An efficient domino reaction in ionic liquid Synthesis and biological ev

合集下载

聚苯胺的制备

聚苯胺的制备

随着社会科技的发展,绿色能源成为人类可持续发展的重要条件,而风能、太阳能等非可持性能源的开发和利用面临着间歇性和不稳定性的问题,这就催生了大量的储能装置,其中比较引人注目的包括太阳能电池、锂子电池和超级电容器等。

超级电容器作为一种新型化学储能装置,具有高功率密度、快速充放电、较长循环寿命、较宽工作温度等优秀的性质,目前在储能市场上占有很重要的地位,同时它也广泛应用于军事国防、交通运输等领域。

目前,随着环境保护观念的日益增强,可持续性能源和新型能源的需求不断增加,低排放和零排放的交通工具的应用成为一种大势,电动汽车己成为各国研究的一个焦点。

超级电容器可以取代电动汽车中所使用的电池,超级电容器在混合能源技术汽车领域中所起的作用是十分重要的,据英国《新科学家》杂志报道,由纳米花和纳米草组成的纳米级牧场可以将越来越多的能量贮存在超级电容器中。

随着能源价格的不断上涨,以及欧洲汽车制造商承诺在1995年到2008年之间将汽车CO2的排放量减少25%,这些都促进了混合能源技术的发展,宝马、奔驰和通用汽车公司已经结成了一个全球联盟,共同研发混合能源技术。

2002年1月,我国首台电动汽车样车试制成功,这标志着我国在电动汽车领域处于领先地位。

而今各种能源对环境产生的负面影响很大,因此对绿色电动车辆的推广提出了迫切的要求,一项被称为Loading-leveling(负载平衡)的新技术应运而生,即采用超大容量电容器与传统电源构成的混合系统“Battery-capacitor hybrid”(Capacitor-battery bank) [1]。

目前对超级电容器的研究多集中于开发性能优异的电极材料,通过掺杂与改性,二氧化锰复合导电聚合物以提高二氧化锰的容量[1、2、3]。

生瑜(是这个人吗?)等[4]通过原位聚合法制备了聚苯胺/纳米二氧化锰复合材料,对产物特性进行细致分析。

因导电高分子具有可逆氧化还原性能,通过导电高分子改性,这对于提高二氧化锰的性能和利用率是很有意义的。

bmim型离子液体

bmim型离子液体

bmim型离子液体
BMIM型离子液体是一种新型的绿色溶剂,它是由一种离子液体BMIM(1-丁基-3-甲基咪唑六氟磷酸盐)组成的。

BMIM型离子液体具有很多优点,如高热稳定性、低挥发性、高溶解度、可回收性等,因此在化学、材料、生物等领域得到了广泛的应用。

BMIM型离子液体在化学领域中的应用非常广泛,它可以作为催化剂、溶剂、反应介质等。

在有机合成中,BMIM型离子液体可以作为催化剂,促进反应的进行,提高反应的效率和选择性。

同时,BMIM型离子液体还可以作为溶剂,可以溶解一些传统有机溶剂不能溶解的化合物,从而扩大了反应的适用范围。

此外,BMIM型离子液体还可以作为反应介质,可以在无水条件下进行反应,避免了水分对反应的干扰。

在材料领域中,BMIM型离子液体也有着广泛的应用。

它可以作为溶剂、模板剂、表面活性剂等。

在纳米材料的制备中,BMIM型离子液体可以作为模板剂,控制纳米材料的形貌和尺寸。

同时,BMIM 型离子液体还可以作为表面活性剂,可以改善材料的分散性和稳定性。

在生物领域中,BMIM型离子液体也有着广泛的应用。

它可以作为生物催化剂、生物传感器等。

在生物催化剂中,BMIM型离子液体可以作为反应介质,可以提高酶的稳定性和活性。

同时,BMIM型离子液体还可以作为生物传感器,可以检测生物分子的浓度和活性。

BMIM型离子液体是一种非常有前途的绿色溶剂,它在化学、材料、生物等领域都有着广泛的应用。

随着科技的不断发展,相信BMIM 型离子液体将会有更加广泛的应用前景。

曼尼其反应

曼尼其反应

Published:August 10,2011NOTE/jocOrganocatalytic Asymmetric Domino Aza-Michael ÀMannich Reaction:Synthesis of Tetrahydroimidazopyrimidine DerivativesHong Li,†Junling Zhao,*,†Lili Zeng,†and Wenhui Hu*,†,‡†Guangzhou Institute of Biomedicine and Health,Chinese Academy of Sciences,Guangzhou Science Park,Guangdong 510530,People ’s Republic of China ‡State Key Laboratory of Respiratory Disease,Guangzhou,Guangdong 510120,People ’s Republic of ChinabSupporting Information The tetrahydroimidazopyrimidine ring system is found in many naturally occurring products that have attracted attention due to the broad scope of their biological activities.1,2Di fferent classes of tetrahydroimidazopyrimidine compounds have shown antidepressant 2a,b and antihypertonia 2c activities that have been put to pharmaceutical uses.However,syntheses of tetrahydroimidazopyrimidine derivatives are not very well documented in the literature.2b,3The traditional methods for their synthesis often require many synthetic manipulations and puri fications,which result in low overall yields.Thus the devel-opment of novel,concise methodologies that allow the rapid construction of these tetrahydroimidazopyrimidine skeletons,preferably in a single operation,is highly desired.Organocatalytic domino reactions 4À6allow the sequential formation of several new bonds and chiral centers in just one operation.They have been proven to be powerful tools for the e fficient and stereoselective synthesis of complex molecules 7that are di fficult to access by traditional methods.The aza-Michael addition 8participated domino reaction provides a simple and direct way for the synthesis of nitrogen-containing heterocycles.For example,the asymmetric syntheses of 1,2-dihydroquin-olines,9pyrrolidines,10tetrahydro-1,2-oxazines,11and iso-indolines 12have been realized.Herein,we report the first asymmetric synthesis of enantioenriched tetrahydroimidazopyr-imidine derivatives through an organocatalytic domino strategy using R ,β-unsaturated aldehydes and N -arylidene-1H -imidazol-2-amines as starting materials (Scheme 1).The reactions of 2-carbonyl-substituted indoles 13and pyrroles 14with enals have been realized for the syntheses of pyrrolidine-fused heterocycles.However,the asymmetric synth-esis of six-membered ring-fused heterocycles,such as biologically interesting tetrahydroimidazopyrimidines,through aza-Michael reaction of nitrogen heterocycles has not been reported.We would like to focus our research on this challenging task.Unlike tetrazole,triazole,and other nitrogen heterocycles,15the N ÀHgroup of imidazole is not acidic enough to participate in N-alkyaltion reactions.The introduction of electron-withdrawing groups,such as carbonyl or cyano,can reduce the p K a value of this N ÀH group,making it possible for N-alkylation reactions 13,14,15b to occur.The iminic group is a weak electron-withdrawing group and enables many further transformations.We envisaged that the N -arylidene-1H -imidazol-2-amines (1)and the R ,β-unsaturated aldehydes (2)might be suitable substrates for the domino aza-Michael ÀMannich reaction and that they would generate the highly substituted tetrahydroimidazopyrimidine derivatives (3).To test our hypothesis,the readily available L -proline-derived secondary amines (I ÀIV ),which are capable of both iminium 16and enamine 17catalysis,were explored as catalysts for this domino reaction.The reaction of N -benzylidene-1H -imidazol-2-amine (1a )and cinnamaldehyde (2a )was selected as a model reaction.We first studied catalysis of the domino reaction with diphenyl prolinol silyl ether (I )in dichloromethane.The reaction pro-ceeded with high stereoselectivity (97%ee,>20:1dr)but in low yield (30%,Table 1,entry 1).There was no signi ficant improve-ment in yield when using a variety of di fferent solvents,mostScheme 1.Domino Aza-Michael ÀMannich Reaction of r ,β-Unsaturated Aldehyde and N -Arylidene-1H -imidazol-2-amineReceived:June 22,2011ABSTRACT:Highly substituted tetrahydroimidazopyrimidine derivatives with three chiral centers have been synthesized for the first time using an organocatalytic asymmetric domino aza-Michael ÀMannich reaction of R ,β-unsaturated aldehydes and N -arylidene-1H -imidazol-2-amines.This e fficient approach fur-nishes the products in good yields (42À87%)with excellent stereoselectivities (>20:1dr,up to >99%ee).likely due to the poor solubility of 1a in these solvents.However,high stereoselectivities were retained (Table 1,entries 2À5).When methanol was used as solvent,the starting material 1a was completely consumed in just 6h to provide the product 3a in 55%yield and 96%ee (Table 1,entry 6).The arylaldehyde and 2-aminoimidazole derived from the decomposition of 1a also were detected.Those results suggested that 1a was more active in methanol and that the use of a mixture of dichloromethane and methanol might improve the e fficiency of the reaction.Experi-ments indicated that this was the case.After extensive screening,the best results in terms of yield (73%)and enantioselectivity (99%)were obtained using a 9:1ratio of dichloromethane and methanol (Table 1,entry 7).The yield was improved to 80%by the addition of benzoic acid while retaining high enantioselec-tivity (>99%ee,Table 1,entry 9).In contrast,the addition of sodium acetate had almost no in fluence on the reaction (Table 1,entry 11).Other secondary amine catalysts also were examined as catalysts:the reaction proceeded in 42%yield and 99%ee when catalyst II (Table 1,entry 12)was used,and there were no domino reaction product detected in 24h when catalysts III and IV were employed (Table 1,entries 13and 14).With the optimal reaction conditions in hand,the substrate scope of this domino aza-Michael ÀMannich reaction was ex-plored,and the results are summarized in Table 2.Various substituted aromatic enals were examined.Both electron-with-drawing and electron-donating groups on the aromatic ring weretolerated,yielding the expected products in moderate to high yields (54À80%)and excellent stereoselectivities (>97%ee,>20:1dr,Table 2,entries 1À12).The reaction of 2-furyl and 2-thiophene enal led to the formation of 3m and 3n in 49and 42%yields,respectively,both in 99%ee (Table 2,entries 13and 14).The electronic nature of the substituent on the aromatic ring of 1had little in fluence on the reaction.Extensions of this strategy to use the less reactive aliphatic enals were unsuccessful;no reaction occurred when crotonaldehyde was used.The absolute con figuration of the three new chiral centers of 3n was assigned as 5S ,6S ,and 7R by X-ray crystallographic analysis of 4n (the alcohol corresponding to 3n ,Figure 1).On the basis of this observation,a plausible catalytic cycle for the reaction is proposed in Scheme 2.The reaction starts with the iminium activation of 2by I ,followed by aza-Michael addition of 1to the iminium ion to give intermediate A .The enamine of A undergoes an intramolecular Mannich reaction to give B .The catalyst is regenerated for the next catalytic cycle through hydrolysis of B :B then hydrolyzes to give tetrahydroimidazo-pyrimidine 3.In summary,we have developed a novel organocatalytic domino aza-Michael ÀMannich reaction of N -arylidene-1H -imi-dazol-2-amines and R ,β-unsaturated aldehydes for use in the synthesis of highly substituted tetrahydroimidazopyrimidineTable 2.Substrate Scopeof the Domino Aza-Michael ÀMannich Reaction aentry R 1R 2yield b (%)dr c ee d (%)1Ph (1a )Ph (2a )803a >20:1>992Ph (1a )3-MeC 6H 4(2b )713b >20:1993Ph (1a )3-OMeC 6H 4(2c )503c >20:1>994Ph (1a )3-ClC 6H 4(2d )603d >20:1995Ph (1a )3-BrC 6H 4(2e )683e >20:1>996Ph (1a )3-NO 2C 6H 4(2f )703f >20:1997ePh (1a )4-MeC 6H 4(2g )583g >20:1998Ph (1a )4-MeOC 6H 4(2h )543h >20:1>999ePh (1a )4-ClC 6H 4(2i )763i >20:19810e Ph (1a )4-BrC 6H 4(2j )723j >20:19811ePh (1a )4-NO 2C 6H 4(2k )763k >20:1>9912Ph (1a )piperonyl (2l )663l >20:19913Ph (1a )2-furyl (2m )493m >20:19914Ph (1a )2-thiophene (2n )423n >20:199154-OMeC 6H 4(1b )4-ClC 6H 4(2i )603o >20:198164-OMeC 6H 4(1b )4-NO 2C 6H 4(2k )623p >20:19717e 4-CF 3C 6H 4(1c )Ph (2a )853q >20:199184-CF 3C 6H 4(1c )4-ClC 6H 4(2i )873r >20:19919e4-CF 3C 6H 4(1c )4-NO 2C 6H 4(2k )753s>20:199aReactions was performed with N -arylidene-1H -imidazol-2-amine (0.13mmol),R ,β-unsaturated aldehyde (0.1mmol),I (0.02mmol),and PhCOOH (20mol %)in DCM/MeOH (9:1,0.3mL)at room temperature.b Isolated yield.c Determined by 1H NMR of the products.dDetermined by HPLC analysis with the corresponding alcohol.eDCM/MeOH (1:1)as solvent.Table 1.Optimizing of the Reaction Conditions aentry catalyst solvent time (h)yield b (%)dr c ee d (%)1I DCM 2430>20:1972I THF 2430>20:1953I toluene 24trace ND ND 4I ether 24trace ND ND 5I CHCl 32420>20:1986I MeOH655>20:1967I DCM/MeOH (9:1)1673>20:1998I DCM/MeOH (1:1)1277>20:1989e I DCM/MeOH (9:1)1680>20:1>9910f I DCM/MeOH (9:1)1273>20:19811e II DCM/MeOH (9:1)2442>20:19912e III DCM/MeOH (9:1)24NR 13eIVDCM/MeOH (9:1)24traceNDNDaReactions was performed with N -benzylidene-1H -imidazol-2-amine (0.13mmol),cinnamaldehyde (0.1mmol),and secondary amine (0.02mmol)in solvent (0.5mL)at room temperature.b Isolated yield.cDetermined by 1H NMR of the products.d Determined by HPLC analysis with the corresponding alcohol.e With 20%PhCOOH as additive.f With 20%NaOAc as additive.derivatives bearing three chiral centers.The reaction is catalyzed e fficiently by readily available diphenylprolinol silyl ethers with moderate to good yield (42À87%)and high stereoselectivities (>97%ee,>20:1dr).This strategy described could be extended to the asymmetric synthesis of biologically important tetrahy-dropyrazolopyrimidine derivatives 18and other tetrahydropyri-midine-fused heterocycles.’EXPERIMENTAL SECTIONGeneral Procedure for the Preparation of 1a À1c.To asolution of benzaldehyde (1.92mL,18.8mmol)in dichloromethane (15mL)were added sequentially 2-aminoimidazole sulfate (3.7g,14.3mmol),tetraisopropyl orthotitanate (6.83mL,23.3mmol),and triethylamine (3.9mL,28.1mmol).The reaction mixture was stirred at room temperature for 24h and then concentrated in vacuo.The residue was taken up in ethyl acetate and water and filtered.The filtrate was separated,and the organic phase was dried over anhydrous sodium sulfate and concentrated.The crude product was recrystallized from ethyl acetate/hexane to afford 1a 19in 60%yield:1H NMR (400MHz,DMSO-d 6,ppm)δ12.23(s,1H),9.15(s,1H),7.95(m,2H),7.58À7.50(m,3H),7.15(br s,1H),6.93(br s,1H).N -(4-Methoxybenzylidene)-1H -imidazol-2-amine (1b).The title compound was obtained according to general procedure described above in 50%yield:1H NMR (400MHz,DMSO-d 6,ppm)δ12.17(s,1H),9.08(s,1H),7.89(d,J =8.8Hz,2H),7.07(d,J =8.8Hz,2H),7.0(br s,2H),3.83(s,3H);13C NMR (125MHz,DMSO-d 6,ppm)δ162.6,159.2,151.4,130.9,128.9,114.9,55.9;HR-MS (ESI)m /z 202.0979[M +H]+,calcd for C 11H 12N 3O,202.0980.N -(4-(Trifluoromethyl)benzylidene)-1H -imidazol-2-amine (1c).The title compound was obtained according to general proceduredescribed above in 70%yield:1H NMR (400MHz,DMSO-d 6,ppm)δ12.49(s,1H),9.24(s,1H),8.14(d,J =8.0Hz,2H),7.85(d,J =8.0Hz,2H),7.19(br s,1H),6.99(br s,1H);13C NMR (125MHz,DMSO-d 6,ppm)δ157.9,150.5,139.7,131.4(q,J C ÀF =31.6Hz),129.5,126.2,126.1,124.4(q,J C ÀF =270.8Hz);HR-MS (ESI)m /z 240.0743[M +H]+,calcd for C 11H 9N 3F 3,240.0749.General Procedure for Organocatalytic Asymmetric Aza-Michael ÀMannich Reaction.To a solution of catalyst I (0.02mmol),benzoic acid (0.02mmol),and R ,β-unsaturated aldehyde 2(0.1mmol)in 0.3mL of DCM/MeOH (9/1)was added N -arylidene-1H -imidazol-2-amine 1(0.13mmol)at room temperature.After completion of the reaction as analyzed by TLC,the reaction mixture was directly purified by silica gel column chromatography to give the desired product 3.3was dissolved in 2mL of EtOH,and NaBH 4(1.0equiv)in EtOH (0.1M)was added.The mixture was stirred under room temperature for 30min.The volatile was evaporated under vacuum,and the residue was purified by silica gel column chromatography to give the corresponding alcohol 4in almost quantitative yield.(5S ,6S ,7R )-5,7-Diphenyl-5,6,7,8-tetrahydroimidazo[1,2-a]pyrimidine-6-carbaldehyde (3a).The title compound was ob-tained using the general procedure described above,in 80%yield and >99%ee:[R ]20D =+34.9(c =1.00in CH 2Cl 2);1H NMR (400MHz,CDCl 3,ppm)δ9.22(s,1H),7.49À7.46(m,2H),7.38À7.26(m,6H),7.20À7.15(m,2H),6.26(s,1H),6.01(s,1H),5.41(d,J =10.0Hz,1H),4.62(d,J =10.0Hz,1H),3.54À3.49(m,1H);13C NMR (125MHz,CDCl 3,ppm)δ200.1,148.3,138.0,137.4,129.0,128.9,128.85,128.7,127.7,127.5,123.6,112.6,60.4,57.9,57.3;HR-MS (ESI)m /z 336.1708[M +MeOH +H]+,calcd for C 20H 22N 3O 2,336.1712.The enantio-meric excess was determined by HPLC analysis of the corresponding alcohol (after treatment with NaBH 4)using a Daicel Chiralpak OD-H column,hexane (0.1%TEA)/i -PrOH =9:1,flow rate =1.0mL/min:t r =10.6min (major)and t r =32.5min (minor).(5S,6S,7R)-7-phenyl-5-m-tolyl-5,6,7,8-tetrahydroimidazo-[1,2-a]pyrimidine-6-carbaldehyde (3b).The title compound wasobtained using the general procedure described above,in 71%yield and 99%ee:[R ]20D =+38.3(c =1.00in CH 2Cl 2);1H NMR (400MHz,CDCl 3,ppm)δ9.24(d,J =1.2Hz,1H),7.50À7.48(m,2H),7.40À7.26(m,3H),7.22(dd,J =7.6,J =8.0Hz 1H),7.11(d,J =7.6Hz,1H),7.05À6.95(m,2H),6.35(s,1H),6.06(s,1H),5.38(d,J =10.4Hz,1H),4.62(d,J =10.4Hz,1H),3.54(ddd,J =1.2Hz,J =10.4Hz,J =10.4Hz,1H),2.31(s,3H);13C NMR (125MHz,CDCl 3,ppm)δ200.3,148.4,138.7,138.1,137.6,129.5,129.1,129.0,128.8,128.3,127.6,124.9,124.6,112.8,60.6,58.1,57.6,21.4;HR-MS (ESI)m /z 350.1866[M +MeOH +H]+,calcd for C 21H 24N 3O 2,350.1869.The enantio-meric excess was determined by HPLC analysis of the corresponding alcohol (after treatment with NaBH 4)using a Daicel Chiralpak OD-H column,hexane (0.1%TEA)/i -PrOH =9:1,flow rate =1.0mL/min:t r =8.5min (major)and t r =19.8min (minor).(5S ,6S ,7R )-5-(3-Methoxyphenyl)-7-phenyl-5,6,7,8-tetra-hydroimidazo[1,2-a]pyrimidine-6-carbaldehyde (3c).The ti-tle compound was obtained using the general procedure described above,in 50%yield and >99%ee:[R ]20D =+35.6(c =1.00in CH 2Cl 2);1H NMR (400MHz,CDCl 3,ppm)δ9.22(d,J =1.6Hz,1H),7.55À7.48(m,2H),7.46À7.30(m,3H),7.26À7.20(m,2H),6.85À6.78(m,2H),6.72(s,1H),6.29(s,1H),6.07(d,J =0.8Hz,1H),5.39(d,J =10.0Hz,1H),4.61(d,J =10.0Hz,1H),3.76(s,3H),3.52(ddd,J =1.6Hz,J =10.0Hz,J =10.0Hz,1H);13C NMR (125MHz,CDCl 3,ppm)δ200.2,159.9,148.4,139.7,137.6,129.9,129.03,129.0,127.5,124.6,120.0,114.1,113.2,112.7,60.5,58.0,57.6,55.3;HR-MS (ESI)m /z 366.1816Scheme 2.Proposed Catalytic Cycleofthe Domino Aza-Michael ÀMannich ReactionFigure 1.X-ray structure of 4n .[M+MeOH+H]+,calcd for C21H24N3O3,366.1818.The enantio-meric excess was determined by HPLC analysis of the corresponding alcohol(after treatment with NaBH4)using a Daicel Chiralpak OD-H column,hexane(0.1%TEA)/i-PrOH=9:1,flow rate=1.0mL/min:t r= 12.3min(major)and t r=28.3min(minor).(5S,6S,7R)-5-(3-Chlorophenyl)-7-phenyl-5,6,7,8-tetrahydro-imidazo[1,2-a]pyrimidine-6-carbaldehyde(3d).The title com-pound was obtained using the general procedure described above,in60% yield and99%ee:[R]20D=+36.3(c=1.00in CH2Cl2);1H NMR(400 MHz,CDCl3,ppm)δ9.23(d,J=1.6Hz,1H),7.50À7.47(m,2H), 7.46À7.30(m,3H),7.30À7.20(m,2H),7.19(s,1H),7.12À7.08(m,1H), 6.50(d,J=1.6Hz,1H),6.10(d,J=1.6Hz,1H),5.89(br s,1H),5.46(d, J=10.0Hz,1H),4.61(d,J=10.0Hz,1H),3.50(ddd,J=1.6Hz,J=10.0 Hz,J=10.0Hz,1H);13C NMR(125MHz,CDCl3,ppm)δ199.6,148.2, 140.2,137.1,134.8,130.1,129.09,129.07,129.0,127.7,127.4,125.0,124.0, 112.6,60.1,57.2,57.0;HR-MS(ESI)m/z370.1323[M+MeOH+H]+, calcd for C20H21N3O2Cl,370.1322.The enantiomeric excess was deter-mined by HPLC analysis of the corresponding alcohol(after treatment with NaBH4)using a Daicel Chiralpak OD-H column,hexane(0.1%TEA)/ i-PrOH=9:1,flow rate=1.0mL/min:t r=9.6min(major)and t r=37.8 min(minor).(5S,6S,7R)-5-(3-Bromophenyl)-7-phenyl-5,6,7,8-tetrahydro-imidazo[1,2-a]pyrimidine-6-carbaldehyde(3e).The title com-pound was obtained using the general procedure described above,in 68%yield and>99%ee:[R]20D=+36.2(c=1.00in CH2Cl2);1H NMR (400MHz,CDCl3,ppm)δ9.23(d,J=1.2Hz,1H),7.50À7.45(m,2H), 7.42À7.26(m,5H),7.20À7.10(m,2H),6.21(s,1H),6.01(d,J=1.6Hz, 1H),5.42(d,J=9.6Hz,1H),4.58(d,J=10.0Hz,1H),3.48(ddd,J=1.2 Hz,J=9.6Hz,J=10.0Hz,1H);13C NMR(125MHz,CDCl3,ppm)δ199.8,148.6,140.9,137.4,131.8,130.6,130.4,129.1,129.0,127.5,126.4, 124.9,122.9,112.4,60.5,57.4,57.0;HR-MS(ESI)m/z414.0822[M+ MeOH+H]+,calcd for C20H21N3O2Br,414.0817.The enantiomeric excess was determined by HPLC analysis of the corresponding alcohol (after treatment with NaBH4)using a Daicel Chiralpak OD-H column, hexane(0.1%TEA)/i-PrOH=9:1,flow rate=1.0mL/min:t r=10.2min (major)and t r=37.5min(minor).(5S,6S,7R)-5-(3-Nitrophenyl)-7-phenyl-5,6,7,8-tetrahydro-imidazo[1,2-a]pyrimidine-6-carbaldehyde(3f).The title com-pound was obtained using the general procedure described above, in70%yield and99%ee:[R]20D=+9(c=1.00in CH2Cl2);1H NMR(400MHz,CDCl3,ppm)δ9.27(d,J=0.8Hz,1H),8.13À8.11 (m,1H),8.01(s,1H),7.52À7.38(m,4H),7.38À7.26(m,3H),6.28 (d,J=1.2Hz,1H),6.00(d,J=1.6Hz,1H),5.64(d,J=8.8Hz,1H),4.68 (d,J=8.8Hz,1H),3.53À3.48(m,1H);13C NMR(125MHz,CDCl3, ppm)δ199.2,148.6,148.4,141.1,137.2,133.6,129.2,129.0,127.3, 125.3,123.5,122.5,112.2,60.1,57.0,56.4;HR-MS(ESI)m/z381.1559 [M+MeOH+H]+,calcd for C20H21N4O4,381.1563.The enantio-meric excess was determined by HPLC analysis of the corresponding alcohol(after treatment with NaBH4)using a Daicel Chiralpak OD-H column,hexane(0.1%TEA)/i-PrOH=85:15,flow rate=0.8mL/min: t r=15.8min(major)and t r=44.7min(minor).(5S,6S,7R)-7-Phenyl-5-p-tolyl-5,6,7,8-tetrahydroimidazo-[1,2-a]pyrimidine-6-carbaldehyde(3g).The title compound was obtained according to general procedure described above,in58%yield and99%ee:[R]20D=+44.8(c=1.00in CH2Cl2);1H NMR(400MHz, CDCl3,ppm)δ9.22(d,J=1.6Hz,1H),7.50À7.49(m,2H),7.48À7.26 (m,3H),7.20À7.05(m,4H),6.35(d,J=0.8Hz,1H),6.05(d,J=1.6 Hz,1H),5.38(d,J=10.0Hz,1H),4.61(d,J=10.4Hz,1H),3.52(ddd, J=1.6Hz,J=10.0Hz,J=10.4Hz,1H),2.32(s,3H);13C NMR(125 MHz,CDCl3,ppm)δ200.3,148.3,138.7,137.7,135.1,129.6,129.1, 129.0,127.7,127.6,124.6,112.7,60.7,57.9,57.7,21.1;HR-MS(ESI) m/z350.1869[M+MeOH+H]+,calcd for C21H24N3O2,350.1869. The enantiomeric excess was determined by HPLC analysis of the corresponding alcohol(after treatment with NaBH4)using a Daicel Chiralpak OD-H column,hexane(0.1%TEA)/i-PrOH=9:1,flow rate= 1.0mL/min:t r=9.7min(major)and t r=20.3min(minor).(5S,6S,7R)-5-(4-Methoxyphenyl)-7-phenyl-5,6,7,8-tetra-hydroimidazo[1,2-a]pyrimidine-6-carbaldehyde(3h).The title compound was obtained using the general procedure described above,in54%yield and>99%ee:[R]20D=+50.0(c=1.00in CH2Cl2); 1H NMR(400MHz,CDCl3,ppm)δ9.23(d,J=1.2Hz,1H), 7.51À7.48(m,2H),7.40À7.30(m,3H),7.13(d,J=8.4,Hz,2H), 6.84(d,J=8.4,Hz,2H),6.24(s,1H),6.02(s,1H),5.35(d,J=10.4Hz, 1H),4.60(d,J=10.0Hz,1H),3.78(s,3H),3.49(ddd,J=1.2Hz,J= 10.0Hz,J=10.4Hz,1H);13C NMR(125MHz,CDCl3,ppm)δ200.4, 159.7,148.5,137.7,130.0,129.0,128.9,127.6,124.4,114.2,112.4,60.7, 57.6,55.2;HR-MS(ESI)m/z366.1806[M+MeOH+H]+,calcd for C21H24N3O3,366.1818.The enantiomeric excess was determined by HPLC analysis of the corresponding alcohol(after treatment with NaBH4)using a Daicel Chiralpak OD-H column,hexane(0.1% TEA)/i-PrOH=9:1,flow rate=1.0mL/min:t r=16.6min(major) and t r=33.5min(minor).(5S,6S,7R)-5-(4-Chlorophenyl)-7-phenyl-5,6,7,8-tetrahydro-imidazo[1,2-a]pyrimidine-6-carbaldehyde(3i).The title com-pound was obtained according to general procedure described above,in 76%yield and98%ee:[R]20D=+47.8(c=1.00in CH2Cl2);1H NMR (400MHz,CDCl3,ppm)δ9.21(d,J=0.8Hz,1H),7.48À7.45(m,2H), 7.40À7.33(m,3H),7.29(d,J=8.4Hz,2H),7.13(d,J=8.4Hz,2H),6.38 (s,1H),6.04(s,1H),5.44(d,J=10.0Hz,1H),4.62(d,J=10.0Hz,1H), 3.49À3.44(m,1H);NMR(125MHz,CDCl3,ppm)δ199.7,148.1,137.0, 136.5,134.7,129.18,129.15,129.1,128.7,127.4,123.9,112.6,60.3,57.4, 57.1;HR-MS(ESI)m/z370.1316[M+MeOH+H]+,calcd for C20H21N3O2Cl,370.1322.The enantiomeric excess was determined by HPLC analysis of the corresponding alcohol(after treatment with NaBH4) using a Daicel Chiralpak OD-H column,hexane(0.1%TEA)/i-PrOH= 9:1,flow rate=1.0mL/min:t r=11.0min(major)and t r=31.3min (minor).(5S,6S,7R)-5-(4-Bromophenyl)-7-phenyl-5,6,7,8-tetrahydro-imidazo[1,2-a]pyrimidine-6-carbaldehyde(3j).The title com-pound was obtained using the general procedure described above,in 72%yield and98%ee:[R]20D=+64.4(c=1.00in CH2Cl2);1H NMR (400MHz,CDCl3,ppm)δ9.21(d,J=1.6Hz,1H),7.49À7.30(m,7H), 7.08(d,J=8.4Hz,2H),6.36(d,J=1.2Hz,1H),6.04(d,J=1.6Hz,1H), 5.43(d,J=10.0Hz,1H),4.59(d,J=10.0Hz,1H),3.47(ddd,J=1.6Hz, J=10.0Hz,J=10.0Hz,1H);13C NMR(125MHz,CDCl3,ppm)δ199.8,148.4,137.5,137.2,132.1,129.4,129.2,127.4,125.0,122.8,112.6, 60.7,57.6,57.2;HR-MS(ESI)m/z414.0809[M+MeOH+H]+,calcd for C20H21N3O2Br,414.0817.The enantiomeric excess was determined by HPLC analysis of the corresponding alcohol(after treatment with NaBH4) using a Daicel Chiralpak OD-H column,hexane(0.1%TEA)/i-PrOH= 9:1,flow rate=1.0mL/min:t r=12.1min(major)and t r=35.2min (minor).(5S,6S,7R)-5-(4-Nitrophenyl)-7-phenyl-5,6,7,8-tetrahydro-imidazo[1,2-a]pyrimidine-6-carbaldehyde(3k).The title com-pound was obtained using the general procedure described above,in 76%yield and>99%ee:[R]20D=+58.0(c=1.00in CH2Cl2);1H NMR(400MHz,CDCl3,ppm)δ9.25(d,J=0.8Hz,1H),8.11(d,J= 8.8Hz,1H),7.48À7.45(m,2H),7.39À7.26(m,5H),6.24(d,J= 1.6Hz,1H),5.99(d,J=1.6Hz,1H),5.63(d,J=9.2Hz,1H),4.63(d, J=9.2Hz,1H),3.45(ddd,J=0.8Hz,J=9.2Hz,J=9.2Hz,1H);13C NMR(125MHz,CDCl3,ppm)δ199.2,148.7,147.8,146.1,137.1, 129.2,129.1,128.6,127.3,125.3,124.0,112.3,60.3,57.4,56.5;HR-MS(ESI)m/z381.1554[M+MeOH+H]+,calcd for C20H21N4O4, 381.1563.The enantiomeric excess was determined by HPLC analysis of the corresponding alcohol(after treatment with NaBH4) using a Daicel Chiralpak OD-H column,hexane(0.1%TEA)/i-PrOH= 80:20,flow rate=0.8mL/min:t r=14.3min(major)and t r=33.7min (minor).(5S ,6S ,7R )-5-(Benzo[d ][1,3]dioxol-5-yl)-7-phenyl-5,6,7,8-tetrahydroimidazo[1,2-a]pyrimidine-6-carbaldehyde (3l).Thetitle compound was obtained using the general procedure described above,in 66%yield and 99%ee:[R ]20D =+66.8(c =1.00in CH 2Cl 2);1H NMR (400MHz,CDCl 3,ppm)δ9.24(d,J =1.6Hz,1H),7.50À7.48(m,2H),7.42À7.28(m,3H),6.75À6.70(m,2H),6.65(s,1H),6.28(d,J =1.2Hz,1H),6.07(d,J =1.6Hz,1H),5.94(d,J =1.2Hz,2H),5.32(d,J =10.0Hz,1H),4.59(d,J =10.4Hz,1H),3.48(ddd,J =1.6Hz,J =10.0Hz,J =10.4Hz,1H);13C NMR (125MHz,CDCl 3,ppm)δ200.2,148.4,148.2,147.9,137.6,131.89,129.1,129.0,127.6,124.7,112.5,108.3,107.6,101.3,60.7,57.9,57.6;HR-MS (ESI)m /z 380.1597[M +MeOH +H]+,calcd for C 21H 22N 3O 4,380.1610.The enantiomeric excess was determined by HPLC analysis of the corresponding alcohol (after treatment with NaBH 4)using a Daicel Chiralpak OD-H column,hexane (0.1%TEA)/i -PrOH =9:1,flow rate =1.0mL/min:t r =19.8min (major)and t r =33.9min (minor).(5S ,6S ,7R )-5-(Furan-2-yl)-7-phenyl-5,6,7,8-tetrahydroimi-dazo[1,2-a]pyrimidine-6-carbaldehyde (3m).The title com-pound was obtained using the general procedure described above,in 49%yield and 99%ee:[R ]20D =+52.3(c =1.00in CH 2Cl 2);1H NMR (400MHz,CDCl 3,ppm)δ9.34(d,J =1.2Hz,1H),7.49À7.45(m,2H),7.40À7.26(m,4H),6.33À6.28(m,3H),6.24(d,J =1.6Hz,1H),5.51(d,J =10.0Hz,1H),4.64(d,J =9.6Hz,1H),3.77(ddd,J =1.2Hz,J =9.6Hz,J =10.0Hz,1H);13C NMR (125MHz,CDCl 3,ppm)δ199.5,149.2,147.5,143.2,137.6,129.0,128.9,127.4,124.7,112.1,110.5,110.0,57.2,55.9,51.0;HR-MS (ESI)m /z 326.1499[M +MeOH +H]+,calcd for C 18H 20N 3O 3,326.1505.The enantiomeric excess was determined by HPLC analysis of the corresponding alcohol (after treatment with NaBH 4)using a Daicel Chiralpak OD-H column,hexane (0.1%TEA)/i -PrOH =9:1,flow rate =1.0mL/min:t r =13.1min (major)and t r =40.5min (minor).(5S ,6S ,7R )-7-Phenyl-5-(thiophen-2-yl)-5,6,7,8-tetrahydro-imidazo[1,2-a]pyrimidine-6-carbaldehyde (3n).The title com-pound was obtained using the general procedure described above,in 42%yield and 99%ee:[R ]20D =+41.9(c =1.00in CH 2Cl 2);1H NMR (400MHz,CDCl 3,ppm)δ9.29(d,J =1.6Hz,1H),7.52À7.45(m,2H),7.42À7.32(m,3H),7.32À7.26(m,1H),7.05À7.04(m,1H),6.95À6.92(m,1H),6.30(d,J =1.6Hz,1H),6.20(d,J =1.6Hz,1H),5.72(d,J =10.4Hz,1H),4.60(d,J =10.0Hz,1H),3.61(ddd,J =1.2Hz,J =10.0Hz,J =10.4Hz,1H);13C NMR (125MHz,CDCl 3,ppm)δ199.8,147.8,140.6,137.4,129.1,127.9,127.6,126.8,126.5,124.7,112.4,60.7,57.8,53.6;HR-MS (ESI)m /z 342.1263[M +MeOH +H]+,calcd for C 18H 20N 3O 2S,342.1276.The enantiomeric excess was determined by HPLC analysis of the corresponding alcohol (after treatment with NaBH 4)using a Daicel Chiralpak OD-H column,hexane (0.1%TEA)/i -PrOH =9:1,flow rate =1.0mL/min:t r =12.7min (major)and t r =27.0min (minor).(5S ,6S ,7R )-5-(4-Chlorophenyl)-7-(4-methoxyphenyl)-5,6,7,8-tetrahydroimidazo[1,2-a]pyrimidine-6-carbaldehyde (3o).The title compound was obtained using the general procedure de-scribed above,in 60%yield and 98%ee:[R ]20D =+28.6(c =1.00in CH 2Cl 2);1H NMR (400MHz,CDCl 3,ppm)δ9.22(d,J =1.6Hz,1H),7.39(d,J =8.8Hz,2H),7.30(d,J =8.4Hz,2H),7.15(d,J =8.8Hz,2H),6.91(d,J =8.8Hz,2H),6.38(d,J =1.6Hz,1H),6.03(d,J =1.2Hz,1H),5.43(d,J =10Hz,1H),4.54(d,J =10.0Hz,1H),3.80(s,3H),3.43(ddd,J =1.6Hz,J =10.0Hz,J =10.0Hz,1H);13C NMR (125MHz,CDCl 3,ppm)δ200.0,160.1,148.5,137.0,134.6,129.1,128.6,125.1,114.5,112.6,60.9,57.2,57.1,55.3;HR-MS (ESI)m /z 400.1422[M +MeOH +H]+,calcd for C 21H 23N 3O 3Cl,400.1428.The enantiomeric excess was determined by HPLC analysis of the corresponding alcohol (after treatment with NaBH 4)using a Daicel Chiralpak OD-H column,hexane (0.1%TEA)/i -PrOH =9:1,flow rate =1.0mL/min:t r =20.3min (major)and t r =47.0min (minor).(5S ,6S ,7R )-7-(4-Methoxyphenyl)-5-(4-nitrophenyl)-5,6,7,8-tetrahydroimidazo[1,2-a]pyrimidine-6-carbaldehyde (3p).The title compound was obtained using the general procedure described above,in 62%yield and 97%ee:[R ]20D =+57.4(c =1.00in CH 2Cl 2);1H NMR (400MHz,CDCl 3,ppm)δ9.23(d,J =0.8Hz,1H),8.15(d,J =8.8Hz,2H),7.39(d,J =8.8Hz,2H),7.34(d,J =8.8Hz,2H),6.89(d,J =8.8Hz,2H),6.31(d,J =1.6Hz,1H),5.99(d,J =1.2Hz,1H),5.62(d,J =9.6Hz,1H),4.57(d,J =9.6Hz,1H),3.79(s,3H),3.44(ddd,J =0.8Hz,J =9.6Hz,J =9.6Hz,1H);13C NMR (125MHz,CDCl 3,ppm)δ199.4,160.2,148.8,146.1,128.8,128.7,128.5,125.4,124.0,114.5,112.3,60.7,56.8,56.6,55.3;HR-MS (ESI)m /z 411.1656[M +MeOH +H]+,calcd for C 21H 23N 4O 5,411.1668.The enantiomeric excess was determined by HPLC analysis of the corresponding alcohol (after treatment with NaBH 4)using a Daicel Chiralpak OD-H column,hexane (0.1%TEA)/i -PrOH =80:20,flow rate =0.8mL/min:t r =19.7min (major)and t r =40.0min (minor).(5S ,6S ,7R )-5-Phenyl-7-(4-(trifluoromethyl)phenyl)-5,6,7,8-tetrahydroimidazo[1,2-a]pyrimidine-6-carbaldehyde (3q).The title compound was obtained using the general procedure described above,in 85%yield and 99%ee:[R ]20D =+13.7(c =1.00in CH 2Cl 2);1H NMR (400MHz,CDCl 3,ppm)δ9.29(d,J =1.6Hz,1H),7.62À7.60(m,4H),7.32À7.26(m,3H),7.17À7.14(m,2H),6.19(d,J =1.6Hz,1H),6.05(d,J =1.2Hz,1H),5.41(d,J =9.6Hz,1H),4.77(d,J =9.6Hz,1H),3.53(ddd,J =1.2Hz,J =9.6Hz,J =9.6Hz,1H);13C NMR (125MHz,CDCl 3,ppm)δ199.7,148.2,142.0,137.7,131.0(q,J C ÀF =32.5Hz),129.0,128.9,128.0,127.5,127.0,125.9,125.8,124.4,123.8(q,J C ÀF =271.0Hz),112.7,60.2,58.0,56.7;HR-MS (ESI)m /z 404.1569[M +MeOH +H]+,calcd for C 21H 21F 3N 3O 2,404.1586.The enantiomeric excess was determined by HPLC analysis of the corresponding alcohol (after treatment with NaBH 4)using a Daicel Chiralpak OD-H column,hexane (0.1%TEA)/i -PrOH =9:1,flow rate =1.0mL/min:t r =8.00min (major)and t r =33.2min (minor).(5S ,6S ,7R )-5-Phenyl-7-(4-(trifluoromethyl)phenyl)-5,6,7,8-tetrahydroimidazo[1,2-a]pyrimidine-6-carbaldehyde (3r).The title compound was obtained using the general procedure described above,in 87%yield and 99%ee:[R ]20D =+21.1(c =1.00in CH 2Cl 2);1H NMR (400MHz,CDCl 3,ppm)δ9.28(d,J =1.6Hz,1H),7.62(dd,J =8.4Hz,J =8.4Hz,4H),7.28(d,J =8.4Hz,2H),7.10(d,J =8.4Hz,2H),6.25(d,J =1.6Hz,1H),6.05(d,J =1.6Hz,1H),5.44(d,J =9.6Hz,1H),4.74(d,J =9.6Hz,1H),3.47(ddd,J =1.6Hz,J =9.6Hz,J =9.6Hz,1H);13C NMR (125MHz,CDCl 3,ppm)δ199.3,148.1,141.7,136.3,134.8,131.2(q,J C ÀF =36.3Hz),129.0,128.9,128.9,127.9,127.0,124.8,123.7(q,J C ÀF =276.0Hz),112.6,60.2,57.2,56.7;HR-MS (ESI)m /z 438.1192[M +MeOH +H]+,calcd for C 21H 20ClF 3N 3O 2,438.1196.The enantiomeric excess was determined by HPLC analysis of the corresponding alcohol (after treatment with NaBH 4)using a Daicel Chiralpak OD-H column,hexane (0.1%TEA)/i -PrOH =9:1,flow rate =1.0mL/min:t r =9.00min (major)and t r =30.7min (minor).(5S ,6S ,7R )-5-Phenyl-7-(4-(trifluoromethyl)phenyl)-5,6,7,8-tetrahydroimidazo[1,2-a]pyrimidine-6-carbaldehyde (3s).The title compound was obtained using the general procedure described above,in 75%yield and 99%ee:[R ]20D =+33.0(c =1.00in CH 2Cl 2);1H NMR (400MHz,CDCl 3,ppm)δ9.29(d,J =1.2Hz,1H),8.16(d,J =8.4Hz,2H),7.62(dd,J =8.4Hz,J =8.4Hz,4H),7.33(d,J =8.8Hz,2H),6.53(d,J =1.6Hz,1H),6.11(d,J =1.6Hz,1H),5.68(d,J =9.2Hz,1H),4.79(d,J =9.2Hz,1H),3.50(ddd,J =1.2Hz,J =9.2Hz,J =9.2Hz,1H);13C NMR (125MHz,CDCl 3,ppm)δ198.5,148.2,147.9,145.4,141.4,131.3(q,J C ÀF =32.5Hz),128.4,127.8,126.1,126.0,125.1,124.7,123.3(q,J C ÀF =270.0Hz),112.5,59.8,56.4,56.3;HR-MS (ESI)m /z 449.1422[M +MeOH +H]+,calcd for C 21H 20F 3N 4O 4,449.1437.The enantiomeric excess was determined by HPLC analysis of the corresponding alcohol (after treatment with NaBH 4)using a Daicel Chiralpak OD-H column,hexane (0.1%TEA)/i -PrOH =80:20,flow rate =0.8mL/min:t r =12.7min (major)and t r =26.1min (minor).。

离子液体中电有机合成1-对甲氧基苯基-2-苯基乙烯

离子液体中电有机合成1-对甲氧基苯基-2-苯基乙烯
pouti c 一- - e oy- ey- p ey-i ey ty n, hl t r s r ut b i db ri r r nc rdc s i 1 pm t x ) hn l -hnl p nle l e w i et n- o c o tn y o n y og i s ( h p 2 dh h e eh a pd a e da a
电有机合成是在有电子转移参与的有机反应中, 通 过控制电解过程中的参数来达到控制反应的过程。 它具
有反应条件温和、选择 『高和对环境污染小等特点 , 生 如

苯基)乙烯基] J V 的反应条件及机理,并考察了电 苯(P ) { 极材料、反应电流、溶剂、反应物浓度和反应温度等因 素对电有机合成 H V的影响。 o 纠 P Sn 利用电有机法合
t pr ue i i lud 0MI [F 】atg a te spo i l t le ad te e cr hmi lbhvo a e e tr o c i i m a n q 3 M] 4 cn up r g e c o t n l t ce c eai W B i s h t n e ry , h e o a r s n sgt b men o ccc o a i et a d y as fy l v lmmeyT e b i d r utw r ca c r e b F u etnfr irr fTm ) v i e i t t .h ot e po c ee hr t z y or rr s m n a d - , r a n d s ae d i i a o f ei
s te i. ee r.ip o ie Sag o p r a h f rs te iig csta sio rs a t meswi ih slcii y n y h ss T rf e t r vd sU o a p o c y h szn i- n s meimtu o r t hg ee vt b h o d o n r h t y ee to r a i lcro g n cmeh i in cl ud to n o i i i. d q Ke r s ee to r a i y wo d : lcr o g n c;i n clq d; csta s meimtu o r o i iui i—rnsio rs a t me s

氯铝酸盐离子液体催化甲苯与氯代叔丁烷烷基化反应合成对叔丁基甲苯

氯铝酸盐离子液体催化甲苯与氯代叔丁烷烷基化反应合成对叔丁基甲苯

氯铝酸盐离子液体催化甲苯与氯代叔丁烷烷基化反应合成对叔丁基甲苯李宁;罗国华;胡晓非;张蓝溪;徐新【摘要】合成[Me3NH]Cl-2.0AlCl3、[PyH]Cl-2.0AlCl3、[Bmim]Cl-2.0AlCl3以及[Et3NH]Cl-2.0AlCl3氯铝酸盐离子液体,对[Et3 NH]Cl-2.0AlCl3和[PyH]Cl-2.0AlCl3两种离子液体进行系列改性,并考察氯铝酸盐离子液体催化甲苯与氯代叔丁烷的烷基化反应,反应合成对叔丁基甲苯的催化性能.结果表明,未经改性的氯铝酸离子液体催化烷基化反应,对位产物选择性均较低,经FeCl3、CuCl以及CH3NO2改性的[Et3NH]Cl-2.0AlCl3离子液体对叔丁基甲苯选择性显著提高,而[PyH]Cl-2.0AlCl3离子液体经CuCl改性后的对叔丁基甲苯选择性则提高到85%以上.采用乙腈、吡啶为探针的红外光谱对离子液体酸性表征的结果表明,改性后离子液体的L酸和B酸均有所降低,其中B酸是影响对叔丁基甲苯选择性的主要因素,并对离子液体酸性催化甲苯与氯代叔丁烷烷基化反应合成对叔丁基甲苯的作用机制进行分析.【期刊名称】《工业催化》【年(卷),期】2019(027)005【总页数】7页(P52-58)【关键词】催化化学;甲苯;氯代叔丁烷;烷基化;离子液体;对叔丁基甲苯【作者】李宁;罗国华;胡晓非;张蓝溪;徐新【作者单位】北京石油化工学院化学工程学院,北京102617;北京石油化工学院化学工程学院,北京102617;燃料清洁化及高效催化减排技术北京市重点实验室,北京102617;北京石油化工学院化学工程学院,北京102617;北京石油化工学院化学工程学院,北京102617;北京石油化工学院化学工程学院,北京102617;燃料清洁化及高效催化减排技术北京市重点实验室,北京102617【正文语种】中文【中图分类】O643.36;TQ241.1+5对叔丁基甲苯是树脂工业和香精香料中的重要有机中间体[1],可用于生产各种成核剂、树脂改进剂、橡胶与油漆添加剂[2-3]。

功能化离子液体在二氧化碳捕集、活化及化学转化中的应用共3篇

功能化离子液体在二氧化碳捕集、活化及化学转化中的应用共3篇

功能化离子液体在二氧化碳捕集、活化及化学转化中的应用共3篇功能化离子液体在二氧化碳捕集、活化及化学转化中的应用1功能化离子液体在二氧化碳捕集、活化及化学转化中的应用近年来,随着全球二氧化碳排放和气候变化问题的日益引起关注,人们对于二氧化碳的捕集、活化和化学转化的研究也越来越重要。

功能化离子液体是一类新型的绿色溶剂,在二氧化碳捕集、活化及化学转化中有着广泛的应用前景。

一、功能化离子液体的概念及特点离子液体是指在常温常压下,不含水的稳定离子化合物,通常是由大的有机阳离子或阴离子与小的无机或有机阴离子或阳离子相互配对形成的。

而功能化离子液体则是指加入了功能化基团的离子液体,因此其具有更加明显的物化性质和更广泛的应用领域。

以二氧化碳的捕集为例,功能化离子液体具有以下特点:1) 较高的二氧化碳溶解度:与传统有机溶剂相比,功能化离子液体具有更高的二氧化碳溶解度,从而提高二氧化碳的吸收效率和溶解速率;2) 可控的气相/液相反应:由于离子液体具有内禀的分子结构和高的热动力学稳定性,这使得它可以作为反应介质,在地球表面压力下促进二氧化碳与其他化合物的反应,进而实现二氧化碳转化;3) 与功能化基团的结构紧密相关:不同的功能化基团会影响离子液体的性质和功能,因此在选择功能化离子液体时需要根据实际需要进行合理的设计和选择。

二、功能化离子液体在二氧化碳捕集中的应用在二氧化碳捕集方面,功能化离子液体具有更高的二氧化碳吸收率和溶解度,这对于CO2捕集和封存技术有着重要的作用。

例如,目前的二氧化碳捕集技术中使用的胺类溶剂虽然能够有效地将二氧化碳吸附到液体中,但其存在氨气的气味和水分蒸发等问题,而离子液体则可以避免这些问题的出现。

此外,功能化离子液体还可以通过嵌段化学结构、表面结构调整等方式,进一步提高二氧化碳的吸收效率和选择性。

三、功能化离子液体在二氧化碳化学转化中的应用除了作为捕集剂以外,功能化离子液体还能够促进二氧化碳的化学转化,例如将二氧化碳转化为燃料或高附加值化学品,或者将二氧化碳与其他化合物反应得到新型化合物。

分子内friedel-crafts环化反应在苯并环状物合成中的应用

分子内friedel-crafts环化反应在苯并
环状物合成中的应用
Friedel-Crafts环化反应是一种常用的分子内环化反应,常用于合成苯并环状化合物。

在这种反应中,通常将苯并基团连接到环上,形成苯并环状化合物。

Friedel-Crafts环化反应的基本原理是,通过电解质催化剂将苯并基团连接到环上,同时将环中的取代基团转移到反应物的辅助基团上。

这种反应的基本步骤如下:
1.选择适当的电解质催化剂,如AlCl3、FeCl3等;
2.将苯并基团的载体(如苯并芳烃)与环的载体(如芳烃)混合,加入催化剂;
3.加热反应物,使反应物进行环化反应;
4.收集反应产物,经过适当的净化后得到所需的苯并环状化合物。

Friedel-Crafts环化反应在苯并环状物合成中的应用非常广泛,可以通过不同的苯并基团和环的载体,合成多种不同的苯并环状化合物。

例如,可以通过Friedel-Crafts环化反应合成苯并芘、苯并卓等苯并环状化合物。

Friedel-Crafts环化反应是一种高效的分子内环化反应,具有反应速度快、产率高、反应条件宽等优点。

但是,这种反应也存在一些缺陷,如可能存在不对称反应,可能发生多
余反应等。

因此,在进行Friedel-Crafts环化反应时需要注意反应条件的控制,以保证反应的高效性和产率。

Friedel-Crafts环化反应是一种常用的分子内环化反应,在苯并环状物合成中具有重要的应用价值。

通过这种反应,可以快速、高效地合成多种苯并环状化合物。

但是,这种反应也存在一些缺陷,需要注意反应条件的控制,以保证反应的高效性和产率。

离子液体作为溶剂

离子液体作为溶剂概述【1】离子液体(IonicLiquid)是由有机阳离子和无机或有机阴离子构成的在室温下呈液态的有机盐,通常可称为室温离子液体(Room-temperatureIonicLiquid)。

离子液体作为一种新型的极性溶剂,几乎没有蒸汽压、不可燃性、非挥发性、良好的化学稳定性和热稳定性、可循环利用及对环境友好,故称之为“绿色”化学溶剂,可以用来代替传统的易挥发有毒溶剂。

此外,离子液体的高极性、疏水性及溶解性等均可以通过选用不同的阴阳离子和侧链取代基而改变,故又称之为“设计溶剂”(Designedsolvents)。

离子液体被认为是21世纪最有希望的绿色溶剂和催化剂之一,已应用于生物催化、分离科学及电化学等诸多领域。

分类【1】离子液体种类繁多,目前,其分类方法有3种,根据阳离子不同,主要分为咪唑类离子液体、吡啶类离子液体、季铵盐类离子液体、季鏻盐类离子液体等;根据阴离子不同,主要分为AlCl3型离子液体,非AlCl3型离子液体及其他特殊离子液体;根据酸碱性不同,分为酸功能化离子液体、碱功能化离子液体及中性离子液体。

1.AlCl3型离子液体AlCl3型离子液体可通过调节AlCl3与有机季铵盐的比例,生成具有L酸、L碱等的离子液体。

它主要应用于电化学反应中,如烷基化、异构化、酰基化等反应。

2.非AlCl3型离子液体非AlCl3型离子液体对水和空气都较稳定,具有较好的酸催化活性。

但是其酸性强度不如前者,因此,需要加大离子液体用量以增大收率。

此类离子液体比较常见的阴离子有:卤素离子,BF4-,PF6-,HSO4-,H2PO4-,AlCl4-,CFESO3-,CH3CH(OH)COO-等,它们比前者具有更宽广的应用范围。

3.特殊离子液体除上述常用的普通离子液体外,人们还不断的研究设计出了许多功能化离子液体。

特点【1】1.非挥发性。

与传统有机溶剂相比,离子液体的蒸汽压接近零,可用于真空体系进行反应,不易挥发氧化,减少了因挥发而导致的环境污染问题;2.溶解性能良好。

溴化1-乙烯基咪唑离子液体的合成及有序聚集

为研究离子液体在溶液中的自发聚集行为及聚 集过程热力学机理,本 文 制 备 1 种 具 有 自 发 聚 集 行 为的 溴 化 1-乙 烯 基-3-十 四 烷 基 咪 唑 ([C14VIM+ ] [Br- ])离子液体,基于不同 溶 液 体 系 电 导 率 与 浓 度 的数据拟合,获得 [C14VIM+ ][Br- ]在不同体 系 中 的临界聚集浓度(CAC)和反离子结合度(β),分 析 离 子液体-溶剂二元 体 系 的 导 电 行 为 和 聚 集 过 程 的 热 力学。
1实 验
1.1 材料与仪器 1.1.1 材 料 乙 烯 基 咪 唑 (99%)、溴 代 十 四 烷 (97% )(上 海 阿 拉 丁 生 化 科 技 股 份 有 限 公 司 )、甲 醇 、 无水乙醇、乙 酸 乙 酯 (天 津 市 富 宇 精 细 化 工 有 限 公 司 )、丙 酮 、甲 苯 (洛 阳 昊 华 化 学 试 剂 有 限 公 司 ),以 上 均为分析纯;偶氮二 异 丁 腈 (化 学 纯,上 海 山 浦 化 工 有 限 公 司 )。 1.1.2 仪 器 Avance Ⅱ 400 MHz 型 核 磁 共 振 波 谱仪;FTIR8600 型红外光谱仪(测试范围 3500~ 500cm-1);TA、TGA55 型 热 重 分 析 仪 (测 试 范 围 100~600 ℃,升温 速 率 10 ℃/min);DF-101S 型 恒 温加热 磁 力 搅 拌 器 (测 试 范 围 25~70 ℃ );雷 磁 DDS-307A 型电导率测定仪(测试范围 25~60 ℃ , 0.5~300μS/cm )。
图 1 [C14VIM+ ][Br- ]离 子 液 体 的 合 成 Fig.1 Synthesisof[C14VIM+ ][Br- ] ionicliquid

离子液体在化学反应中的应用前景

离子液体在化学反应中的应用前景离子液体是一种特殊的液体,由离子组成,其独特的物理和化学性质使其在化学反应中具有广泛的应用前景。

本文将从催化剂、溶剂和电解质等方面探讨离子液体在化学反应中的应用前景。

一、离子液体作为催化剂的应用前景离子液体具有良好的溶解性和热稳定性,可以作为催化剂载体或直接作为催化剂参与反应。

离子液体催化剂具有高效催化活性、可调控性强、可重复使用等优点,因此在有机合成、气相反应等领域具有广阔的应用前景。

以有机合成为例,离子液体催化剂可以在低温下实现高效的催化反应。

离子液体中的离子可以与底物分子发生强烈的相互作用,提高反应速率和选择性。

此外,离子液体催化剂还可以调控反应的副反应路径,提高产物纯度。

因此,离子液体催化剂在有机合成中有望取代传统的有机溶剂和金属催化剂,成为一种环境友好的催化剂。

二、离子液体作为溶剂的应用前景离子液体作为溶剂具有独特的溶解性和热稳定性,可以替代传统有机溶剂在化学反应中发挥重要作用。

离子液体溶剂可以提供更广泛的溶解度,使得一些原本不溶于传统有机溶剂的化合物可以在离子液体中溶解和反应。

此外,离子液体溶剂还可以调控反应的速率和选择性,提高反应效率。

离子液体溶剂在有机合成中广泛应用,例如催化剂载体、酶催化反应、金属催化反应等。

离子液体溶剂可以提供良好的环境,保护催化剂或酶的活性,同时提高反应速率和选择性。

此外,离子液体溶剂还可以与底物分子发生特殊的相互作用,调控反应的过渡态能垒,提高反应速率和选择性。

三、离子液体作为电解质的应用前景离子液体具有较高的离子导电性,可以作为电解质在电化学反应中发挥重要作用。

离子液体电解质具有较宽的电化学窗口,可以在较宽的电压范围内稳定工作。

此外,离子液体电解质还具有较高的离子迁移率和较低的离子浓度极化,可以提高电化学反应的效率。

离子液体电解质在锂离子电池、燃料电池等能源领域具有广泛的应用前景。

离子液体电解质可以提高电池的能量密度、安全性和循环寿命。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Anefficientdominoreactioninionicliquid:Synthesisandbiologicalevaluationofsomepyrano-andthiopyrano-fusedheterocycles

NarsidasJ.Parmar⇑,RikinA.Patel,BhagyashriD.Parmar,NavinP.TalpadaDepartmentofChemistry,SardarPatelUniversity,VallabhVidyanagar,Dist.Anand,388120Gujarat,India

articleinfoArticlehistory:Received18October2012Revised5January2013Accepted17January2013Availableonline29January2013

Keywords:ThiopyranoquinolinePyranocoumarinTriethylammoniumacetateDomino/Knoevenagel-hetero-Diels–AlderIonicliquid

abstractAnimproveddomino/Knoevenagel-hetero-Diels–Alderreactionoftwonewaldehydesubstrates;7-ole-finoxy-coumarin-8-carbaldehydeand2-alkensulfanyl-quinoline-3-carbaldehyde,withpyrazoloneswasstudiedinionicliquidtriethylammoniumacetate(TEAA),affordingaseriesofpyrazolopyranannu-lated-pyrano-fusedcoumarins,andthiopyrano-fusedquinolones.Besidesactingascatalyst,sincenoadditionalcatalystused,theionicliquidTEAAalsopromiseditseasyrecovery.Inallnewpolyheterocy-cles,thecis-fusionoftwopyranylringshadbeeninferredfrom2DNMRCOSYandNOESYexperiments.Allaregoodantitubercularagents,astheyarefoundactiveagainstMycobacteriumtuberculosisH37Rv,andantibacterialagents,astheyarefoundactiveagainstthreeGram-positive(Streptococcuspneumoniae,Clostridiumtetani,Bacillussubtilis)andthreeGram-negative(Salmonellatyphi,Vibriocholerae,Escherichiacoli)bacteria.Ó2013ElsevierLtd.Allrightsreserved.

Asefficientgreenreactionmedia,ILs(ionicliquids)haveat-tractedinterestofmanyresearchersduetotheirnegligiblevaporpressureandnonflammablenature1thatconferthereactionwithmanyadvantageslikehighthermalstability,polarity,andrecycla-bilityalongwithagoodextractingpower.2Besidesbeingalterna-tivetoorganicsolvents,ILsalsoactasefficientcatalysts,3whichhavesolvedbothsolventemissionandcatalystre-useprob-lems.3b–eToday,ILsoffertheorganicsynthesiswithefficientgreenmethodologies.4Nucleophileswithcompoundshavingelectron-deficientdoublebondslikeC@CorC@Oshowedexcellentreactiv-ityinionicliquids.5Wittigreaction,6abiginelli’scondensation,6b1,3-dipolarcycloaddition,6cMichaeladdition,6dDiels–Alderreac-tion,6ebenzoincondensation6fetc.havesuccessfullybeenmedi-atedbyeco-friendlyandenvironmentallybenignsolvents.Neverthless,theseneotericsolventsandcatalysts7haveseldombeenemployedinthedomino/Knoevenagel-hetero-Diels–Alder(DKHDA)approach,apowerfultooltoaccessdiversenaturalandunnaturalbioactivepolyheterocycles.8Coumarinsandquinolines,duetotheirmuchcloserstructuralrelationshipwithmanybioactivenaturalandunnaturalcomplexmolecules,areusefultemplatesfordrugdevelopment.9Inrecentpast,agrowingnumberofscaffolds,incorporatingthesemoieties,haveemergedasusefulmedicinalcompounds.Theseheterocycleshavebeensouredbothsyntheticallyaswellasnaturally.10Pyran-annulatedheterocyclesparticularlyhaveremarkablephar-macologicalpotencies.11Pyranocoumarin,forexample,inwhich

coumarinisfusedtoapyranringviaits7,8positions,isanimpor-tantsubunitfrombioactivitypointofview.Non-nucleosideHIV-I-specificreversetranscriptaseinhibitors(+)calanolideA,1230,40-di-O-(S)camphanoyl-(+)-cis-khellactone(DCK)13analogsandantican-ceragentseselin(Fig.1)arethepotentialcandidatesthisringsys-temexistsin.14SeselinalsoexhibitedcytotoxicactivityagainstVeromonkeycells.15BesidesbeingasignificantcytotoxicagainstP-388lymphocyticleukemia,16italsopossessanantiparasitic

activity.17

Coumarinanalogsquinolines,ontheotherhand,havebeenwellrecognizedbysyntheticandmedicinalchemists.18Pyranannu-latedquinolinesconstituteabasicframeworkofalargenumberofalkaloids19likegeibalasine,ribalinine,flindersine,etc.

Metabotropicglutamatereceptorantagonisticactivitythatis,mGlu1receptoractivityofthiopyranoquinoline(Fig.1),20andvel-nacrinethiaanalogues,thatactaspotentialagentsfortreatingAlz-heimer’sdisease,areveryusefulmedicinalapplicationsofthisclass.21

0960-894X/$-seefrontmatterÓ2013ElsevierLtd.Allrightsreserved.http://dx.doi.org/10.1016/j.bmcl.2013.01.079

⇑Correspondingauthor.Tel.:+912692226858;fax:+912692236475.

E-mailaddresses:njpchemdeptspu@yahoo.co.in,naroo26@yahoo.com(N.J.Parmar).

OOOSeselin

O

NSMeOThiopyranoquinoline

Figure1.Biologicallyactivethiopyranoquinolinesandpyranocoumarins.

Bioorganic&MedicinalChemistryLetters23(2013)1656–1661ContentslistsavailableatSciVerseScienceDirectBioorganic&MedicinalChemistryLetters

journalhomepage:www.elsevier.com/locate/bmcl

相关文档
最新文档