k x x x x k k k k x x −⨯−⨯+−++++==−− 2222212824160243234025k k k k k x −−+++==−,故1Q y y =,即AQ y ⊥轴.19.在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为cos 1ρρθ=+.(1)写出C 的直角坐标方程;(2)设直线l :x t y t a=⎧⎨=+⎩(t 为参数),若C 与l 相交于A B 、两点,若2AB =,求a 的值. 【答案】(1)221y x =+ (2)34a =【分析】(1)根据cos xρρθ⎧⎪=⎨=⎪⎩C 的直角方程. (2)将直线的新的参数方程代入C 的直角方程,法1:结合参数s 的几何意义可得关于a 的方程,从而可求参数a 的值; 法2:将直线的直角方程与曲线的直角方程联立,结合弦长公式可求a 的值.【解析】(1)由cos 1ρρθ=+,将cos x ρρθ⎧⎪=⎨=⎪⎩cos 1ρρθ=+,1x =+,两边平方后可得曲线的直角坐标方程为221y x =+. (2)对于直线l 的参数方程消去参数t ,得直线的普通方程为y x a =+. 法1:直线l 的斜率为1,故倾斜角为π4,故直线的参数方程可设为x y a ⎧=⎪⎪⎨⎪=+⎪⎩,s ∈R . 将其代入221y x =+中得()221)210s a s a +−+−=设,A B 两点对应的参数分别为12,s s,则)()212121,21s s a s s a +=−−=−,且()()22Δ818116160a a a =−−−=−>,故1a <,12AB s s ∴=−2=,解得34a =. 法2:联立221y x a y x =+⎧⎨=+⎩,得22(22)10x a x a +−+−=,()22Δ(22)41880a a a =−−−=−+>,解得1a <,设()()1122,,,A x y B x y ,2121222,1x x a x x a ∴+=−=−,则AB =2=, 解得34a = 20.实数,a b 满足3a b +≥.(1)证明:2222a b a b +>+;(2)证明:22226a b b a −+−≥.【答案】(1)见解析(2)见解析【分析】(1)直接利用22222()a b a b +≥+即可证明.(2)根据绝对值不等式并结合(1)中结论即可证明.【解析】(1)因为()()2222222022a b a ab b a b b a −+=−−++=≥, 当a b =时等号成立,则22222()a b a b +≥+,因为3a b +≥,所以22222()a b a b a b +≥+>+;(2)222222222222()a b b a a b b a a b a b −+−≥−+−=+−+ 22222()()()()(1)326a b a b a b a b a b a b =+−+≥+−+=++−≥⨯=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考最有可能考的50题(数学文课标版)(30道选择题+20道非选择题)一.选择题(30道)1.集合}032|{2<--=x x x M ,{|220}N x x =->,则N M 等于 A .(1,1)- B .(1,3) C .(0,1) D .(1,0)-2.知全集U=R ,集合}{|A x y ==,集合{|0B x =<x <2},则()U C A B ⋃=A .[1,)+∞B .()1+∞,C .[0)∞,+D .()0∞,+ 3.设a 是实数,且112a i i +++是实数,则a = A.1 B.12C.32D.2 4. i 是虚数单位,复数1i z =-,则22z z+= A .1i --B .1i -+C .1i +D .1i -5. “a=-1”是“直线2a x y 60-+=与直线4x (a 3)y 90--+=互相垂直”的 A.充分不必要条件 B.必要不充分条件 C.充要条件 C.既不充分也不必要条件6.已知命题p :“βαsin sin =,且βαcos cos =”,命题q :“βα=”。
则命题p 是命题q 的A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分与不必要条件 7.已知a R ∈,则“2a >”是“22a a >”的 A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既非充分也非必要条件8.执行如图所示的程序框图,若输出的结果是9,则判断框内m 的取值范围是 (A )(42,56] (B )(56,72] (C )(72,90] (D )(42,90)9.如图所示的程序框图,若输出的S 是30,则①可以为A .?2≤nB .?3≤nC .?4≤nD .?5≤n 10.在直角坐标平面内,已知函数()log (2)3(0a f x x a =++>且1)a ≠的图像恒过定点P ,若角θ的终边过点P ,则2cos sin 2θθ+的值等于( ) A .12- B .12C.710 D .710- 11.已知点M ,N 是曲线x y πsin =与曲线x y πcos =的两个不同的交点,则|MN|的最小值为( ) A .1 B .2 C.3D .212.如图所示为函数()()2sin f x x ωϕ=+(0,0ωϕπ>≤≤)的部分图像,其中,A B 两点之间的距离为5,那么()1f -=( )A .2B .3C .3-D .2-13.设向量a 、b 满足:1=a ,2=b ,()0⋅-=a a b ,则a 与b 的夹角是( )A .30︒B .60︒C .90︒D .120︒ 14.如图,D 、E 、F 分别是ABC ∆的边AB 、BC 、CA 的中点,则AF DB -=( )D A .FDB .FCxyOABC .FED .BE15.一个体积为123的正三棱柱的三视图如图所示, 则该三棱柱的侧视图的面积为( ) (A )6 3 (B )8 (C )8 3 (D )1216.,,,A B C D 是同一球面上的四个点,其中ABC ∆是正三角形,AD ⊥平面ABC ,26AD AB ==则该球的体积为( )A .323πB . 48πC . 643πD . 163π17. A ax a x xA ∉⎭⎬⎫⎩⎨⎧<+-=1,0若已知集合,则实数a 取值范围为( ) A ),1[)1,(+∞⋃--∞ B [-1,1] C ),1[]1,(+∞⋃--∞ D (-1,1]18.设233y x M +=,()xyyx P N 3,3==+(其中y x <<0),则,,M N P 大小关系为( )A .P N M << B .M P N << C .N M P << D .M N P <<19.若a 是从集合{0,1,2,3}中随机抽取的一个数,b 是从集合{0,1,2}中随机抽取的一个数,则关于x 的方程2220x ax b ++=有实根的概率是 ( )A .56B .23C .712D .3420.右图是1,2两组各7名同学体重(单位:kg ) 数据的茎叶图.设1,2两组数据的平均数依次 为1x 和2x ,标准差依次为1s 和2s ,那么( ) (注:标准差222121[()()()]n s x x x x x x n=-+-++-,其中x 为12,,,n x x x 的平均数)(A )12x x >,12s s > (B )12x x >,12s s < (C )12x x <,12s s < (D )12x x <,12s s >21.设S n 是等差数列{}n a 的前n 项和,若 45710,15,21S S S ≥≤≥,则7a 的取值区间为( ) A. ,7]-∞( B. [3,4] C. [4,7] D. [3,7]22.若等比数列}{n a 的前n 项和23-⋅=n n a S ,则=2aA.4B.12C.24D.3623.抛物线y 2=2px (p >0)的焦点为F ,点A 、B 在此抛物线上,且∠AFB =90°,弦AB 的中点M 在其准线上的射影为M ′,则|MM ′||AB |的最大值为( ) (A )22 (B )32(C )1 (D ) 3 24.已知双曲线1222=-y x 的焦点为21,F F ,点M 在双曲线上,且120MF MF ⋅=,则点M 到x 轴的距离为( ) A .3 B .332 C .34D .35 25.若直线2x y -=被22:()4C x a y -+=所截得的弦长为,则实数a 的值为( )A.1-B.1或3C.2-或6D.0或426.设函数21()8(0)()3(0)1x x f x x x x -<=≥⎧⎪⎨⎪+-⎩,若f (a )>1,则实数a 的取值范围是( )A.(2,1)-B.(,2)-∞-∪(1,)+∞C.(1,+∞)D.(,1)-∞-∪(0,+∞) 27.定义在R 上的函数(1)y f x =-的图像关于(1,0)对称,且当(),0x ∈-∞时,()()0f x xf x '+<(其中()f x '是()f x 的导函数),若()()()()0.30.333,log 3log 3,a f b f ππ=⋅=⋅3311log log 99c f ⎛⎫⎛⎫=⋅⎪ ⎪⎝⎭⎝⎭,则,,a b c 的大小关系是( )A. a b c >>B. c b a >>C. c a b >>D. a c b >> 28.曲线2x y e x =+在点(0,1)处的切线方程为( )A .1y x =+B .1y x =-C .31y x =+D .1y x =-+29.函数sin xy x=,()(),00,x ππ∈-的图像可能是下列图像中的( ).②()p f x :是以T 为周期的函数,':()q f x 是以T 为周期的函数 ③()p f x :在区间(,)-∞+∞上为增函数,':()0q f x >在(,)-∞+∞恒成立 ④()p f x :在0x 处取得极值,'0:()0q f x =A .①②③ B.①②④ C.①③④ D.②③④二.填空题(8道)31.已知一组抛物线211,2y ax bx =++其中a 为2、4中任取的一个数,b 为1、3、5中任取的一个数,从这些抛物线中任意抽取两条,它们在与直线x=l 交点处的切线相互平行的概 率是 。
32.已知双曲线的两条渐近线均和圆C :x 2+y 2-6x+5=0相切,且双曲线的右焦点为抛物线x y 122=的焦点,则该双曲线的标准方程为 .33.一个几何体的三视图如图所示,则这个几何体的表面积与其外接球面积之比为________.34.函数f (x )=x 3+ax (x ∈R )在x =l处有极正视图侧视图俯视图值,则曲线y = f (x )在原点处的切线方程 是_____35.△ABC 中,若∠A、∠B、∠C 所对的边a ,b ,c 均成等差数列,△ABC 的面积为43,那么b= 。
36.若⎩⎨⎧≥≤||1x y y ,则y x 3+的最大值是_________.37.为了了解“预防禽流感疫苗”的使用情况,某市卫生部门对本地区9月份至11月份注射疫苗的所有养鸡场进行了调查,根据下图表提供的信息,可以得出这三个月本地区每月注射了疫苗的鸡的数量平均为 万只。
38.记123k k k k k S n =+++⋅⋅⋅+, 当123k =⋅⋅⋅, , , 时,观察下列等式:211122S n n =+, 322111326S n n n =++, 4323111424S n n n =++, 5434111152330S n n n n =++-, 6542515212S An n n Bn =+++,⋅⋅⋅ 可以推测,A B -= .三.解答题(12道)39.已知函数.(1)求函数的最小值和最小正周期; (2)设的内角的对边分别为且,,若,求的值.40.已知各项均不相等的等差数列{a n }的前四项和S 4=14,且a 1,a 3,a 7成等比数列.(1)求数列{a n }的通项公式; (2)设T n 为数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和,若T n ≤λa n +1对n ∈N *恒成立,求实数λ的最小值.41.衡阳市第一次联考后,某校对甲、乙两个文科班的数学考试成绩进行分析,规定:大于或等于120分为优秀,120分以下为非优秀.统计成绩后,得到如下的22⨯列联表,且已知在甲、乙两个文科班全部110人中随机抽取1人为优秀的概率为113.⑵根据列联表的数据,若按99.9%的可靠性要求,能否认为“成绩与班级有关系”;⑶若按下面的方法从甲班优秀的学生中抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号.试求抽到9号或10号的概率.参考公式与临界值表:))()()(()(22d b c a d c b a bc ad n K ++++-=.42.组,分组区间为(3.9,4.2],(4.2,4.5],…,(5.1,5.4].经过数据处理,得到如下频率分布表:,z的值;(Ⅱ)从样本中视力在(3.9,4.2]和(5.1,5.4]的所有同学中随机抽取两人,求两人的视力差的绝对值低于0.5的概率.43.如图四棱锥P ABCD-中,底面ABCD是平行四边形,090ACB∠=,PA⊥平面ABCD,1PA BC==,AB=F是BC的中点.(Ⅰ)求证:DA⊥平面PAC;(Ⅱ)试在线段PD上确定一点G,使CG∥平面PAF,并求三棱锥A-CDG的体积. 44.已知椭圆C的方程为:()222102x yaa+=>,其焦点在x轴上,离心率2e=.(1)求该椭圆的标准方程;(2)设动点()00,P x y满足A DCFPB(第45题)2OP OM ON =+,其中M ,N 是椭圆C 上的点,直线OM 与ON 的斜率之积为12-,求证:22002x y +为定值.(3)在(2)的条件下,问:是否存在两个定点,A B ,使得PA PB +为定值?若存在,给出证明;若不存在,请说明理由.45.本题主要考查抛物线的标准方程、简单的几何性质等基础知识,考查运算求解、推理论证的能力:如图,在平面直角坐标系xOy 中,抛物线的顶点在原点,焦点为F (1,0).过抛物线在x 轴上方的不同两点A 、B 作抛物线的切线AC 、BD ,与x 轴分别交于C 、D 两点,且AC 与BD 交于点M ,直线AD (1)求抛物线的标准方程;(2)求证:MN ⊥x 轴; (3)若直线MN 与x 轴的交点恰为F 求证:直线AB 过定点. 46.已知2()ln ,()3f x x x g x x ax ==-+-. (1) 求函数()f x 在[,2](0)t t t +>上的最小值;(2) 对一切(0,)x ∈+∞,2()()f x g x ≥恒成立,求实数a 的取值范围; (3) 证明:对一切(0,)x ∈+∞,都有12ln x x e ex>-成立. 47.已知函数()x e af x x-=,()ln g x a x a =+(1)1a =时,求()()()F x f x g x =-的单调区间;(2)若1x >时,函数()y f x =的图象总在函数()y g x =的图像的上方,求实数a 的取值范围.48.如图,⊙O 1与⊙O 2相交于A 、B 两点,过点A 作⊙O 1的切线交⊙O 2于点C ,过点B 作两圆的割线,分别交⊙O 1、⊙O 2于点D 、E ,DE 与AC 相交于点P . (1)求证:AD//EC ;(2)若AD 是⊙O 2的切线,且PA=6,PC =2,BD =9,求AD 的长。