第十讲含参变量的积分

合集下载

含参变量的积分精编版共29页

含参变量的积分精编版共29页

谢谢!
51、 天 下 之 事 常成 于困约 ,而败 于奢靡 。——陆 游 52、 生 命 不 等 于是呼 吸,生 命是活 动。——卢 梭
53、 伟 大 的 事 业,需 要决心 ,能力 ,组织 和责任 感。 ——易 卜 生 54、 唯 书 籍 不 朽。——乔 特
55、 为 中 华 之 、人民应该为法律而战斗,就像为 了城墙 而战斗 一样。 ——赫 拉克利 特 17、人类对于不公正的行为加以指责 ,并非 因为他 们愿意 做出这 种行为 ,而是 惟恐自 己会成 为这种 行为的 牺牲者 。—— 柏拉图 18、制定法律法令,就是为了不让强 者做什 么事都 横行霸 道。— —奥维 德 19、法律是社会的习惯和思想的结晶 。—— 托·伍·威尔逊 20、人们嘴上挂着的法律,其真实含 义是财 富。— —爱献 生

含参变量的反常积分

含参变量的反常积分

充分性 若 0, N c, M A1 , A2 N ,

则令 A2 , 得
A2 A1
f ( x , y )dy .


c
M
f ( x , y )dy .
这就证明了 I ( x )

f ( x , y )dy 在 J 上一致收敛.
*例2 证明含参量的反常积分
( y)
1
g( A1 , y ) A g( A1 , y ) A

魏尔斯特拉斯(Weierstrass) M 判别法
设有函数 F(x), 使得
f ( x , y ) F ( x ) , a x , y .
若 F ( x )dx 收敛, 则
对A, A a ,
A
A
f ( x , y )dx
a
A
f ( x , y )dx
a
A
f ( x , y )dx 2 M .
于是, A1 , A2 A, y , 由积分第二中值定理,
A
A2
1
f ( x , y ) g ( x , y )dx
或简单地说含参量积分(1)在 上一致收敛.
注1 由定义, I ( y ) 充要条件是

a
f ( x , y )dx 在 上一致收敛的
( A) sup
y

a

A
f ( x , y )dx 0 ( A ).

注2 由定义, I ( y )

f ( x , y )dx 在 上不一致收敛
若I ( y)

a
f ( x , y )dx 在 上一致收敛, 则

第17章含参变量的积分

第17章含参变量的积分

2019年2月26日星期二
7
§17 含参变量的正常积分
0, 0,只要 x , 就有
f ( x x, y ) f ( x, y ) f x ( x, y ) x f x (x x,y)-f x (x,y) , 其中 (0,1).因此
第十七章 含参变量的积分
级数与积分是构造函数的两个重要分 析工具。我们已经介绍了一种利用定积分 构造的函数──积分上限的函数。 本章和 下章介绍另一种利用 Riemann 积分与广义 积分构造的函数──含参变量的正常积分与 含参变量的广义积分,并研究它们的分析 性质:连续性、可微性、可积性。
2019年2月26日星期二
J ( y ) 在 [c, d ] 上可积。记为

b
a
I ( x ) dx J ( y)
d
c
f ( x, y) dy dx dy f ( x, y ) dx dy
b d a c d b c a
b
a d
dx dy

d
c b
f ( x, y ) dy f ( x, y ) dx
x 取 [a, b] 上某定值时,函数
上以 y为自变量的一元函数.若此时 f ( x, y)在 [c, d ]上可积,
则其积分值是 x 在 [a, b]上取值的函数,表为
I(x) f ( x, y)dy, x [a, b (定义域) ]
c
d
称为含参量 x 的正常积分,或简称含参量积分.
2019年2月26日星期二 3
(证毕)
2019年2月26日星期二 8
§17 含参变量的正常积分
下面讨论可积性. 设 f ( x, y) 在矩形 [a, b; c, d ]上连续,那末由定理1 ,函数

1含参变量的常义积分

1含参变量的常义积分

同理可定义含参变量 x 的积分:
J ( x)
f ( x, y)dy ,
c
d
x [a , b]
一般就称为含参变量积分。 它们统称为含参变量常义积分,
x2 y2 例如: 计算 椭圆 1 (b a 0)的周 长。 2 2 a b
椭圆的参数方程: x a cos t , y b sin t ,
dI ( y ) dy

b
a
f y ( x , y )dx 。
定理3 的结论也可写成
d dy

b
a
f ( x , y )dx f ( x , y )dx 。 a y

b
说明求导运算和积分运算可以交换。
机动 目录 上页 下页 返回 结束
定理4 设f ( x, y ), f y ( x, y )都在闭矩形 [a, b] [c, d ]上连续 ,
例3 解
设F ( y )

y
0
ln(1 xy) dx, y 0, 求F ( y )。 x
y
F ( y )

0
1 ln(1 y 2 ) dx 1 xy y
ln(1 xy) y ln(1 y 2 ) 0 y y 2 ln(1 y 2 ) y
机动 目录 上页 下页 返回 结束
机动 目录 上页 下页 返回 结束
1 I ( )


0
1 dx 1 cos x
x 对 最 后 一 个 积 分 作 万代 能 换 t tan , 2


0
1 dx 1 cos x


2dt 1 t 2 (1 t 2 )

数学《含参量积分》讲义

数学《含参量积分》讲义

第十九章 含参量积分§1 含参量正常积分设:[,][,]f a b c d R ⨯→连续, 形如(,)dc f x y dy ⎰的积分, 称为含参量(x 的)正常积分. 若[,]x a b ∀∈,(,)dcf x y dy ⎰存在 (固定x 时, (,)f x y 关于y 可积), 则由()(,)dcx f x y dy ϕ=⎰([,]x a b ∈)定义了[,]a b 上的函数ϕ. 1) ϕ的连续性由于[,]a b 是闭区间,考察连续性就是考察一致连续性, 即需证 12 0,0,||:x x εδδ∀>∃>-<121212|()()||(,)(,)||(,)(,)|dddcccx x f x y dy f x y dy f x y f x y dy ϕϕε-=-≤-<⎰⎰⎰,只需1212[,],||: |(,)(,)|y c d x x f x y f x y d cεδ∀∈-<-<-,而f 在[,][,]a b c d ⨯上连续,则其在[,][,]a b c d ⨯上也一致连续. 因而121212120,0,,[,],,[,], ||,||:x x a b y y c d x x y y εδδδ∀>∃>∀∈∀∈-<-<1122|(,)(,)|f x y f x y d cε-<-特别地, 121212[,],,[,],|-|<: |(,)(,)|y c d x x a b x x f x y f x y d cεδ∀∈∈-<-.故有下面的结论.定理1 若f 在[,][,]a b c d ⨯上连续, 则函数()(,)dcx f x y dy ϕ=⎰在[,]a b 上连续, 即()lim (,)lim ()()(,)lim (,)d d dccc x xx xx xx f x y dy x x f x y dy f x y dy ϕϕϕ→→→=====⎰⎰⎰.2) ϕ的可导性 设[,],[,]x a b x h a b ∈+∈, 则()()(,)(,)(,), 01(,) (: )dc dx h h cdx x cx h x f x h y f x y dyhhf x h y dy f x y dy f ϕϕθθ+-+-==+⋅<<→⎰⎰⎰条件连续定理2 若f 与x f 在[,][,]a b c d ⨯上连续, 则函数()(,) ([,])dcx f x y dy x a b ϕ=∈⎰在[,]a b 上连续可导, 且()(,)dx cx f x y dy ϕ'=⎰.更一般地, 我们有定理3 设f 在[,][,]a b c d ⨯上连续, 则由(,)(,), [,]tcx t f x y dy t c d ψ=∈⎰定义的ψ在[,][,]a b c d ⨯上连续, 且当x f 连续时, 1C ψ∈(因而ψ可微) . 定理4 设f 在[,][,]a b c d ⨯上连续, 函数:[,][,]a b c d β→连续, 则函数()()(,) , [,]x cx f x y dy x a b βϕ=∈⎰连续. 进一步, 若x f 连续, β可微, 则ϕ可导. 且()'()(,)+(,())()x x cx f x y dy f x x x βϕββ'=⋅⎰定理5 若,,f αβ连续, 则函数()()()(,), [,]x x x f x y dy x a b βαϕ=∈⎰连续. 进一步, 若x f 连续, ,αβ可导, 则ϕ可导, 且()()()(,)+(,()) ()(,()) ()x x x x x f x y dy f x x x f x x x βαϕββαα'''=⋅-⋅⎰注 上述定理中[,]a b 均可改为(,)a b 或任意区间.3) ϕ的可积性定理6 若(,)f x y 在矩形域[,][,]a b c d ⨯上连续, 则()(,), ([,])d cx f x y dy x a b ϕ=∈⎰与()(,), ([,])bay f x y dx y c d ψ=∈⎰分别在[,]a b 和[,]c d 上可积.引入累次积分及记号(,)[(,)],(,)[(,)]bdb da cacdbd bcacadx f x y dy f x y dy dx dy f x y dx f x y dxdy∆∆==⎰⎰⎰⎰⎰⎰⎰⎰.定理7 (累次积分定理, 交换积分次序) 若(,)f x y 在[,][,]a b c d ⨯上连续, 则(,)(,)bd d baccadx f x y dy dy f x y dx =⎰⎰⎰⎰例1 1) 1220lim 14x dx x ααπα+→=++⎰.2) 11222223220011111arctan (0)arctan +()22(1)dx dx x x ααααααααα=≠⇒=+++⎰⎰.3) 设f 连续, 10()()()xn x f t x t dt ϕ-=-⎰, 求()n ϕ.4)设cos sin ()x xF x e =⎰, 求'F .5) 设(,)()()xy x y F x y x yz f z dz =-⎰, f 可微, 求xy F .例2 求1(,), (0)ln b ax x I a b dx b a x-=>>⎰.例3 求120ln(1)1x I dx x +=+⎰例4 讨论122()()yf x F y dx x y =+⎰的连续性, 其中f 为[0,1]上的正值连续函数.例5 试分别求累次积分221122200()x y dx dy x y -+⎰⎰与221122200()x y dy dx x y -+⎰⎰.§2 含参量反常积分设函数(,)f x y 定义在无界区域[,][,)a b c ⨯+∞上. 若对任一固定的[,]x a b ∈, 反常积分(,)cf x y dy +∞⎰收敛, 则其值为定义在[,]a b 上(关于x )的函数. 记为()x ϕ.即 ()(,) [,]cx f x y dy x a b ϕ+∞=∈⎰称为定义在[,]a b 上的含参量x 的无穷限反常积分, 简称含参量反常积分. 取1,,n A c A =↑+∞ 则 1()(,)() n ndA n A nx f x y dy x ϕϕ+==∑∑⎰.因而我们可仿照讨论函数项级数来讨论反常积分. 先比较一下函数项级数与反常积分性质判别方法x E ∈, )x 收敛)x =∑一致收敛(nx ϕ'∑x E ∈, ,)x y dy )cx dy +∞=⎰一致收敛b 上可微,)x y dy (cf x +∞bdx dx =⎰例1 证Cauchy 准则例2 反常积分()(,)cx f x y dy ϕ+∞=⎰在[,]a b 上一致收敛⇔对任一趋于+∞的递增数列1{},()n A A c = 函数项级数111(,)()n nA n A n n f x y dy x ϕ++∞+∞===∑∑⎰在[,]a b 上一致收敛.例3 证明可微性.例4 证明Abel 和Dirichlet 判别法.例5 1) 证明: 含参量积分2cos 1xydx x+∞+⎰在R 上一致收敛.2) 证明:sin xydy y+∞⎰在[,),(0)δδ+∞>上一致收敛,但在(0,)+∞上不一致收敛. 3) 证明: 11sin ,(0)y x dx y x+∞<⎰在(,],(0)δδ-∞<上一致收敛, 但在(,0)-∞上不一致收敛.4) 证明: 若(,)f x y 在[,][,)a b c ⨯+∞上连续,(,)cf x y dy +∞⎰在[,)a b 上收敛,(,)cf b y dy +∞⎰发散, 则(,)cf x y dy +∞⎰在[,)a b 上不一致收敛.例6 证明: 0sin ()kxxI k e dx x+∞-=⎰在[0,)+∞上连续, 并求()I k 的值.例7 求2cos cos (,),(,0)x xI dx xαβαβαβ+∞-=>⎰.例8 求证: 222400()cos (xx exdx edx γϕγγ+∞+∞---==⇒=⎰⎰.例9 (198P 定理13) (了解,不证明)设(,)f x y 定义在[,)[,)a c +∞⨯+∞上连续. 若 1)(,)af x y dx +∞⎰关于y 在任何闭区间[,]c d 上一致收敛,(,)cf x y dy +∞⎰关于x 在任何闭区间[,]a b 上一致收敛;2) 积分|(,)|acdx f x y dy +∞+∞⎰⎰与|(,)|cady f x y dx +∞+∞⎰⎰中有一个收敛, 则另一个积分也收敛, 且(,)(,)accadx f x y dy dy f x y dx +∞+∞+∞+∞=⎰⎰⎰⎰§3 Euler 积分含参量积分 10(), 0s x s x e dx s +∞--Γ=>⎰1110(,)(1), ,0p q B p q x x dx p q --=->⎰称为Euler 积分, Gamma 函数, Beta 函数. 一、Γ函数11101()()()s x s x s x e dx x e dx I s J s +∞----Γ=+=+⎰⎰对()I s : 1s ≥时, 正常积分; 0<1s <时, 收敛的瑕积分. 对()J s : 0s >时, 收敛的反常积分(无限). 故0s >, ()s Γ有定义.1. ()s Γ在定义域(0,)+∞上连续可导.对任何闭区间[,],(0)a b a >, 对()I s , 当01x ≤≤时, 从而()I s 在闭区间[,]a b 上一致收敛. 而对于()J s , 当1x ≥时, 11s xb xx e x e ----≤, 由于110b x x e dx --⎰收敛, 从而()J s 在闭区间[,]a b 上一致收敛. 从而()s Γ在0s >上连续.又1100()ln s xs x x e dx x e dx s+∞+∞----∂=∂⎰⎰, 类似可证在[,]a b 上一致收敛. 从而()s Γ在[,]a b 上可导. 故()s Γ在0s >上可导. 且10()10()ln , 0()(ln ), 0s x n s x n s x e xdx s s x e x dx s +∞--+∞--'Γ=>Γ=>⎰⎰.2. 0(1)()(1)!!x s s s n n e dx n +∞-Γ+=⋅Γ⇒Γ+==⎰3. Γ图像4. Γ的延拓定义 (1)(), 10, (0,)s s s s n sΓ+Γ=-<<≠-5. Γ的其他形式22210, ()2, (0)s y x y s y e dy s +∞--=Γ=>⎰10, (), (0,0)s s py x py s p y e dy s p +∞--=Γ=>>⎰二、B 函数1. (,)B p q 在定义域 0,0p q >>上连续.1) 定义域 0,0p q >>. 1,1p q ≥≥为正常积分. 当01,1p q <<≥时, 0为瑕点,1()(0)p f x xx -→. 而当1q <时, 0,1为瑕点,1112102()()()f x dx f x dx f x dx =+⎰⎰⎰,11()(0),()(1)(1)p q f x x x f x x x --→-→. 从而 0p >时, (,),(0)B p q q >收敛.2) 在 0,0p q >>连续.0,0p q ∀>>, 1111(1)(1), (,)p q p q x x x x p p q q -----≤-≥≥ (,)B p q ⇒在,p p q q ≥≥上一致收敛.1. 对称性 (,)(,)B p q B q p =作变换1x y =-得 1111110(,)(1)(1)(,)p q p q B p q x x dx y y dy B q p ----=-=-=⎰⎰2. 递推公式 1(,)(,1) (0,1)1q B p q B p q p q p q -=->>+-1(,)(1,) (1,0)1p B p q B p q p q p q -=->>+-(1)(1)(,)(1,1) (1,1)(1)(2)p q B p q B p q p q p q p q --=-->>+-+-3. 其他形式2212120cos , (,)sin cos q p x B p q d πϕϕϕϕ--==⎰10, (,)1(1)p p q y y x B p q dy y y -+∞+==++⎰ 11101, (,)(1)p q p q y y x B p q dy t y --++==+⎰三、Γ函数与B 函数的关系 1) ()()(,)()p q B p q p q Γ⋅Γ=Γ+2) (,1)()(1)sin B p p p p p ππ-=Γ⋅Γ-=3)1()2Γ=(120111()(,)222B πΓ===⎰) 11()2()22Γ-=-Γ=-321()()232Γ-=-Γ-=1()2n Γ+=1()2n Γ-= 4) 20111(,)sin cos (,), (,1)222p q p q I p q x xdx B p q π++==>-⎰ 特别地, 0,1q p =>-时,20(21)!!111()()()22(2)!!1222sin (2)!!22(1)()22(21)!!p n p p p nn xdx p p n p np n ππ-⎧++Γ⋅ΓΓ⎪=⎪===⎨≠⎪Γ+Γ⎪+⎩⎰三、利用Euler 积分求积分 例 1 1)6111()(1)16663dx x π+∞=ΓΓ-=+⎰2)10113(,)4444B ==⎰习 题 课例 1 证明: 10()(,)F y f x y dy =⎰连续, 这里1(,)01x y f x y x y x y>⎧⎪==⎨⎪-<⎩.例 2 求22222220ln(sin cos ), (0)(0,0)a x b x dx a b a b π++≠>>⎰例 3 求101sin(ln ), (0)ln b ax x dx b a x x->>⎰例 4 证明: 0xy xe dy +∞-⎰在[,],(0)a b a >上一致收敛, 但在(0,]b 上不一致收敛.例 5 求22222(0)a x b x ee dx b a x --+∞->>⎰例 6 1) 对极限202xy xye dy +∞-⎰能否进行极限与积分运算次序.2) 2130(22)xy dy y xy e dx +∞--⎰⎰能否交换积分次序.3) 对230()xy F x x edy +∞-=⎰能否交换积分与求导次序.例 7 设10()(,)()u x k x y v y dy =⎰,其中(1)(,)(1)x y x y k x y y x x y-≤⎧=⎨->⎩,v 为[0,1]上的连续函数, 求证: ()()u x v x ''=-.。

§19.2含参变量的反常积分

§19.2含参变量的反常积分
使得 : f ( x1, y)dy 0 .
一般地, 取M n max n, A2 n1 , (n 2), 则有


A2 n A2 n1 M n及xn [a, b], 使得 :

A2 n
A2 n 1
f ( xn , y)dy 0
()
由上述所得到的数列 An 是递增的,且 lim An n
n
f ( x, y)dy A
n 1
An 1
An 1 逐项求导 I ( x) f ( x, y )dy n1 An n 1
An 1 An
An
注: 其中 un ( x)
f ( x, y )dy
Ak 1 Ak

n 1

An 1 An
f ( x, y )dy lim
n
n
f ( x, y )dy
c
lim
k 1 An 1
n c
f ( x, y )dy
f ( x, y)dy
cos xy dx 在 (, ) 上一致收敛. 例 2 证明 0 1 x 2

证 : y (, ), 有 :
1 而 dx收敛, 2 0 1 x
由M 判别法,

cos xy 1 , 2 2 1 x 1 x
cos xy dx在(, )内一致收敛. 0 1 x 2

sin u du u

取A0 N 1 N , 取x0


2( N 1)
(0, ), 使 :
sin u p A0 x0 u du 2 0 . A0 (此时,0 A0 x0 ) 2 所论积分在(0, )非一致收敛.

第十五章 含参变量的积分(数学分析)课件

第十五章 含参变量的积分(数学分析)课件

第十五章含参变量的积分教学目的与要求1 掌握含参变量的常义积分的定义及分析性质;2 能应用含参变量的常义积分的分析性质证明某些理论问题.3 理解含参变量的反常积分的一致收敛的定义;4 掌握含参变量的反常积分的一致收敛性的判别法及分析性质;5 能利用参变量的反常积分的分析性质求函数的导数、积分等;6 掌握Beta函数和Gamma函数的定义及其相互关系;7 掌握Beta函数和Gamma函数的性质。

教学重点1 应用含参变量的常义积分的分析性质证明某些理论问题;2 求含参变量的常义积分的极限、导数、积分;3 含参变量的反常积分的一致收敛的定义;4 掌握含参变量的反常积分的一致收敛性的判别法及分析性质;5 利用参变量的反常积分的分析性质求函数的导数、积分等6 Beta函数和Gamma函数的性质。

教学难点1 应用含参变量的常义积分的分析性质证明某些理论问题;2 含参变量的反常积分的一致收敛的定义;3 掌握含参变量的反常积分的一致收敛性的判别法及分析性质;§1 含参变量的常义积分教学目的1 掌握含参变量的常义积分的定义及分析性质;2 能应用含参变量的常义积分的分析性质证明某些理论问题.教学过程1 含参变量的常义积分的定义 (P373)2 含参变量的常义积分的分析性质 2.1 连续性定理P374Theorem 1 若函数),(y x f 在矩形域] , [ ] , [d c b a D ⨯=上连续 , 则函数⎰=dcdy y x f x I ),()(在] , [b a 上连续 .Theorem 2 若函数),(y x f 在矩形域] , [ ] , [d c b a D ⨯=上连续, 函数)(1x y 和)(2x y 在] , [b a 上连续 , 则函数⎰=)()(21),()(x y x y dy y x f x G 在] , [b a 上连续.例 1 求下列极限 (1)dx y x y ⎰-→+11220lim(2) dx nxnn ⎰++∞→1)1(11lim2.2 积分次序交换定理P375 例2 见教材P375.2.3 积分号下求导定理P375—376Theorem 3 若函数),(y x f 及其偏导数x f 都在矩形域] , [ ] , [d c b a D ⨯=上连续, 则函数⎰=dcdy y x f x I ),()(在] , [b a 上可导 , 且⎰⎰=dc d c x dy y x f dy y x f dxd ),(),(. ( 即积分和求导次序可换 ) .Theorem 4设函数),(y x f 及其偏导数x f 都在矩形域] , [ ] , [d c b a D ⨯=上连续, 函数)(1x y 和)(2x y 定义在] , [b a , 值域在] , [d c 上, 且可微 , 则含参积分⎰=)()(21),()(x y x y dy y x f x G 在] , [b a 上可微 , 且()())()(,)()(,),()(1122)()(21x y x y x f x y x y x f dy y x f x G x y x y x '-'+='⎰. 例2 求下列函数的导数 (1) ⎰>+=122)0()ln()(y dx y xy F (2) ⎰-=22)(x xxy dx ey F例3 计算积分 dx x x I ⎰++=1021)1ln(.例 4 设函数)(x f 在点0=x 的某邻域内连续 . 验证当||x 充分小时 , 函数 ⎰---=x n dt t f t x n x 01)()()!1(1)(φ 的1-n 阶导数存在 , 且 )()()(x f x n =φ.2.4(P376定理15.1.4) 例4 求⎰++=yb y a dx x yxy F sin )(的导数例5 研究函数 ⎰+=10 22)()(dx y x x yf y F 的连续性,其中)(x f 是]1,0[上连续且为正的函数。

数学分析-第十二章-广义积分与含参变量积分-PPT

数学分析-第十二章-广义积分与含参变量积分-PPT

f
(x)dx也相应成
立.
9
2.Cauchy收敛原理
定理 1.1. 设 f ( x)在[a, )有定义, 且在任意
闭区间[a, A]上可积.

a
f ( x)dx收敛的充要
条件是: 0,X a, 当 A/ , A// X 时,
A//
A/
f ( x)dx
.
推论 1.1.

a
f ( x) dx收敛,

a
f ( x)dx收敛.
10
定义.

a
f(x) dx
收敛,
则称
a
f
(x)dx
绝对收敛.

a
f
(x)dx
收敛,

a
f(x) dx发散,


a
f
(x)dx
条件收敛.
11
3. 比较判别法
定理 1.2. 设 f ( x)在[a, )有定义, 且在任意
闭区间[a, A]上可积. 又设存在 X0 a, 使得
31
2.Cauchy收敛原理
定理2.1. 设 f ( x ) 在( a , b ] 有定义, 且在任意闭
区间[a,b](0)可积, a 是瑕点. 则
b
a
f
( x)dx
收敛的充要条件是:
0, 0,
当 0,/ 时,
a/
f (x)dx . a
32
推论2.1. 设 a

f
(x)
的瑕点.

b
a
f (x) dx
x g( x)
那么得到下列结论
(1)当 0l时,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十讲含参变量的积分10 . 1 含参变量积分的基本概念含参量积分共分两类:一类是含参量的正常积分;一类是含参量的广义积分. 一、含参量的正常积分 1 .定义设()y x f ,定义在平面区域[][]d c b a D ,,⨯=上的二元函数,对任意取定的[]b a x ,∈.()y x f ,关于 y 在[]d c ,上都可积,则称函数()()[]b a x dy y x f x I dc,,,∈=⎰为含参量二的正常积分.一般地,若 ()()(){}b x a x d y x c y x D ≤≤≤≤=,|, ,也称()()()()[]b a x dy y x f x I x d x c ,,,∈=⎰为含参量x 的正常积分.同样可定义含参量 y 的积分为()()[]d c y dx y x f y J ba,,,∈=⎰或()()()()[]d c y dx y x f y J y b y a ,,,∈=⎰2 .性质(以 I ( x )为例叙述)( l )连续性:若 ()y x f ,必在 D 上连续,()x c ,()x d 在[]b a ,连续,则 ()x I 在[]b a ,连续,即对[]b a x ,0∈∀,()()()()⎰=→000,lim 0x d x c x x dy y x f x I( 2 )可积性:若()y x f ,在 D 上连续,()x c ,()x d 在[]b a ,连续,则 ()x I 在[]b a ,可积.且有()()()⎰⎰⎰⎰⎰==bab ad cbadcdx y x f dy dy y x f dx dx x I ,,(若 D 为矩形区域, ·( 3 )可微性:若 ()y x f ,的偏导数()y x f x ,在 D 上连续,()x c ,()x d 在[]b a ,可导,则()x I 在 []b a ,可导,且()()()()()()()()()()x c x c x f x d x d x f dy y x f x I x d xc x''',,,-+=⎰·以上性质的证明见参考文献[ 1 ] ,这里从略,例10. l 求积分⎰>>-⎪⎭⎫ ⎝⎛10,ln 1ln sin a b dx xxx x ab 解法 1 (用对参量的微分法):设()⎰>>-⎪⎭⎫ ⎝⎛=100,ln 1ln sin a b dx x xx x b I ab ,()()()()()()()b I b b dx x x x x b x d x b dx x x b x b x b x d x dxx x b I b b b b b b b '221010121102101010111'11111ln sin |1ln cos 111ln cos 111ln cos 11|1ln sin 111ln sin 1ln sin +-+=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛=⎰⎰⎰⎰⎰++++所以()()()()()⎰++=++=⇒++=C b db b b I b b I 1arctan11111122',令a b =,则 ()()()1arctan 1arctan0+-=⇒++==a C C a a I 所以原积分()()()1arctan 1arctan+-+==a b b I I 解法 2 : (交换积分顺序方法)因为xx x dy x ab bayln -=⎰,所以⎰⎰⎰⎰⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛=10101ln sin 1ln sin b a y b a y dx x x dy dy x x dx I同解法()⎰++=⎪⎭⎫ ⎝⎛1021111ln sin y dx x x y,所以有 ()()()⎰+-+=++=baa b dy y I 1arctan 1arctan1112注:在以上解题过程中,需要验证对参量积分求导和交换积分顺序的条件,为简洁省略了,但按要求是不能省的. 例10.2 设()()()dz z f yz x y x F xyyx ⎰-=,,其中f 为可微函数,求()y x F xy,·解:()()()()()()()()()()()()()()()()()()()xy f y y x y x f y x xy f xy x xy f y y x xy f y x x y f y x xy xf F xy f y yx dz z f xy f xy x y dz z f y x f x x y xy f xy x y dz z f F xy xyyx xyyx xyy x x '2222'222222213213111-+⎪⎪⎭⎫ ⎝⎛+-=-+-+⎪⎭⎫⎝⎛+=-+=-+=⎪⎪⎭⎫⎝⎛---+=⎰⎰⎰二、含参量的广义积分含参量的广义积分包括两类:含参量的无穷积分和含参量的瑕积分 (一)含参量的无穷积分1 .定义:设 ()y x f ,定义在[][)+∞⨯=,,c b a D 上,对每个取定的[]b a x ,∈,积分 ,()()[]⎰+∞∈=cb a x dy y x f x I ,,,都收敛(也叫逐点收敛),它是一个定义在[]b a ,上的函数,称该积分为含参量x 的无穷积分 同样可以定义 ()()[]⎰+∞∈=ad c y dx y x f y J ,,,2 .一致收敛若对c M >∃>∀,0ε,当 A > M 时,对一切[]b a x ,∈,恒有()()()εε<<-⎰⎰+∞AA cdy y x f dy y x f x I ,,或则称含参量积分在[]b a ,上一致收敛.注:非一致收敛定义:若00>∃ε,使得c M >∀,总存在M A >0,及存在[]b a x ,0∈,,使得()()()000000,,εε<<-⎰⎰+∞A A cdy y x f dy y x f x I 或3 .一致收敛的柯西准则含参量积分( l )在[]b a ,上一致收敛⇔对 c M >∃>∀,0ε,当 M A A >>12时,对一切[]b a x ,∈,都有()ε<⎰21,A A dy y x f注:非一致收敛的柯西准则:含参量积分( 1 )在[]b a ,上非一致收敛c M >∀>∃⇔,00ε存在M A A >>12,及存在[]b a x ,0∈,使得()0021,ε<⎰A A dy y x f4.一致收敛判别法( I ) M 判别法:若()()()D y x y g y x f ∈∀≤,,,而()⎰+∞cdy y g 收敛,则()⎰+∞cdy y x f ,在[]b a ,上一致收敛(同时也绝对收敛) .( 2 )阿贝尔判别法: ①()⎰+∞cdy y x f ,在[]b a ,上一致收敛; ② 对每一个[]b a x ,∈,()y x g ,关于y 单调,月关于x 一致有界,则积分()()⎰+∞cdy y x g y x f ,,在[]b a ,上一致收敛.( 3 )狄利克雷判别法: ①()[]()c A b a x M dyy x f Ac>∀∈∀≤⎰,,,(即一致有一界);② 对每一个[]()y x g b a x ,,,∈必关于 y 单调,且当 +∞→y 时()y x g ,对x 一致趋于零,则积分()()⎰+∞cdy y x g y x f ,,在[]b a ,上一致收敛 ·例 10 . 3 讨沦下列积分的一致收敛性: (1)()⎰∞++-122222dx y xx y 在()+∞∞-,;(2)[)⎰+∞-+∞∈0,0,sin y dx xxe xy 解: ( 1 )因为()()()()+∞∞-∈∀≤+=++≤+-,112222222222222y xy x y xy x y xx y ,而积分 ⎰+∞121dx x 收敛,由M 发,()⎰∞++-122222dx yx x y 在()+∞∞-,一致收敛 ·( 2 )因为⎰+∞sin dx xx收敛,且与y 无关,故关于y 一致收敛,而xy e -对固定的y 关于x 在[)+∞,1上单调减,且1≤-xye ,对()()()+∞⨯+∞∈∀,0,0,y x .由阿贝尔判别法知,积分⎰+∞-0sin dx xxe xy在()+∞∈,0y 上一致收敛. 5 .分析性质( l )连续性:若满足:① ()y x f ,在[][)+∞⨯=,,c b a D 上连续; ② ()()[]⎰+∞∈=cb a x dy y x f x I ,,,一致收敛;则()x I 在[]b a ,上连续,即()()()dy y x f x I x I cx x ⎰+∞→==,lim 000·( 2 )可积性:参量 []b a x ,∈若满足: ①()y x f ,在[][)+∞⨯=,,c b a D 上连续; ② ()()[]⎰+∞∈=cb a x dy y x f x I ,,,一致收敛;则()x I 在[]b a ,上可积,即()()()⎰⎰⎰⎰⎰+∞+∞==babaccb adx y x f dy dy y x f dx dx x I ,,参量[)+∞∈,a x ,若满足:① ()y x f ,在 [)[)+∞⨯+∞=,,c a D 上连续; ②()[]()c d d c y dy y x f a>∀∈⎰+∞,,,和()[]()a b b a x dy y x f c>∀∈⎰+∞,,,都一致收敛;③ 积分()⎰⎰+∞+∞acdy y x f dx ,与()⎰⎰+∞+∞cadx y x f dx ,收敛;则()x I 在[]b a ,上收敛,且()()dx y x f dy dy y x f dx acca⎰⎰⎰⎰+∞+∞+∞+∞=,,( 3 )可微性:若满足:①()y x f ,和()y x f x ,在 [][)+∞⨯=,,c b a D 上连续; ② ()()[]b a x dy y x f x I c,,,∈=⎰+∞收敛;③()[]b a x dy y x f cx ,,,∈⎰+∞一致收敛;则()x I 在[]b a ,上可微,且()()[]b a x dy y x f x I cx ,,,'∈=⎰+∞注: ( 1 )在定理的条件下,必可导出 ② 也是一致收敛的. ( 2 )定理的条件都是充分而非必要的. 6 .狄尼( Dini )定理若()y x f ,在 [][)+∞⨯=,,c b a D 连续且非负,则()()dy y x f x I c⎰+∞=,在[]b a ,上连续()x I 在[]b a ,上一致收敛.证明:充分性是显然的,下证必要性. (反证法)假设()()[]b a x dy y x f x I c,,,∈=⎰+∞不一致收敛,由定义,00>∃ε,对cM >∀总存在[]b a x M A ,,00∈∃>,使得()()0000,ε≥-⎰A cdy y x f x I .特别地,取 M 大于c 的自然数n ·则分别存在 []b a x n A n n ,,∈> ,使得()()0,ε≥-⎰nA cn n dy y x f x I · 注意到f 非负,可写作()()0,ε≥-⎰nA cn n dy y x f x I .由于{}[]b a x n ,⊂有界,记为{}(),...2,1=k x n ,则[]b a x x nk k ,lim 0∈=∞→,不妨设......21<<<<nk n n A A A ,再注意到 f 非负,因此有()()()()⎰⎰≥-≥-10,,n nkA cA cnk nk nk nk dy y x f x I dy y x f x I ε (*)由已知条件,对固定的1n A ,函数()()()⎰-=1,n A cdy y x f x I x F 在[]b a ,上连续,对(*)令∞→k 取极限得()()()00001,ε≥-=⎰dy y x f x I x F n A c.此与()x I 的定义(即逐点收敛)矛盾,即()()[]⎰+∞∈=cb a x dy y x f x I ,,,一致收敛 ·(二)含参量的瑕积分 1 .定义设()y x f ,在区域[](]d c b a D ,,⨯=上有定义,对取定的[]c y b a x =∈,,为函数 f 的瑕点, 若积分()()[]⎰∈=dcb a x dy y x f x I ,,,收敛,它是一个定义在[]b a ,上的函数,称其为含参量x 的瑕积分.2 一致收敛对c d -<<∃>∀δδε0:,0,当δη<<0时,恒有()εη<⎰+c cdy y x f ,,对一切[]b a x ,∈成立,称()()dy y x f x I dc⎰=,在[]b a ,上一致收敛.3.M 判别法设 g ( y )为定义在( c , d ]上以 c y =瑕点的非负函数.且()()[]()b a x y g y x f ,,∈∀≤ ,而()dy y g d c⎰收敛,则()()[]b a x dy y x f x I dc,,,∈=⎰必一致收敛其余的可仿照含参量无穷积分的相关内容平行推得,当然也可以将它转化为无穷积分进 行讨论,这里不再赘述.。

相关文档
最新文档