利用向量内积计算立体几何中的“距离”和“夹角”

利用向量内积计算立体几何中的“距离”和“夹角”
利用向量内积计算立体几何中的“距离”和“夹角”

利用向量内积计算立体几何中的“距离”和“夹角”

摘要:向量内积(数量积)的定义及其坐标运算融向量、几何、代数知识于一体,成为许多数学知识的交汇点,是数形结合、转化的最佳纽带和桥梁,是用向量法计算立体几何中各种距离和夹角的最有力的基本工具,教学一线的教师教学中应给予足够的重视.

关键词:向量内积立体几何问题距离夹角

距离和夹角(两条异面直线之间的距离、点到平面的距离和异面直线所成的角、直线与平面所成的角、二面角等)是立体几何中的计算难点,也是考试热点.用传统知识和方法解决这些问题,往往要对图形做过多的分析,需要作辅助线和一些烦琐的拼凑技巧,对学生而言不易掌握.利用向量内积知识一般可将上述的问题转化为代数问题来解决,可避免许多繁难的图形分析,将问题的解决程序化和公式化,易于操作,学生也容易掌握,可大大降低思维难度,提高学生的解题能力.正如张奠宙教授说的,利用向量许多几何命题迎刃而解……比起综合方法需要“个别处理”的技巧,它是一个“一揽子”解决的手段.

1.求点到平面的距离

立体几何中的几种距离:两条异面直线之间的距离、直线与平面之间的距离、两平行平面之间的距离等一般都可化为求点到平面的距离.在无法(或难以)判断所引垂线的垂足位置时,利用公式

立体几何(角度、距离、体积)

立体几何 一、角度问题。 1. 如图,四棱锥P ABCD -中,PA ABCD ⊥底面, 2,4,3 BC CD AC ACB ACD π ===∠=∠=,F 为PC 的中点,AF PB ⊥. (1)求PA 的长; (2)求二面角B AF D --的正弦值. 【答案】

2. 如图,圆锥顶点为p .底面圆心为o ,其母线与底面所成的角为22.5°.AB 和CD 是底 面圆O 上的两条平行的弦,轴OP 与平面PCD 所成的角为60°. (Ⅰ)证明:平面PAB 与平面PCD 的交线平行于底面; (Ⅱ)求cos COD ∠. 【答案】解: (Ⅰ) PAB P D ,////C m AB CD CD PCD AB PCD ?=??设面面直线且面面 //AB m ?直线 ABCD m ABCD AB 面直线面//?? . 所以,ABCD D P PAB 的公共交线平行底面与面面C . (Ⅱ)

r PO OPF F CD r =??=∠5.22tan .60,由题知,则的中点为线段设底面半径为. ? -?=?∠==????=?5.22tan 15.22tan 245tan ,2cos 5.22tan 60tan 60tan ,2COD r OF PO OF . )223(3)],1-2(3[2 1cos ,1-25.22tan 12cos 2cos 22-==+∠=??-∠=∠COD COD COD 212-17cos .212-17cos =∠=∠COD COD 所以. 3. 如图,在四面体BCD A -中,⊥AD 平面BCD ,22,2,==⊥BD AD CD BC .M 是 AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且QC AQ 3=. (1)证明://PQ 平面BCD ;(2)若二面角D BM C --的大小为060,求BDC ∠的大 小. 【答案】解:证明(Ⅰ)方法一:如图6,取MD 的中点F ,且M 是AD 中点,所以3AF FD =.因为P 是BM 中点,所以//PF BD ;又因为(Ⅰ)3AQ QC =且 3AF FD =,所以//QF BD ,所以面//PQF 面BDC ,且PQ ?面BDC ,所以 //PQ 面BDC ; 方法二:如图7所示,取BD 中点O ,且P 是BM 中点,所以1// 2 PO MD ;取CD 的三等分点H ,使3DH CH =,且3AQ QC =,所以11////42QH AD MD ,所以A B C D P Q M (第20题图)

空间几何中的角和距离的计算

空间角和距离的计算(1) 一 线线角 1.直三棱柱A 1B 1C 1-ABC ,∠BCA=900,点D 1,F 1分别是A 1B 1和A 1C 1的中点,若BC=CA=CC 1,求BD 1与AF 1所成角的余弦值. 2.在四棱锥P-ABCD 中,底面ABCD 是直角梯形,∠BAD=900,AD ∥BC ,AB=BC=a ,AD=2a ,且PA ⊥面ABCD ,PD 与底面成300角. (1)若AE ⊥PD ,E 为垂足,求证:BE ⊥PD ; (2)若AE ⊥PD ,求异面直线AE 与CD 所成角的大小. 二.线面角 1.正方体ABCD-A 1B 1C 1D 1中,E ,F 分别为BB 1、CD 的中点,且正方体的棱长为2. (1)求直线D 1F 和AB 和所成的角; (2)求D 1F 与平面AED 所成的角. F 1D 1B 1 C 1A 1 B A C A B C D P E C D E F D 1 C 1 B 1 A 1 A B

2.在三棱柱A 1B 1C 1-ABC 中,四边形AA 1B 1B 是菱形,四边形BCC 1B 1是矩形,C 1B 1⊥AB ,AB=4,C 1B 1=3,∠ABB 1=600,求AC 1与平面BCC 1B 1所成角的大小. 三.二面角 1.已知A 1B 1C 1-ABC 是正三棱柱,D 是AC 中点. (1)证明AB 1∥平面DBC 1; (2)设AB 1⊥BC 1,求以BC 1为棱,DBC 1与CBC 1为面的二面角的大小. 2.ABCD 是直角梯形,∠ABC=900,SA ⊥面ABCD ,SA=AB=BC=1,AD=0.5. (1)求面SCD 与面SBA 所成的二面角的大小; (2)求SC 与面ABCD 所成的角. 3.已知A 1B 1C 1-ABC 是三棱柱,底面是正三角形,∠A 1AC=600,∠A 1AB=450,求二面角B —AA 1—C 的大小. B 1 C 1 A 1 B A C D B 1 C 1 A 1B A C B A D C S B 1 C 1 B C A 1

全国高中数学优秀课评选:《9.6空间向量的夹角和距离公式》教学设计教案或说明

1 9.6空间向量的夹角和距离公式 三维目标: 知识与技能: ⒈使学生知道如何建立空间直角坐标系,掌握向量的长度公式、 夹角公式、两点间距离公式、中点坐标公式,并会用这些公式 解决有关问题; ⒉使学生经历对从生活中如何抽象出数学模型的过程,从而提高 分析问题、解决问题的能力. 过程与方法: 通过采用启发探究、讲练结合、分组讨论等教学方法使学生在 积极活跃的思维过程中,从“懂”到“会”到“悟”. 情感、态度和价值观:⒈通过自主探究与合作交流的教学环节的设置,激发学生的学习 热情和求知欲,充分体现学生的主体地位; ⒉通过数形结合的思想和方法的应用,让学生感受和体会数学的 魅力,培养学生“做数学”的习惯和热情. 教学重点:夹角公式、距离公式. 教学难点:数学模型的建立. 关键: 将生活中的问题转化为数学问题,建立恰当的空间直角坐标系,正确写出空 间向量的坐标. 教具准备:多媒体投影,实物投影仪. 教学过程: (一) 创设情境,新课导入 2008年5月16日,南昌可以说是万人空巷,大家都把自己的爱国热情聚集在圣火的传递上,让我们值得骄傲的是火炬传递中的一站就是我们的南昌大学,其中途经我市雄伟而壮观的生米大桥,为记录传递过程,我校派了小记者在船上进行全景拍摄,出现了这么一个问题. 引例:在离江面高30米的大桥上,火炬手由东向西以2 m/s 的速度前进,小船以1 m/s 的速度由南向北匀速行驶,现在火炬手在桥上1D 点以东30米的1C 点处,小船在水平D 点以南方向30米的A 处(其中1D D ⊥水面) 求(1)6s 后火炬手与小船的距离? C 1 A

2 (2)此时的视线与开始时的视线所成角的余弦值? (不考虑火炬手与小船本身的大小). 今天我们从另一个角度来分析这个问题. 分析:建立数学模型 问题(1)转化为:如何求空间中两点间的距离? 问题(2)转化为:如何求空间中两条直线所成角的余弦值? 1、空间两点间的距离公式 111222(,,)(,,),A x y z B x y z 已知:,则 ()212121,,AB x x y y z z =--- (AB AB AB x =?= ,A B d =2、夹角公式 设()()111222,,,,,a x y z b x y z ==, 则,a OA b OB = = cos ,a b a b a b ?<>== (二)例题示范,形成技能 例1: 在离江面高30米的大桥上,火炬手由东向西以2 m/s 的速度前进,小船以1 m/s 的速度由南向北匀速行驶,现在火炬手在桥上1D 点以东30米的1C 点处,小船在水平D 点以南方向30米的A 处(其中1D D ⊥水面) 求(1)6s 后火炬手与小船的距离? (2)此时的视线与开始时的视线所成角的余弦值? (不考虑火炬手与小船本身的大小). 解:建立如图空间直角坐标系, x y z O 111(,,) A x y z 222(,,) B x y z a a b

立体几何中角度与距离求法

立体几何中角度距离的求法 一 空间向量及其运算 1 .空间向量的坐标表示及应用 (1)数量积的坐标运算 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a·b =___________. (2)共线与垂直的坐标表示 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a ∥b ?______________ a ⊥b ?__________?________________________(a ,b 均为非零向量). (3)模、夹角和距离公式 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则|a |=a·a =__________________, cos 〈a ,b 〉=a·b |a||b|=__________. 设A (a 1,b 1,c 1),B (a 2,b 2,c 2), 则d AB =|AB → |=___________. 2.空间向量的数量积及运算律 (1)数量积及相关概念 ①两向量的夹角,已知两个非零向量a ,b ,在空间任取一点O ,作OA →=a ,OB → =b ,则∠AOB 叫做向量a 与b 的夹角,记作____________,其范围是____________,若〈a ,b 〉=π2,则 称a 与b __________,记作a ⊥b . ②两向量的数量积,已知空间两个非零向量a ,b ,则____________叫做向量a ,b 的数量积,记作__________,即__________________. (2)空间向量数量积的运算律①结合律:(λa )·b =____________; ②交换律:a·b =__________; ③分配律:a·(b +c )=__________. 2.共线向量、共面向量定理和空间向量基本定理 (1)共线向量定理对空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是 ________________________. 推论,如图所示,点P 在l 上的充要条件是:OP →=OA → +t a ① 其中a 叫直线l 的方向向量,t ∈R ,在l 上取AB → =a , 则①可化为OP →=________或OP →=(1-t )OA →+tOB → . (2)共面向量定理的向量表达式:p =____________,其中x ,y ∈R ,a ,b 为不共线向量,推论的表达式为MP →=xMA →+yMB →或对空间任意一点O ,有OP →=____________或OP →=xOM → +yOA →+zOB → ,其中x +y +z =______. (3)空间向量基本定理,如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =____________,把{a ,b ,c }叫做空间的一个基底.

利用空间向量求空间角和距离

利用空间向量求空间角和距离 A 级——夯基保分练 1.如图所示,在正方体ABCD -A 1B 1C 1D 1中,已知M ,N 分别是BD 和AD 的中点,则B 1M 与D 1N 所成角的余弦值为( ) A.30 30 B .3015 C. 3010 D. 1515 解析:选C 建立如图所示的空间直角坐标系.设正方体的棱长为2,则B 1(2,2,2),M (1,1,0),D 1(0,0,2),N (1,0,0),∴B 1M ―→ =(-1,-1,-2),D 1N ―→ =(1,0,-2), ∴B 1M 与D 1N 所成角的余弦值为|B 1M ―→·D 1N ―→ | |B 1M ―→|·|D 1N ―→|= |-1+4|1+1+4×1+4=30 10 . 2.如图,已知长方体ABCD -A 1B 1C 1D 1中,AD =AA 1=1,AB =3,E 为线段AB 上一点,且AE =1 3AB ,则DC 1与平面D 1EC 所成角的 正弦值为( ) A.33535 B .277 C.33 D.24 解析:选A 如图,以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则C 1(0,3,1),D 1(0,0,1),E (1,1,0),C (0,3,0), ∴DC 1―→=(0,3,1),D 1E ―→=(1,1,-1),D 1C ―→ =(0,3,-1). 设平面D 1EC 的法向量为n =(x ,y ,z ), 则????? n ·D 1E ―→=0,n · D 1C ―→=0,即????? x +y -z =0,3y -z =0,取y =1,得n =(2,1,3). ∴cos DC 1―→,n =DC 1―→·n |DC 1―→|·|n| =33535, ∴DC 1与平面D 1EC 所成的角的正弦值为335 35 .

高中数学立体几何空间距离问题

立体几何空间距离问题 空间中距离的求法是历年高考考查的重点,其中以点与点、点到线、点到面的距离为基础,求其他几种距离一般化归为这三种距离. ●难点磁场 (★★★★)如图,已知ABCD是矩形,AB=a,AD=b,P A⊥平面ABCD,P A=2c,Q 是P A的中点. 求:(1)Q到BD的距离; (2)P到平面BQD的距离. P为RT△ABC所在平面α外一点,∠ACB=90°(如图) (1)若PC=a,∠PCA=∠PCB=60°,求P到面α的距离及PC和α所成的角 (2)若PC=24,P到AC,BC的距离都是6√10,求P到α的距离及PC和α所成角(3)若PC=PB=PA,AC=18,P到α的距离为40,求P到BC的距离

●案例探究 [例1]把正方形ABCD 沿对角线AC 折起成直二面角,点E 、F 分别是AD 、BC 的中点,点O 是原正方形的中心,求: (1)EF 的长; (2)折起后∠EOF 的大小. 命题意图:考查利用空间向量的坐标运算来解决立体几何问题,属★★★★级题目. 知识依托:空间向量的坐标运算及数量积公式. 错解分析:建立正确的空间直角坐标系.其中必须保证x 轴、y 轴、z 轴两两互相垂直. 技巧与方法:建系方式有多种,其中以O 点为 原点,以OB 、OC 、OD 的方向分别为x 轴、y 轴、z 轴的正方向最为简单. 解:如图,以O 点为原点建立空间直角坐标系O —xyz ,设正方形ABCD 边长为a ,则A (0,-22a ,0),B (22a ,0,0),C (0, 22a ,0),D (0,0, 22a ),E (0,-4 2 a , a ),F ( 42a , 4 2 a ,0) 21| |||,cos ,2||,2||8042)42)(42(420) 0,4 2 ,42(),42,42,0()2(23 ,43)420()4242()042(||)1(2 2222-=?>=<== - =?+-+?=?=-==∴=-+++-=OF OE OF OE OF OE a OF a OE a a a a a OF OE a a OF a a OE a EF a a a a a EF ∴∠EOF =120° [例2]正方体ABCD —A 1B 1C 1D 1的棱长为1,求异面直线A 1C 1与AB 1间的距离. 命题意图:本题主要考查异面直线间距离的求法,属★★★★级题目. 知识依托:求异面直线的距离,可求两异面直线的公垂线,或转化为求线面距离,或面面距离,亦可由最值法求得.

(完整版)空间向量的夹角、距离计算同步练习题(教师版).doc

空间向量的夹角、距离计算同步练习题 一、选择题 1. 已知 (2 , -5,1) , (2 , -2,4) , (1 ,-4,1) ,则直线 与 AB 的夹角为( C ) A B C AC A.30 0 B.45 0 C.600 D.90 0 2. 已知向量 a = (0 ,2, 1) , b = ( - 1, 1,- 2) ,则 a 与 b 的夹角为 ( ) A . 0° B . 45° C .90° D . 180° 解析:选 C.已知 a =(0 , 2, 1) , b = ( -1, 1,- 2) ,则 cos 〈 a , b 〉= 0,从而得出 a 与 b 的夹角为 90° . 3. 如果平面外一条直线和它在这个平面上的投影的方向向量分别是 a =( 0,2,1 ),b =( , , ),那么这条 直线与平面的夹角为 ( D ) A.90 0 B. 60 0 C.45 0 D. 30 4. 边长为 a 的正六边形 ABCDEF 所在平面为 α, PA ⊥ α 且 PA = a ,则 PC 与 α 所成的角为 ( A ) A.30° B.60° C.45° D.90° 5.在棱长为 a 的正方体 -1111中,是 1 的中点,则点 1 到平面 的距离是 ( ) ABCD A B CD M AA A MBD 6 30 3 6 A. B. a C. D. a 6 a 6 4 a 3 D a A ( a, 0 a ) A ( a, 0,0) M 1 B ( a a, 0) 解析: 以 为原点建立空间直角坐标系, 正方体棱长为 a , 0, a , ,则1 , , , , , 2 → → → 0,- 1 → 1 D (0,0,0) ,设 n = ( x ,y ,z ) 为平面 BMD 的法向量,则 n · BM =0,且 n ·DM = 0,而 BM = a , ,DM = a , 0, 2a 2a . 1 1 - y + 2z = 0, y = 2z , 令 z = 2,则 n = ( - 1,1,2) → ,a ) ,则 A 到平面 所以 所以 ,DA =( a, 0 1 1 1 1 x +2z = 0, x =- 2z , 的距离是 → = 6 . 答案: A = | DA ·n | BDM d 1 6 a | n | 6. 已知向量 n =( 1,0 , -1 )与平面 α垂直,且 α经过点 A ( 2,3,1 ),则点 P (4,3,2 )到 α的距离为 ( B ) A. 1 B. C. D. 2 7. 正方体 ABCD — A 1B 1C 1D 1 的棱长为 1, O 是 A 1C 1 的中点,则 O 到平面 ABC 1D 1 的距离为( A ) A. B. C. D. 8.若直线 l 的方向向量与平面 α 的法向量的夹角等于 120°,则直线 l 与平面 α 所成的角等于 ( ) A .120° B .60° C .30° D .60°或 30° 解析:选 C. 由题意得直线 l 与平面 α 的法向量所在直线的夹角为 60°,∴直线 l 与平面 α 所成的角为 90°- 60°= 30°. 9.设 , 都是边长为 1 的正方形,⊥面 ,则异面直线 与 BF 所成的角等于 ( ) ABCD ABEF FA ABCD AC A .45° B .30° C .90° D .60° 解析:选 D.以 B 为原点, BA 所在直线为 x 轴, 所在直线为 y 轴, BE 所在直线为 z 轴建立空间直角坐标系 ( 图 BC → → → → 1 → → 略 ) ,则 A (1,0,0) ,C (0,1,0) ,F (1,0,1) ,∴ AC = ( - 1,1,0) ,BF = (1,0,1) .∴ cos 〈 AC ,BF 〉=- 2. ∴〈 AC ,BF 〉 1

第43讲 利用空间向量求空间角和距离(讲)(解析版)

第43讲 利用空间向量求空间角和距离 思维导图 知识梳理 1.异面直线所成角 设异面直线a ,b 所成的角为θ,则cos θ=|a ·b | |a ||b |, 其中a ,b 分别是直线a ,b 的方向向量. 2.直线与平面所成角 如图所示,设l 为平面α的斜线,l ∩α=A ,a 为l 的方向向量,n 为平面α的法向量,φ为l 与α所成的角,则sin φ=|cos 〈a ,n 〉|=|a ·n | |a ||n | 3.二面角 (1)若AB ,CD 分别是二面角α-l -β的两个平面内与棱l 垂直的异面直线,则二面角(或其补角)的大小就是向量AB ―→与CD ―→ 的夹角,如图(1). (2)平面α与β相交于直线l ,平面α的法向量为n 1,平面β的法向量为n 2,〈n 1,n 2〉=θ,则二面角α -l -β为θ或π-θ.设二面角大小为φ,则|cos φ|=|cos θ|= |n 1·n 2| |n 1||n 2| ,如图(2)(3). 4.利用空间向量求距离 (1)两点间的距离

设点A (x 1,y 1,z 1),点B (x 2,y 2,z 2),则|AB |=|AB ―→ |=(x 1-x 2)2+(y 1-y 2)2+(z 1-z 2)2. (2)点到平面的距离 如图所示,已知AB 为平面α的一条斜线段,n 为平面α的法向量,则B 到平面α的距离为|BO ―→|=|AB ―→ ·n | |n | . 题型归纳 题型1 异面直线所成的角 【例1-1】(2020?济南模拟)已知直角梯形ABCD 中,//AD BC ,AB BC ⊥,1 2 AB AD BC == ,将直角梯形ABCD (及其内部)以AB 所在直线为轴顺时针旋转90?,形成如图所示的几何体,其中M 为CE 的中点. (1)求证:BM DF ⊥; (2)求异面直线BM 与EF 所成角的大小. 【分析】(1)建立空间坐标系,得出BM ,DF 的坐标,根据向量的数量积为0得出直线垂直; (2)计算BM 和EF 的夹角,从而得出异面直线所成角的大小. 【解答】(1)证明: AB BC ⊥,AB BE ⊥,BC BE B =, AB ∴⊥平面BCE , 以B 为原点,以BE ,BC ,BA 为坐标轴建立空间坐标系B xyz -,如图所示: 设1AB AD ==,则(0D ,1,1),(1F ,0,1),(0B ,0,0),M 0), ∴(2BM =,0),(1DF =,1-,0),

《立体几何中的角度与距离问题》

二年级下学期小学期末检测 数学试卷 (考试时间:60分钟,满分100分) 题号一二三四五六总分 得分 一、我会算。(12分) 35÷7=900-700=73-(13+27)=9×9÷9= 280+300=1000-600=56-(90-60)= 37+8÷8= 860-260= 60-27÷3= 4×(78-70)= (40-8)÷4= 二、我会填。(22分) 1、有一个四位数,最高位上是5,十位上是3,其余各位上是0,这个数是(),读作()。 2、□÷7=3……□,余数最大是(),当余数最大时,被除数是()。 3、找规律填数。 537,437,(),237,();150,200,(),300,()。 4、605是()位数,最高位上的数字是(),这里的5表示()个()。 5、()×7<50,括号里最大能填()。 6、在()里填上合适的单位名称: 教室的门高2();铅笔长14();数学书厚4();课桌高8()。7、在○里填上“>”、“<”、“=”。 5千米○5000米30mm○3dm纯角○锐角 8、最大的两位数是(),与它相邻的两个数分别是()和()。 三、我是小判官。(对的画“√”,错的画“×”)(12分) 1、50÷7=6……8。…………………………………………………………………() 2、“333”里的“3”表示的意思一样。…………………………………………() 3、正方形和长方形都有4条边,4个直角。………………………………………() 4、角的大小与边的长短有关系。…………………………………………………() 5、2+10÷2=12÷2=6。…………………………………………………………() 6、左图中共有6个角。………………………………………………() 四、我是计算能手。(14分) 1、用竖式计算并验算。(6分) 284+357923-657

空间向量的应用----求空间角与距离

空间向量的应用----求空间角与距离 一、考点梳理 1.自新教材实施以来,近几年高考的立体几何大题,在考查常规解题方法的同时,更多地关注向量法(基向量法、坐标法)在解题中的应用。坐标法(法向量的应用),以其问题(数量关系:空间角、空间距离)处理的简单化,而成为高考热点问题。可以预测到,今后的高考中,还会继续体现法向量的应用价值。 2.利用法向量求空间角和空间距离,其常用技巧与方法总结如下: 1)求直线和直线所成的角 若直线AB 、CD 所成的角是α,cos α=|,cos |>

计算公式为: 4).利用法向量求点面距离 如图点P 为平面外一点,点A 为平面内的任一点,平面的法向量为n ,过点P 作平面α的垂线PO ,记∠OPA=θ,则点P 到平面的距离 θcos ||||PA PO d == 5).法向量在距离方面除应用于点到平面的距离外,还能处理异面直线间的距离,线面 间的距离,以及平行平面间的距离等。其一,这三类距离都可以转化为点面间的距离;其二, 异面直线间的距离可用如下方法操作:在异面直线上各取一点A 、B ,AB 在n 上的射影长即 为所求。n 为异面直线AD 、BC 公共垂直的方向向量,可由0n AD ?=及0n BC ?=求得,其计算公式为: || || n AB d n =。其本质与求点面距离一致。 向量是新课程中引进的一个重要解题工具。而法向量又是向量工具中的一朵厅葩,解题方法新颖,往往能使解题有起死回生的效果,所以在学习中应起足够的重视。 二、范例分析 例1 已知ABCD 是上、下底边长分别为2和6,3将它沿对称轴1 OO n α A P O θ

向量法求空间距离和角

用向量方法求空间角和距离 在高考的立体几何试题中,求角与距离是常考查的问题,其传统的“三步曲”解法:“作图、证明、解三角形”,作辅助线多、技巧性强,是教学和学习的难点.向量进入高中教材,为立体几何增添了活力,新思想、新方法与时俱进,本专题将运用向量方法简捷地解决这些问题. 1 求空间角问题 空间的角主要有:异面直线所成的角;直线和平面所成的角;二面角. (1)求异面直线所成的角 设a 、b 分别为异面直线a 、b 的方向向量, 则两异面直线所成的角α=arccos |||||| a b a b (2)求线面角 设l 是斜线l 的方向向量,n 是平面α的法 向量, 则斜线l 与平 面 α 所成的角 α=arcsin | ||||| l n l n (3)求二面角 法一、在α内a l ⊥,在β内b l ⊥,其方向如图,则二面角 l αβ--的平面角α=arccos |||| a b a b 法二、设12,,n n 是二面角l αβ--的两

个半平面的法向量,其方向一个指向内侧,另一个指向外侧,则二面角 l αβ--的平面角α=12 12arccos |||| n n n n 2 求空间距离问题 构成空间的点、线、面之间有七种距离,这里着重介绍点面距离的求法,象异面直线间的距离、线面距离;面面距离都可化为点面距离来求. (1)求点面距离 法一、设n 是平面α的法向量,在α内取一点B, 则 A 到α的距离|| |||cos ||| AB n d AB n θ== 法二、设AO α⊥于O,利用AO α⊥和点O 在α内 的向量表示,可确定点O 的位置,从而求出||AO . (2)求异面直线的距离 法一、找平面β使b β?且a β,则异面直线a 、b 的距离就转化为直线a 到平面β的距离,又转化为点A 到平面β的距离. 法二、在a 上取一点A, 在b 上取一点B, 设a 、b 分别 为异面直线a 、b 的方向向量,求n (n a ⊥,n b ⊥),则异面直线a 、b 的距离|| |||cos ||| AB n d AB n θ==(此方法移植于点面距离的求法).

最新高考数学专题复习立体几何重点题型空间距离空间角(师)

立体几何题型 【考点透视】 (A)版.掌握两条直线所成的角和距离的概念,对于异面直线的距离,只要求会计算已给出公垂线时的距离.掌握斜线在平面上的射影、直线和平面所成的角、直线和平面的距离的概念.掌握二面角、二面角的平面角、两个平行平面间的距离的概念. (B)版. ①理解空间向量的概念,掌握空间向量的加法、减法和数乘. ②了解空间向量的基本定理,理解空间向量坐标的概念,掌握空间向量的坐标运算. ③掌握空间向量的数量积的定义及其性质,掌握用直角坐标计算空间向量数量积公式. ④理解直线的方向向量、平面的法向量,向量在平面内的射影等概念. ⑤了解多面体、凸多面体、正多面体、棱柱、棱锥、球的概念. ⑥掌握棱柱、棱锥、球的性质,掌握球的表面积、体积公式. ⑦会画直棱柱、正棱锥的直观图. 空间距离和角是高考考查的重点:特别是以两点间距离,点到平面的距离,两异面直线的距离,直线与平面的距离以及两异面直线所成的角,直线与平面所成的角,二面角等作为命题的重点内容,高考试题中常将上述内容综合在一起放在解答题中进行考查,分为多个小问题,也可能作为客观题进行单独考查.考查空间距离和角的试题一般作为整套试卷的中档题,但也可能在最后一问中设置有难度的问题. 不论是求空间距离还是空间角,都要按照“一作,二证,三算”的步骤来完成,即寓证明于运算之中,正是本专题的一大特色. 求解空间距离和角的方法有两种:一是利用传统的几何方法,二是利用空间向量。 【例题解析】 考点1 点到平面的距离 求点到平面的距离就是求点到平面的垂线段的长度,其关键在于确定点在平面内的垂足, 当然别忘了转化法与等体积法的应用. 典型例题 例1如图,正三棱柱111ABC A B C -的所有棱长都为2,D 为1CC 中点. (Ⅰ)求证: 1AB ⊥ 平面 1A BD ; (Ⅱ)求二面角 1A A D B --的大小; (Ⅲ)求点C 到平面1A BD 的距离. 考查目的:本小题主要考查直线与平面的位置关系,二面角的 A B C D 1 A 1 C 1 B

立体几何中的夹角、距离、向量归纳

D B A C α 一、空间中各种角包括:异面直线所成的角、直线与平面所成的角以及二面角 1、异面直线所成的角 (1)异面直线所成的角的范围是]2 ,0(π 。 (2)求两条异面直线所成的角的大小一般方法是通过平行移动直线,把异面问题转化为共面问题来解决 (3)具体步骤如下: ①利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选择在特殊的位置上; ②证明作出的角即为所求的角; ③利用三角形来求角 2、直线与平面所成的角 (1)直线与平面所成的角的范围是2 ,0[π 。 (2)求直线和平面所成的角用的是射影转化法。 (3)具体步骤如下: ①找过斜线上一点与平面垂直的直线; ②连结垂足和斜足,得出斜线在平面的射影,确定出所求的角; ③把该角置于三角形中计算。 3、二面角 (1)二面角的范围在课本中没有给出,一般是指],0(π,解题时要注意图形的位置和题目的要求。 (2)作二面角的平面角常有三种方法 图一 图二 图三 ①棱上一点双垂线法:在棱上任取一点,过这点在两个平面内分别引棱的垂线,这两条射线所成的角,就是二面角的平面角; 如图一示 ②面上一点三垂线法:自二面角的一个面上一点向另一面引垂线,再由垂足向棱作垂线得到棱上的点(即垂足),斜足与面上一点连线和斜足与垂足连线所夹的角,即为二面角的平面角; 如图二示 ③空间一点垂面法:自空间一点作与棱垂直的平面,截二面角得两条射线,这两条射线所成的角就是二面角的平面角 如图三示

1、点到直线的距离: 点P到直线a 的距离为点P到直线a 的垂线段的长,常先找或作直线a 所在平面的垂线,得垂足为A,过A作a 的垂线,垂足为B连PB,则由三垂线定理可得线段PB即为点P到直线a 的距离。在直角三角形PAB中求出PB的长即可。 例1、在△ABC 中,AB=2,BC=3,AC=4,求点A 到BC 的距离。 解:作BC AD ⊥,垂足为D ,又 AB=2,BC=3,AC=4, 8 74 322432c o s 2 222 2 2 =??-+= ?-+= ∴BC AC AB BC AC C 8 15)8 7(1sin 2= -=∴C 4 1538 15432 1sin 432 1= ???=??= ∴?C S ABC AD BC S ABC ?= ?2 1 又 2 153 415322= ?= = ∴?BC S AD ABC ∴点A 到BC 的距离为 2 15 2、点到平面的距离: 点P到平面α的距离为点P到平面α的垂线段的长.常用求法①作出点P到平面的垂线后求出垂线段的长;②转移法,如果平面α的斜线上两点A,B到斜足C的距离AB,AC的比为n m :,则点A,B到平面α的距离之比也为n m :.特别地,AB=AC时,点A,B到平面α的距离相等;③体积法 例2、如图,在长方体1111D C B A ABCD -中,,22,2,51===AA BC AB E 在AD 上,且AE=1,F 在AB 上,且AF=3,(1)求点1C 到直线EF 的距离;(2)求点C 到平面EF C 1的距离。 解:(1)连接FC,EC, 由已知FC=22, 41=∴FC ,34 82511=++= EC , 10 91= += EF 10 104 1023416102cos 1 2 12 12 1- =??-+= ?-+= ∠FC EF EC FC EF EFC B

高考典型题型训练——立体几何中求角与距离

C A1 E B1 C1 高考典型题型训练——立体几何中求角与距离 1. 四棱锥P —ABCD 的底面是边长为a 的正方形,PB ⊥面ABCD. (1)若面PAD 与面ABCD 所成的二面角为60°,求这个四棱锥的体积; (2)证明无论四棱锥的高怎样变化,面PAD 与面PCD 所成的二面角恒大于90° 2如图,直三棱柱ABC-A 1B 1C 1的底面ABC 为等腰直角三角形,∠ACB=900,AC=1,C 点到AB 1的距离为CE= 2 3 ,D 为AB 的中点. (1)求证:AB 1⊥平面CED ; (2)求异面直线AB 1与CD 之间的距离; (3)求二面角B 1—AC —B 的平面角.

3. 如图a—l—β是120°的二面角,A,B两点在棱上,AB=2,D在α内,三角形ABD是等腰直角三角形,∠DAB=90°,C在β内,?ABC是等腰直角三角形∠ACB=. 900 (I)求三棱锥D—ABC的体积; (2)求二面角D—AC—B的大小; (3)求异面直线AB、CD所成的角. 4. 在边长为a的正三角形的三个角处各剪去一个四边形.这个四边形是由两个全等的直角三角形组成的,并且这三个四边形也全等,如图①.若用剩下的部分

折成一个无盖的正三棱柱形容器,如图②.则当容器的高为多少时,可使这个容器的容积最大,并求出容积的最大值. 图①图② 5. 已知三棱锥P—ABC中,PC⊥底面ABC,AB=BC, D、F分别为AC、PC的中点,DE⊥AP于E. (1)求证:AP⊥平面BDE; (2)求证:平面BDE⊥平面BDF; (3)若AE∶EP=1∶2,求截面BEF分三棱锥 P—ABC所成两部分的体积比.

用向量法求空间角与距离

用向量法求空间角与距离 1.1. 向量的数量积和坐标运算 b a ,是两个非零向量,它们的夹角为 ,则数 cos |||| b 叫做与的数量积(或内积),记作b a ,即.cos |||| 其几何意义是a 的长度与b 在a 的方向上的投影的乘积. 其坐标运算是: 若),,(),,,(222111z y x b z y x a ,则 ①212121z z y y x x b a ; ②2 22222212121||,||z y x b z y x a ; ③212121z z y y x x b a ④2 2 2 22 22 12 12 12 12121,cos z y x z y x z z y y x x b a 1.2. 异面直线n m ,所成的角 分别在直线n m ,上取定向量,,b a 则异面直线n m ,所成的角 等于向量b a ,所成的角或其补角(如图1所示),则 .||||| |cos b a b a (例如2004年高考数学广东卷第18题第(2)问) 1.3. 异面直线n m 、的距离 分别在直线n m 、上取定向量,,b a 求与向量b a 、都垂直的 向量,分别在n m 、上各取一个定点B A 、,则异面直线n m 、的距离d 等于在 上的射影长,即| |n d . 图1

证明:设CD 为公垂线段,取b a ,(如图1所示),则 | |||)( | |||n d 设直线n m ,所成的角为 ,显然.||||| |cos b a b a 1.4. 直线L 与平面 所成的角 在L 上取定,求平面 的法向量2所示), 再求 | |||cos n AB 2 为所求的角. 1.5. 二面角 方法一:构造二面角 l 的两个半平面 、的法向量 21n n 、(都取向上的方向,如图3所示),则 ① 若二面角 l 是“钝角型”的如图3甲所示,那么其大小等于两法向量21n n 、的夹角的补角,即| |||cos 2121n n (例如2004年高考数学广 东卷第18题第(1)问). ② 若二面角 l 是“锐角型”的如图3乙所示, 那么其大 小等于两法向量21n n 、的夹角, 即| |||cos 2121n n (例如 2004年高考数学广东卷第18题第(1)问). 方法二:在二面角的棱l 上确定两个点B A 、,过B A 、分别在平面 、内求出与l 垂直的向量21n n 、(如图4所示) ,则二面角 l 的大小等于向量21n n 、的夹角,即 图3乙 图3 图4 图2

立体几何中的角度与距离问题

立体几何中的角度与距离问题 【基础知识】 一.空间角度问题 (一)理解空间中各种角的定义及其取值范围 1.异面直线所成的角、直线与平面所成的角及二面角的概念。 2.各种角的取值范围:(1)异面直线所成的角的取值范围是:0°< θ ≤90°;(2)直线于平面所成的角的取值范围是: 0°≤ θ ≤90°;(3)二面角的大小可以用它的平面角来度量,通常认为二面角平面角的取值范围是: 0°< θ ≤180° (二)空间中的角的计算 1、用直接法求角的一般步骤是:(1)找出或做出有关角的图形;(2)证明它符合定义(3)计算(一般通过解三角形) 2、异面直线所成的角:用平移转化的方法使它成为相交直线所成的角。 当异面直线垂直时,运用直线垂直平面的定义或三垂线定理(或逆定理)判定所成角是90°. 3. 斜线和平面所成的角是一个直角三角形所成的锐角,它的三条边分别是平面的垂线段/斜线段及斜线段在平面内的射影。 4. 二面角要转化为其平面角,掌握以下三种基本做法:(1)直接利用定义;(2)利用三垂线定理及其逆定理(3)作棱的垂面 另外,还要特别注意观察图形本身是否已含有所求的平面角 注意:1.空间各种角的计算方法都是转化为平面角来计算的,应熟练掌握这种转化。 2.计算题必须有推理过程。 二.空间距离问题 1.立体几何中的各种距离有:(1)点到直线的距离(2)点到平面的距离(3)平行直线间的距离(4)异面直线间的距离(5)直线与平面的距离(6)两个平面间的距离(7)球面上两点间距离 2.空间七种距离求法,通常是转化为平面上两点间的距离:(1)找出或作出有关距离的图形;(2)证明它们就是所求的距离;(3)利用平面几何和解三角形的知识在平面内计算 α β A O P A B O P α β (1) (2) (3)

用空间向量求空间角和距离

用空间向量求空间角和距离 四川省通江中学 徐荣德 空间中角和距离的计算问题是立体几何的重要内容,也是近几年高考的热点之一。空间向量为求空间角和距离提供了新的方法,可以使几何问题中的逻辑推理转化为向量的代数运算,使问题的解决更简洁、清晰,有较强的规律性,易于掌握。 一、求空间中的角 1、两异面直线所成的角 设异面直线AB 、CD 所成的角为])2 ,0((π αα∈ (如图1),则|| |||||,cos |cos CD AB ?=><=α。 2、直线与平面所成的角 设直线PA 与平面α(),αα?∈P A 所成的角 为])2 , 0[(π θθ∈,平面α的法向量为(如图2), 则|| |||| |,cos |sin n AP ?=><=θ。 3、二面角 设二面角βα--l 的大小为θ(),0(πθ∈), 平面βα,的法向量分别为n m ,(如图3), 则><-=>=<,,πθθ或。 例1、四棱锥P —ABCD 中,底面ABCD 是正方 形,侧面PAD 是边长为2的正三角形,且侧面PAD 与底面ABCD 垂直,E 为DP 的中点。 (1) 求异面直线AE 与PB (2) 求直线BE 与平面PCD 所成的角; (3) 求二面角E —AC —D 的大小。 解:建立如图4所示的空间直角坐标系,则 (1) A(0,0,0),B(2,0,0),P(0,1,3),E(0,23∴23 ,23,0(),3,1,2(=-=AE BP 4 6| |||,cos =?>= <∴AE BP ∴异面直线AE 与PB 所成的角4 6arccos .

(2) C(2,2,0),D(0,2,0),)2 3 , 23,2(),3,1,2(),0,0,2(-=--=-=∴BE CP CD , 设平面PCD 的一个法向量),,,(z y x = 则? ???? ?==∴=+--=-z y x z y x x 30,03202,取1=z ,得)1,3,0(= 设直线BE 与平面PCD 所成的角为θ,则 =θsin 7 21 || |,cos |= =>< ∴直线BE 与平面PCD 所成的角为7 21arcsin 。 (3))0,2,2(),2 3 , 23,0(==AC AE ,设平面ACE 的一个法向量),,(z y x n =, 则???-=-=∴?????=+=+y z y x y x z y 3,0 2202323 ,取1-=y ,得)3,1,1(-=n , 显然)1,0,0(=m 是平面ACD 的一个法向量, 5 15 ,cos = >= <∴n m ∴ 二面角E —AC —D 的大小为5 15arccos 。 二、求空间中的距离 1、两异面直线的距离 设异面直线b a ,间的距离为d ,AB 是b a ,的公垂线 段,D 、C 分别是b a ,上的一点,n 是AB 的方向向量(如图5)。 | |||n d CD n AB n DB CD AC AB = =∴?=?∴++= 2、点到平面的距离 设平面α外一点P 到平面α的距离为d ,点A 是平面α 任一点,是平面α的法向量(如图6)。则

相关文档
最新文档