最新同位素标记法在高中生物的应用
同位素标记法在高中生物学中的应用

同位素标记法在高中生物学中的应用在自然科学的发展过程中,技术的发展需要以科学原理为基础,而科学成果的取得必须有技术手段作保证,科学与技术是相互支持、相互促进的。
自从上世纪三四十年代同位素标记法这种技术手段发明以来,在自然科学的许多研究领域都得到了应用。
在生命科学的发展历程中,同位素标记法这一技术手段也发挥了极其重要的作用。
同位素用于追踪物质运行和变化过程时叫做示踪元素,用示踪元素标记的化合物,化学性质不变。
人们可以根据这种化合物的性质,对有关的一系列化学反应追踪,这种科学研究方法叫做同位素标记法,在高中教学生物教学中有着较广泛的较广泛的应用,以下是本人在教学中探索和经验。
同位素标记法在生物教学新陈代谢过程中的应用。
生物的新陈代谢是指生物体内全部有序的化学反应,生物体内的无比繁多、无比复杂的化学反应,如不借助某些特殊手段,是根本无法搞清其具体过程的。
但是,有了同位素标记法这一技术手段,代谢过程研究中的许多问题就变的轻而易举了。
利用这一技术手段,用同位素O18标记,可以搞清光合作用产物中氧气是来自参加反应的水;用放射性同位素14C标记C3植物参与光合作用的CO2,可以搞清光合作用过程中CO2中的碳经固定先生成三碳化合物,进而再被还原形成糖类等有机物,而C4植物则是先经C4途径生成一种四碳化合物,再经C3途径生成三碳化合物,最后才被还原生成糖类等有机物。
利用这一技术手段,用放射性同位素15N标记某种氨基酸,可以搞清动物细胞内蛋白质的代谢途径。
氨基酸被细胞吸收后,可用于合成组织蛋白、酶、抗体、蛋白类激素;也可通过氨基转换作用生成另一种氨基酸;也可经脱氨基作用,含氮部分生成尿素最后经肾脏排出体外。
利用这一技术手段,用放射性同位素18O标记葡萄糖中的氧,可以搞清细胞呼吸过程中葡萄糖中的氧最后成为代谢产物CO2中的氧;若用放射性同位素O18标记O2中的氧,可以搞清细胞呼吸过程中的O2参与代谢产物H2O的生成。
高考生物素养加强课6 同位素标记法及其应用

④鲁宾和卡门用18O分别标记H2O和CO2,发现只有供给H
18 2
O的小
球藻释放18O2,证实光合作用产生的O2来自H2O
⑤赫尔希和蔡斯用32P和35S分别标记的T2噬菌体,分别侵染大肠杆
菌,搅拌离心后检测放射性的分布,发现DNA是遗传物质
⑥斯他林和贝利斯将狗的小肠黏膜与稀盐酸混合磨碎,制成提取液,
C.在第二次分裂完成后,形成的4个子细胞核中可能有2、3或4个 细胞含亲代DNA链 D.在第二次分裂完成后,形成的4个子细胞中未被标记的染色体的 条数从0到20条都有可能
C [在第一次细胞分裂中期,由于DNA半保留复制,所有的染色单 体都被标记,即1个细胞中被标记的染色单体条数是40,A错误;在 第二次细胞分裂中期,核DNA有40个,共80条链,不含BrdU的链 为20条,则其中被标记的DNA链所占的比例是3/4,B错误;亲代的 DNA链不含BrdU,在第二次分裂完成后,染色体随机移向细胞两 极,由于第一次分裂得到的两个细胞都含有亲代的DNA链,因此形 成的4个子细胞核中可能有2、3或4个细胞含亲代DNA链,C正确; 在第二次分裂完成后,由于DNA进行半保留复制,形成的4个子细 胞中都含有被标记的染色体,即形成的4个子细胞中未被标记的染 色体的条数是0,D错误。故选C。]
CO2中碳元素在光合作用中的转移途径CO2→C3→(CH2O),C正
确;用18O分别标记H2O和CO2进行两组实验,一组提供H
18 2
O和
CO2,另一组提供H2O和C18O2供给同种植物,而非同时,D错误。
故选C。]
2.(2022·江苏苏州二模)同位素标记法是生物学研究的常用技术。
下列关于同位素的应用实例,说法正确的是( )
3.减数分裂时核DNA和染色体的标记情况分析 在减数分裂时,DNA复制一次,细胞连续分裂两次。如图是一次减 数分裂的结果(以一对同源染色体为例)。
同位素标记法在高中生物教学中的应用

同位素标记法在高中生物教学中的应用————————————————————————————————作者:————————————————————————————————日期:同位素标记法在高中生物教学中的应用-生物论文同位素标记法在高中生物教学中的应用在人教版高中生物教材的实验和相关习题中经常出现同位素标记法的应用,现将教材中所涉及到的相关内容进行归纳总结,以期能够较深刻地了解同位素标记技术,以便于掌握和应用该项技术。
教材中关于同位素标记法的介绍比较简单:同位素可用于追踪物质的运行和变化规律。
用同位素标记的化合物,化学性质不会改变。
科学家通过追踪同位素标记的化合物,可以弄清化学反应的详细过程。
这种方法叫做同位素标记法。
现将同位素标记法相关内容进行归纳阐述,以期达到对这项技术的深刻理解。
一、同位素标记法简介1.同位素同位素是指原子序数相同,在元素周期表上的位置相同,而化学性质相似,质量不同的元素,它们是质子数相同而中子数不同的原子。
许多元素都存在同位素现象。
有放射性的同位素称为“放射性同位素”,没有放射性的则称为“稳定同位素”,即并不是所有同位素都具有放射性。
如碳的同位素有稳定同位素12C、13C和放射性同位素14C;氧的同位素有16O、17O、18O,它们都不具有放射性;氮的同位素有13N、14N、15N等。
2.同位素标记法同位素标记法是随同位素的发现而出现的一项科学应用技术。
科学家通过追踪同位素标记的化合物,从而研究细胞内的元素或化合物的来源、组成、分布和去向,弄清化学反应的详细过程,进而了解细胞的结构和功能、化学物质的变化、反应机理等。
同位素标记法具有灵敏度高,方法简便,定位定量准确,符合生理条件等特点。
二、同位素标记法在高中生物教材中的应用(一)标记某元素,追踪其转移途径1.光合作用产物O2中O元素的来源美国科学家鲁宾和卡门研究光合作用中释放的氧到底是来自于水,还是来自于二氧化碳。
他们用氧的同位素18O分别标记H2O和CO2,使它们分别成为H218O和C18O2。
同位素标记法在高中生物的应用

同位素标记法在高中生物的应用:同位素标记法是利用放射性同位素作为示踪剂对研究对象进行标记的微量分析方法,生物学上经常使用的同位素是组成原生质的主要元素,即H、N、C、S、P和O等的同位素。
在浙科版必修1P6教材中也有说明:放射性同位素可用于追踪物质的运行和变化规律。
此研究方法在高中生物教材中多次出现,总结如下:1.分泌蛋白的合成与分泌(必修1P40简答题)20世纪70年代,科学家詹姆森等在豚鼠的胰腺细胞中注射3H标记的亮氨酸。
3min后被标记的亮氨酸出现在附有核糖体的内质网中;17min后,出现在高尔基体中;117min后,出现在靠近细胞膜内侧的囊泡中及释放到细胞外的分泌物中。
由此发现了分泌蛋白的合成与分泌途径:核糖体→内质网→高尔基体→囊泡→细胞膜→外排。
2.光合作用中氧气的来源1939年,鲁宾和卡门用18O分别标记H2O和CO2,然后进行两组对比实验:一组提供H2O 和C18O2,另一组提供H218O和CO2。
在其他条件相同情况下,分析出第一组释放的氧气全部为O2,第二组全部为18O2,有力地证明了植物释放的O2来自于H2O而不是CO2。
3.光合作用中有机物的生成20世纪40年代美国生物学家卡尔文等把单细胞的小球藻短暂暴露在含14C的CO2里,然后把细胞磨碎,分析14C出现在哪些化合物中。
经过10年努力终于探索出了光合作用的“三碳途径”——卡尔文循环。
为此,卡尔文荣获“诺贝尔奖”。
4.噬菌体侵染细菌的实验1952年,赫尔希和蔡斯以T2噬菌体为实验材料,用35S、32P分别标记噬菌体的蛋白质外壳和DNA,再让被35S、32P分别标记的两种噬菌体去侵染大肠杆菌,经离心处理后,分析放射性物质的存在场所。
此实验有力证明了DNA是遗传物质。
5.DNA的半保留复制1957年,美国科学家梅塞尔森和斯坦尔用含15N的培养基培养大肠杆菌,使之变成“重”细菌,再把它放在含14N的培养基中继续培养。
在不同时间取样,并提取DNA进行密度梯度离心,根据轻重链浮力等的不同,就分出新生链和母链,这就证实了DNA复制的半保留性。
热点专题7同位素标记法-2025年生物学高考总复习课件

高考总复习·生物学
2.与荧光标记法的区别 (1)常用的荧光蛋白有绿色和红色两种:①绿色荧光蛋白(GFP)常用的是 来源于发光水母的一种功能独特的蛋白质,蓝光或近紫外光照射,发射 绿色荧光;②红色荧光蛋白来源于珊瑚虫,是一种与绿色荧光蛋白同源 的荧光蛋白,在紫外光的照射下可发射红色荧光。 (2)运用到荧光标记法的实验:①“细胞融合实验”:这一实验证明了细 胞膜的结构特点是具有一定的流动性;②“基因在染色体上的实验证 据”:通过现代分子生物学技术,运用荧光标记的手段,直接观察到某 一基因在染色体上的位置。
返回导航
高考总复习·生物学
【解析】蛋白质和DNA中都含有N,用15N标记的噬菌体并没有将蛋白质 和DNA分开,侵染未标记的大肠杆菌,探究控制生物性状的遗传物质时, 不能说明为DNA;胸腺嘧啶脱氧核苷酸只存在于DNA中,用15N或32P标 记的胸腺嘧啶脱氧核苷酸,可研究有丝分裂过程中DNA的复制方式;用 3H标记的亮氨酸注射到豚鼠的胰腺腺泡细胞中,带标记的亮氨酸能参与 蛋白质的合成,故能研究分泌蛋白的合成、加工和分泌过程;H2O和 CO2是光合作用的原料,用18O标记H2O、14C标记CO2,可分别研究光合 作用中O2的来源和C的转移途径。
返回导航
【解析】1941年鲁宾和卡门用氧的同位素18O分别标记H2O和CO2,证明 光合作用释放的氧气来自水;20世40年代,美国科学家卡尔文利用14C标 记CO2,探明了CO2转化成有机物的途径,这一途径就是卡尔文循环; 噬菌体侵染细菌的实验中,分别用32P和35S标记噬菌体,跟踪进入细菌内 的化学物质是蛋白质还是DNA,从而证明DNA是遗传物质;生物学家研 究患者遗传家系推测红绿色盲的遗传方式,没有使用同位素示踪技术。
返回导航
高考总复习·生物学
高中同位素标记法

高中同位素标记法是一种利用放射性同位素或稳定性同位素作为示踪剂对研究对象进行标记的微量分析方法。
这种方法可以用于追踪物质的运行和变化规律,在生物学、化学等领域有广泛的应用。
在生物学中,同位素标记法常被用于研究生物大分子的结构和功能,如蛋白质、核酸等。
例如,在研究分泌蛋白的合成和分泌过程中,科学家使用3H标记的亮氨酸来追踪蛋白质的合成和分泌路径。
此外,在光合作用的研究中,同位素标记法也被用来追踪二氧化碳的固定和氧气的释放过程。
在化学领域,同位素标记法也被广泛应用于反应机理的研究。
例如,通过使用同位素标记的底物或试剂,科学家可以追踪化学反应中化学键的形成和断裂过程,从而揭示反应机理。
同位素标记法的优点在于示踪元素标记的化合物化学性质不变,因此可以通过追踪示踪元素标记的化合物来弄清化学反应的详细过程。
此外,放射性同位素具有灵敏度高、测量方法简便易行、能准确地定量、准确地定位及符合所研究对象的生理条件等特点。
需要注意的是,同位素标记法也有其局限性。
例如,放射性同位素具有放射性,需要特殊的防护措施;稳定性同位素虽然不具有放射性,但其灵敏度较低,价格较昂贵,应用范围受到限制。
因此,在使用同位素标记法时需要根据具体的研究对象和目的来选择合适的同位素示踪剂。
高中生物用到同位素标记法

高中生物用到同位素标记法同位素标记法是一种现代生物学和医学中常用的技术手段。
它利用同位素的放射性或稳定性标记,对生物分子和生物过程进行标记、追踪、分离和定量分析。
它被广泛应用于生命科学研究、医学诊断、药物研发等领域。
同位素是指具有相同原子序数但质量数不同的元素。
例如,氢元素的三种同位素分别为氢-1、氘-2和氚-3,它们都具有一个质子,但氘和氚中分别含有一个中子和两个中子。
同位素的放射性和稳定性取决于其核内所含的中子和质子比例。
放射性同位素具有不稳定的核,会自发地放射出粒子和电磁波,而稳定性同位素则不会发生这样的现象。
在生物分子中,常用同位素标记方法是将一个或多个原子替换为同位素,从而标记分子的位置和数量。
例如,碳、氢、氮和氧等元素都有丰富的同位素。
其中,碳的同位素碳-14、碳-13和碳-12常被用来标记有机分子,如葡萄糖、氨基酸、核酸等;氢的同位素氚和氘则常被用来标记水分子、脂肪酸、核酸等;氮的同位素氮-15和氮-14则常被用来标记蛋白质、核酸等,而氧的同位素氧-18、氧-17和氧-16则常被用来标记水分子、呼吸气体等。
同位素标记法的常用技术包括放射免疫测定、同位素稀释法、轨迹追踪、放射性荧光探针等。
放射免疫测定是一种用于检测微量分子和生物活性物质的方法。
它利用同位素标记的抗体或抗原,与待测分子结合后,通过放射性测量来检测分子的存在和数量。
同位素稀释法则利用同位素标记的化合物来追踪物质的代谢和分布。
例如,在糖代谢研究中,可以用碳-14标记的葡萄糖注射到动物体内,然后测量其代谢产物中的碳-14含量,从而了解糖代谢的进程和参与的分子。
轨迹追踪是一种用于研究分子运动和交互的方法。
它利用同位素标记的分子,可在细胞和组织中标记多种生物大分子,然后追踪其在细胞内的位置、转运和转化。
放射性荧光探针是一种通过放射性信号和光信号相互转化的方法来追踪分子和细胞的方法。
同位素标记法在生命科学研究中有着广泛的应用。
它可以用于研究代谢过程、蛋白质互作、基因表达、疾病诊断、药物代谢等。
同位素示踪法在高中生物学实验中的应用

同位素示踪法在高中生物学实验中的应用同位素示踪法是利用放射性核素作为示踪剂对研究对象进行标记的微量分析方法,即把放射性同位素的原子参到其他物质中去,让它们一起运动、迁移,再用放射性探测仪器进行追踪,就可知道放射性原子通过什么路径,运动到哪里了,是怎样分布的。
同位素示踪法是生物学实验中经常应用的一项重要方法,它可以研究细胞内的元素或化合物的来源、组成、分布和去向等,进而了解细胞的结构和功能、化学物质的变化、反应机理等。
用于示踪技术的放射性同位素一般是用于构成细胞化合物的重要元素,如3H、14C、15N、18O、32P、35S、131I等。
在高中生物学教材中有多处涉及到放射性同位素的应用,下面笔者对教材中的相关知识进行归纳如下:1研究蛋白质或核酸合成的原料及过程把具有放射性的原子参到合成蛋白质或核酸的原料(氨基酸或核苷酸)中,让它们一起运动、迁移,再用放射性探测仪器进行追踪,就可知道放射性原子通过什么路径、运动到哪里以及分布如何。
?2研究分泌蛋白的合成和运输?用3H标记亮氨酸,探究分泌性蛋白质在细胞中的合成、运输与分泌途径。
在一次性给予放射性标记的氨基酸的前提下,通过观察细胞中放射性物质在不同时间出现的位置,就可以明确地看出细胞器在分泌蛋白合成和运输中的作用。
例如,通过实验说明分泌蛋白在附着于内质网上的核糖体中合成之后,是按照内质网→高尔基体→细胞膜的方向运输的,从而证明了细胞内的各种生物膜在功能上是紧密联系的。
?3研究细胞的结构和功能?用同位素标记氨基酸或核苷酸并引入细胞内,探测这些放射性标记出现在哪些结构中,从而推断该细胞的结构和功能。
?4探究光合作用中元素的转移?利用放射性同位素18O、14C、3H作为示踪原子来研究光合作用过程中某些物质的变化过程,从而揭示光合作用的机理。
例如,美国的科学家鲁宾和卡门研究光合作用中释放的氧到底是来自于水,还是来自于二氧化碳。
他们用氧的同位素18O分别标记H2O和CO2,使它们分别成为H218O和C18O2,然后进行两组光合作用实验:第一组向绿色植物提供H218O和CO2,第二组向同种绿色植物提供H2O和C18O2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
同位素标记法在高中生物的应用:同位素标记法是利用放射性同位素作为示踪剂对研究对象进行标记的微量分析方法,生物学上经常使用的同位素是组成原生质的主要元素,即H、N、C、S、P和O等的同位素。
在浙科版必修1P6教材中也有说明:放射性同位素可用于追踪物质的运行和变化规律。
此研究方法在高中生物教材中多次出现,总结如下:
1.分泌蛋白的合成与分泌(必修1P40简答题)
20世纪70年代,科学家詹姆森等在豚鼠的胰腺细胞中注射3H标记的亮氨酸。
3min后被标记的亮氨酸出现在附有核糖体的内质网中;17min后,出现在高尔基体中;117min后,出现在靠近细胞膜内侧的囊泡中及释放到细胞外的分泌物中。
由此发现了分泌蛋白的合成与分泌途径:核糖体→内质网→高尔基体→囊泡→细胞膜→外排。
2.光合作用中氧气的来源
1939年,鲁宾和卡门用18O分别标记H2O和CO2,然后进行两组对比实验:一组提供H2O 和C18O2,另一组提供H218O和CO2。
在其他条件相同情况下,分析出第一组释放的氧气全部为O2,第二组全部为18O2,有力地证明了植物释放的O2来自于H2O而不是CO2。
3.光合作用中有机物的生成
20世纪40年代美国生物学家卡尔文等把单细胞的小球藻短暂暴露在含14C的CO2里,然后把细胞磨碎,分析14C出现在哪些化合物中。
经过10年努力终于探索出了光合作用的“三碳途径”——卡尔文循环。
为此,卡尔文荣获“诺贝尔奖”。
4.噬菌体侵染细菌的实验
1952年,赫尔希和蔡斯以T2噬菌体为实验材料,用35S、32P分别标记噬菌体的蛋白质外壳和DNA,再让被35S、32P分别标记的两种噬菌体去侵染大肠杆菌,经离心处理后,分析放射性物质的存在场所。
此实验有力证明了DNA是遗传物质。
5.DNA的半保留复制
1957年,美国科学家梅塞尔森和斯坦尔用含15N的培养基培养大肠杆菌,使之变成“重”细菌,再把它放在含14N的培养基中继续培养。
在不同时间取样,并提取DNA进行密度梯度离心,根据轻重链浮力等的不同,就分出新生链和母链,这就证实了DNA复制的半保留性。
6.基因工程
在目的基因的检测与鉴定中,采用了DNA分子杂交技术。
将转基因生物的基因组DNA提取出来,在含有目的基因的DNA片段上用放射性同位素作标记,以此为探针使之与基因组DNA 杂交,如果显示出杂交带,就表明目的基因已导入受体细胞中。
另外,还可采用同样方法检测目的基因是否转录出了mRNA,不同的是从转基因生物中提取的是mRNA。
7.基因诊断
基因诊断是用放射性同位素(如32P)、荧光分子等标记的DNA分子作探针,依据DNA分子杂交原理,鉴定被检测样本上的遗传信息,从而达到检测疾病的目的。
另外,还可以用在植物有机物的运输研究过程中。
示踪原子不仅用于科学研究,还用于疾病的诊断和治疗。
例如,射线能破坏甲状腺细胞,使甲状腺肿大得到缓解。
因此,碘的放射性同位素就可用于治疗甲状腺肿大。
利用到同位素示踪的实验有:
1.光合作用中释放出的氧来自水还是二氧化碳:美国科学家鲁宾和卡门采用同位素标记法研究了这个问题,证明得到氧全部来自水而不是二氧化碳。
2.噬菌体侵染细菌的实验:1952年赫尔希和蔡斯用大肠杆菌T2噬菌体作为试验材料,分别含有放射性同位素S35和放射性同位素P32的培养基中培养细菌。
然后用T2噬菌体分别浸染上述细菌,从而制备出DNA中含有P32或蛋白质中还有S35的噬菌体。
接着,他们分别用被P32或S35标记的T2噬菌体去感染未被标记的细菌,经过短时间的保温,用搅拌器搅拌,离心,这时,离心管的上清液中就会析出重量较轻的T2噬菌体颗粒,而离心管的沉淀物中则含有被感染的细菌。
从而证明DNA才是真正的遗传物质!
3.光合作用中固定CO2的途径标记的C的放射性同位素,从而证实C4植物光合作用中的C4途径发生在叶肉细胞的叶绿体内,C3途径发生在维管束鞘细胞的叶绿体内,两者共同完成二氧化碳的固定。
4.各种生物膜在功能上的联系:科学家在豚鼠的胰脏腺细胞中注射H3标记的亮氨酸结果别标记的氨基酸分别出现在附着于内质网上的核糖体,高尔基体,细胞膜。
从而证明各种生物膜在功能上是有联系的
5.还有一个就是用含有15N标记的NH4CL培养液培养大肠杆菌,让它繁殖几代,再将它转移到14N普通培养液中。
然后在不同时刻收集它并提取DNA,再将DNA进行密度梯度离心,记录DNA位置。
这个是来证明DNA复制是半保留复制。
New Progressive College English Book III
UNIT 2 Conspicuous Consumption。