同位素标记方法-蛋白质组学
同位素标记相对和绝对定量技术研究进展

中国生物工程杂志 China B i otechnol ogy,2006,26(10):83~87同位素标记相对和绝对定量技术研究进展3罗治文33 朱 谢谓芬(第二军医大学附属长征医院消化科 上海 200003)摘要 定量蛋白质组学是蛋白质研究的前沿学科,目前常用的定量蛋白质组学研究技术有荧光差异凝胶电泳(D I GE )、同位素亲和标记(I CAT )等。
同位素标记相对和绝对定量(iTRAQ )技术是近年来最新开发的一种新的蛋白质组学定量研究技术。
结合非凝胶串联质谱技术,该技术可对复杂样本、细胞器、细胞裂解液等样本进行相对和绝对定量研究,具有较好的定量效果、较高的重复性,并可对多达四种不同样本同时进行定量分析。
对iTRAQ 技术的原理、实验方法及应用进展进行了综述。
关键词 定量蛋白质组学 iT RAQ D I GE I CAT中图分类号 Q816收稿日期:2006205208 修回日期:20062072083上海市科学技术委员会科研计划资助项目(05ZR14102)33电子信箱:l m zj0122@hot m ail .com 蛋白质组学概念的提出,为蛋白质研究提供了全新的思路。
随着蛋白质组学研究的深入发展,人们已经不再满足于对于一个细胞或组织的蛋白质进行定性研究,而是着眼于蛋白质量的研究。
近年来,有学者提出了定量蛋白质组学的概念,定量蛋白质组学就是把一个基因组表达的全部蛋白质或一个复杂的混合体系中所有的蛋白质进行精确的定量和鉴定。
蛋白质定量研究分为绝对定量和相对定量两种,但是,对低丰度蛋白质检测的绝对定量研究技术难度很高,目前蛋白质组学定量研究主要集中在对蛋白质表达差异或者表达量的变化进行比较研究的相对定量蛋白质组学研究。
对复杂体系中的蛋白质进行相对定量主要有两种方法[1]:(1)基于双向凝胶电泳(t w o 2di m ensionalelectr ophoresis,22DE )和质谱(mass s pectr ometry,MS )技术及蛋白质数据信息技术对凝胶上的蛋白质进行定量分析和鉴定。
稳定同位素标记技术在生物学中的应用

稳定同位素标记技术在生物学中的应用稳定同位素标记技术是一种在生物学中广泛应用的非放射性标记技术。
利用稳定同位素(例如氧、氮、碳等)替代常见同位素进行标记,从而实现对生物化学反应、分子代谢动力学、蛋白质组学等生物学问题的解决。
本文将对稳定同位素标记技术在生物学研究中的应用进行探讨。
一、基本原理稳定同位素标记技术是利用稳定同位素与生物分子中常见的同位素进行替代,以实现生物分子处于某种特定状态的标记技术。
其中,最为常用的是碳、氮和氢三种元素的同位素。
由于这些同位素在分子中的替代方式不影响分子的化学性质及反应,因此可以在生物体内进行标记实验。
二、应用场景稳定同位素技术广泛应用于生物学领域,特别是与代谢动力学、蛋白质代谢相关的研究。
例如,在生物代谢研究中,可以利用稳定同位素对代谢物质进行标记,然后追踪生物体内代谢物质的消耗及释放情况,以了解代谢物质在生物体内的转运、代谢及储藏等情况。
同时,利用稳定同位素标记的方法可以更精确地测量分子的代谢速率、生成速率以及分子代谢转化路径。
另外,稳定同位素的应用还不仅限于代谢学研究,它也可以用于蛋白质质谱组学以及代谢组学研究。
在蛋白质质谱组学研究中,稳定同位素标记技术可以提供蛋白质质量的定量信息,广泛应用于蛋白质质量筛选、亚细胞定位、蛋白质间的相互作用研究等领域。
在代谢组学研究中,可以通过稳定同位素标记的方法对生物体内代谢产物的生产和代谢动力学进行研究,从而获得这些代谢物质的来源、代谢途径和作用等。
三、存在的问题及展望虽然稳定同位素标记技术在生物学研究中有着广泛的应用,但同时也存在一些问题。
首先,稳定同位素标记的成本较高,标记萃取、纯化、分析需要昂贵的仪器和耗时的流程。
此外,稳定同位素过程中可能存在碳质量分馏,分析结果可能受到影响。
如何解决这些问题,提高稳定同位素标记技术的精度和可靠性,需要进一步的研究。
未来,稳定同位素标记技术在生物学领域的应用有着广阔的前景。
例如,可以在多个尺度上融合稳定同位素标记技术和其他方法,如RNA测序、高通量蛋白质质谱等,加强对生物体内代谢物和蛋白质的全面解析,推动生物学研究的深入。
定量蛋白质组学LC-MS-MS

百泰派克生物科技
定量蛋白质组学LC-MS-MS
定量蛋白质组学是蛋白质组学的一个重要分支,这个概念的提出使蛋白质组学的研究内容从定性向精确含量鉴定方向进一步发展。
目前,常用的蛋白质组学定量技术是基于质谱的技术,根据其是否使用同位素标记又分为标记策略(Label)和非标
记策略(Label Free),标记策略如TMT、iTRAQ和SILAC等。
LC-MS-MS即液相色
谱-串联质谱技术,是各种蛋白质质谱定量技术中所不可缺少的分析技术,也是实
现蛋白质定量的关键步骤。
其将经过不同标记或处理得到的蛋白肽段利用液相色谱进行分离后再进行多级质谱分析,根据肽段离子的质谱信号如离子峰强度等结合生物信息学分析手段计算各肽段的含量,从而实现整个蛋白质的含量鉴定。
百泰派克生物科技采用Thermo公司最新推出的Obitrap Fusion Lumos质谱仪结合Nano-LC纳升色谱技术,提供高效精准的定量蛋白质组学LC-MS-MS服务技术包裹,您只需要将您的实验目的告诉我们并将您的细胞寄给我们,我们会负责项目后续所有事宜,包括细胞培养、细胞标记、蛋白提取、蛋白酶切、肽段分离、质谱分析、质谱原始数据分析、生物信息学分析。
蛋白质组学的研究方法

蛋白质组学的研究方法蛋白质组学是运用先进的分析技术,通过对细胞内的蛋白质分子进行检测、分离、同位素标记与定量等方法,研究不同细胞型、组织型、发育阶段以及病变状态等生物样本中蛋白质组成及其功能性调控的科学。
它是一门综合性学科,既涉及生物化学、蛋白质工程、分子生物学等学科,也涉及信息学及计算机科学等学科,运用了各种生物学技术和数学模型,将复杂的生物体蛋白质组织成一个有机的整体,从而更好地了解蛋白质的结构与功能关系。
蛋白质组学的研究方法主要包括:一、蛋白质分离与鉴定:蛋白质分离是蛋白质组学的基础步骤,其目的是从生物样本中提取蛋白质。
常用的技术包括凝胶电泳、膜分离、微萃取、液相色谱法以及离心分离等。
蛋白质分离之后,还需要进行鉴定,以获得蛋白质的名称及其细胞定位等信息,以便进行后续研究。
常用的方法包括凝集试验、蛋白质印迹、Western blotting、质谱分析以及二级结构分析等。
二、定量蛋白质组学:定量蛋白质组学是指利用有效的检测技术,对生物样本中的蛋白质进行定量分析,以便获得蛋白质组成及其功能性调控情况的精确信息。
定量蛋白质组学技术主要包括酶标记蛋白质定量、质谱定量以及流式细胞蛋白质定量等。
三、蛋白质组学的应用:蛋白质组学的研究结果可以用来研究基因调控、细胞信号转导、疾病机理等方面的问题。
它可以帮助研究人员更好地理解生物的复杂性,并为有效的治疗策略的制定提供重要的参考和指导。
它还可以用于研究新型药物的研究和开发,为疾病的治疗提供新的思路。
蛋白质组学的发展前景广阔,它不仅可以用于解决当前生物学上的实际问题,还可以为未来的研究提供重要的科学研究基础。
随着技术的进步和数据量的增加,蛋白质组学技术将会为生物学研究带来更多的惊喜和发现。
磷酸化蛋白质组学常用分析和定量方法

蛋白质的磷酸化修饰是生物体内重要的共价修饰方式之一。
蛋白质的磷酸化和去磷酸化这一可逆过程几乎调节着包括细胞的增殖、发育、分化、信号转导、细胞凋亡、神经活动、肌肉收缩及肿瘤发生等过程在内的所有生命活动。
目前已知有许多人类疾病是由于某些异常的磷酸化修饰所引起,而有些磷酸化修饰却是某种疾病所导致的后果。
在哺乳动物细胞生命周期中,大约有1/3的蛋白质发生过磷酸化修饰;在脊椎动物基因组中,有5%的基因编码的蛋白质是参与磷酸化和去磷酸化过程的蛋白激酶和磷酸(酯)酶。
磷酸化修饰本身所具有的简单、灵活、可逆的特性以及磷酸基团的供体ATP的易得性,使得磷酸化修饰被真核细胞所选择接受而成为一种最普遍的调控手段。
鉴于磷酸化修饰在生命活动中所具有的重要意义,探索磷酸化修饰过程的奥秘及其对细胞功能的影响已成为众多生物化学家及蛋白组学家所关心的内容。
用蛋白质组学的理念和分析方法研究蛋白质磷酸化修饰,可以从整体上观察细胞或组织中磷酸化修饰的状态及其变化,这对以某一种或几种激酶及其产物为研究对象的经典分析方法是一个重要的补充,同时提供了一个全新的研究视角,并由此派生出磷酸化蛋白质组学(phosphoproteomics)这一新概念。
在蛋白质组学水平进行磷酸化蛋白质的分析定量研究已引起人们广泛关注,各种技术也相应地发展起来.1.1 免疫亲和色谱富集磷酸化蛋白质最简单的方法就是用识别磷酸化氨基酸残基的特异抗体进行免疫共沉淀,从复杂混合物中免疫沉淀出目标蛋白质。
目前,仅有酪氨酸磷酸化蛋白质的单克隆抗体可以用来进行有效的免疫共沉淀。
这是因为该抗体具有较强的亲和力和特异性,可以有效地免疫沉淀酪氨酸磷酸化的蛋白质。
Imam-Sghiouar等人从B-淋巴细胞中通过免疫沉淀获得酪氨酸磷酸化的蛋白质,然后再用二维电泳分离技术并结合质谱分析方法,鉴定出多个与斯科特综合症相关的酪氨酸磷酸化的蛋白质。
由于抗磷酸化丝氨酸和苏氨酸抗体的抗原决定簇较小,所以令抗原抗体的结合位点存在空间障碍,特异性较差。
蛋白质组学定量研究常见方法-PPT课件

辉骏生物:fitgene/
免费服务热线:400-699-1663
1:双向电泳
基于2D-PAGE 的经典定量分 析方法。 1、样品准备 和定量:抽提 对照组和各种 不同实验组的 蛋白质。 2、蛋白质分 离:蛋白质经 过2D-PAGE分离 后染色(银染、 考染等)。 3、蛋白质的 定性与定量分 析:通过与对 照组相Image Master 7.0分 析出实验组中 差异点,质谱 鉴定差异点蛋 白质,同时应用 软件分析出其 表达量的变化。
4:化学标记法—ICAT
ICAT法的缺点: (1)它不能用于标记不含半胱氨酸或半胱氨酸含量低的蛋白质。 (2)ICAT分子量相对较大(约500Da),与蛋白质连接后可能会造成分子 的空间位阻 (3)ICAT分子量相对较大(约500Da),由于在MS分析中标签仍保留在每 个肽上,使得在碰撞诱导解吸(CID)条件下,很容易被片段化,那么标签特 异化的片段离子就会使串联质谱分析标记肽段的过程复杂化, (4) ICAT分子量相对较大(约500Da),这对小肽而言是一个较大的修饰 物,会增加数据库搜索的复杂性 (5)标记时通常需要延长时间来保证ICAT与蛋白质充分结合,这可能会造 成赖氨酸、组氨酸、色氨酸、酪氨酸发生氨基酸局部衍化。 (6)与原子结合的硫醚键化学稳定性较低,可能会自发发生β -消除反应 使部分标签断裂。
蛋白质组学定量研究常见方法
辉骏生物:fitgene/
免费服务热线:400-699-1663
蛋白质组学定量研究常见方法
1:常规双向电泳 2:DIGE 3:15N等同位素标记 4:ICAT 5:iTRAQ 6:SILAC
辉骏生物:fitgene/
免费服务热线:400-699-1663
蛋白质周转代谢及其测定

蛋白质周转代谢及其测定
蛋白质周转代谢是指蛋白质在生物体内不断被合成、降解和再合成的过程。
蛋白质在人体中起着重要的作用,包括细胞结构、酶催化、激素调节、免疫防御等等。
蛋白质周转代谢的测定是为了研究蛋白质代谢的过程,了解蛋白质的合成和降解速率及相应的代谢途径。
常用的测定方法包括放射性同位素标记法、稳定同位素标记法、氨基酸代谢测定和蛋白质组学技术等。
放射性同位素标记法是指通过将放射性同位素标记到蛋白质分
子中,测定标记蛋白质的代谢速率。
稳定同位素标记法则是将稳定同位素标记到蛋白质中,通过测定标记同位素的代谢产物中同位素的相对丰度来计算蛋白质的代谢速率。
氨基酸代谢测定则是通过测定血液中氨基酸的浓度变化,计算蛋白质的合成和降解速率。
蛋白质组学技术则是通过大规模测定蛋白质的表达和变化来研究蛋白质代谢的过程。
总之,蛋白质周转代谢及其测定是非常重要的研究领域,对于深入了解蛋白质代谢过程以及相关疾病的发生机制都有着重要的意义。
- 1 -。
高中生物中的“同位素标记法

“同位素标记法”的总结利用放射性同位素不断地放出特征射线的核物理性质, 就可以检测和追踪它在体内或体外的位置、 数量及其转变等。
同位素标记在工业、农业生产、日常生活和科学科研等方面都有着极其广泛的应用。
在生物学领域可用来测定生物化石的年代,也可利用其射线进行诱变育种、防治病虫害和临床治癌,还可利用其射线作为示踪原子来研究细胞内的元素或化合物的来源、组成、分布和去向等,进而了解细胞的结构和功能、化学物质的变化、反应机理。
高中生物教材中的实验(或内容)和相关习题中许多知识都涉及同位素标记法的应用。
下面我就相关内容通过有关例题进行归纳阐述,以便大家对这项技术有一个深刻的体会,并学会同位素标记的应用。
一、氢( 3H )例 1:科学家用含 3 H 标记的亮氨酸的培养液培养豚鼠的胰腺腺泡细胞,下表为在腺泡细胞几种结构中最早检测到放射性的时间表。
下列叙述中正确的是()A .形成分泌蛋白的多肽最早在内质网内合成B .高尔基体膜向内与内质网膜相连,向外与细胞膜相连C .高尔基体具有转运分泌蛋白的作用D .靠近细胞膜的囊泡可由高尔基体形成解析:分泌蛋白的多肽最早在核糖体上合成,高尔基体并不直接和内质网与细胞膜相连,而是通过囊泡间接连接。
答案: CD 。
知识盘点:1. 科学家在研究分泌蛋白的合成和分泌时, 曾经做过这样一个实验: 他们在豚鼠的胰脏腺泡细胞中注射3H 标记的亮氨 酸, 3min 后,被标记的氨基酸出现在附着有核糖体的内质网中, 17min 后,出现在高尔基体中, 117min 后,出现在靠近细胞膜内侧的运输蛋白质的小泡中,以及释放到细胞外的分泌物中。
这个实验说明分泌蛋白在附着于内质网上的核 糖体中合成之后,是按照内质网→高尔基体→细胞膜的方向运输的,从而证明了细胞内的各种生物膜在功能上是紧密 联系的。
2.研究肝脏细胞中胆固醇的来源时,用3H —胆固醇作静脉注射的示踪实验,结果放射性大部分进入肝脏,再出现在粪便中。