同位素标记法在高中生物知识中的应用

合集下载

高考生物素养加强课6 同位素标记法及其应用

高考生物素养加强课6 同位素标记法及其应用

④鲁宾和卡门用18O分别标记H2O和CO2,发现只有供给H
18 2
O的小
球藻释放18O2,证实光合作用产生的O2来自H2O
⑤赫尔希和蔡斯用32P和35S分别标记的T2噬菌体,分别侵染大肠杆
菌,搅拌离心后检测放射性的分布,发现DNA是遗传物质
⑥斯他林和贝利斯将狗的小肠黏膜与稀盐酸混合磨碎,制成提取液,
C.在第二次分裂完成后,形成的4个子细胞核中可能有2、3或4个 细胞含亲代DNA链 D.在第二次分裂完成后,形成的4个子细胞中未被标记的染色体的 条数从0到20条都有可能
C [在第一次细胞分裂中期,由于DNA半保留复制,所有的染色单 体都被标记,即1个细胞中被标记的染色单体条数是40,A错误;在 第二次细胞分裂中期,核DNA有40个,共80条链,不含BrdU的链 为20条,则其中被标记的DNA链所占的比例是3/4,B错误;亲代的 DNA链不含BrdU,在第二次分裂完成后,染色体随机移向细胞两 极,由于第一次分裂得到的两个细胞都含有亲代的DNA链,因此形 成的4个子细胞核中可能有2、3或4个细胞含亲代DNA链,C正确; 在第二次分裂完成后,由于DNA进行半保留复制,形成的4个子细 胞中都含有被标记的染色体,即形成的4个子细胞中未被标记的染 色体的条数是0,D错误。故选C。]
CO2中碳元素在光合作用中的转移途径CO2→C3→(CH2O),C正
确;用18O分别标记H2O和CO2进行两组实验,一组提供H
18 2
O和
CO2,另一组提供H2O和C18O2供给同种植物,而非同时,D错误。
故选C。]
2.(2022·江苏苏州二模)同位素标记法是生物学研究的常用技术。
下列关于同位素的应用实例,说法正确的是( )
3.减数分裂时核DNA和染色体的标记情况分析 在减数分裂时,DNA复制一次,细胞连续分裂两次。如图是一次减 数分裂的结果(以一对同源染色体为例)。

同位素标记法在高中生物的应用

同位素标记法在高中生物的应用

同位素标记法在高中生物的应用:同位素标记法是利用放射性同位素作为示踪剂对研究对象进行标记的微量分析方法,生物学上经常使用的同位素是组成原生质的主要元素,即H、N、C、S、P和O等的同位素。

在浙科版必修1P6教材中也有说明:放射性同位素可用于追踪物质的运行和变化规律。

此研究方法在高中生物教材中多次出现,总结如下:1.分泌蛋白的合成与分泌(必修1P40简答题)20世纪70年代,科学家詹姆森等在豚鼠的胰腺细胞中注射3H标记的亮氨酸。

3min后被标记的亮氨酸出现在附有核糖体的内质网中;17min后,出现在高尔基体中;117min后,出现在靠近细胞膜内侧的囊泡中及释放到细胞外的分泌物中。

由此发现了分泌蛋白的合成与分泌途径:核糖体→内质网→高尔基体→囊泡→细胞膜→外排。

2.光合作用中氧气的来源1939年,鲁宾和卡门用18O分别标记H2O和CO2,然后进行两组对比实验:一组提供H2O 和C18O2,另一组提供H218O和CO2。

在其他条件相同情况下,分析出第一组释放的氧气全部为O2,第二组全部为18O2,有力地证明了植物释放的O2来自于H2O而不是CO2。

3.光合作用中有机物的生成20世纪40年代美国生物学家卡尔文等把单细胞的小球藻短暂暴露在含14C的CO2里,然后把细胞磨碎,分析14C出现在哪些化合物中。

经过10年努力终于探索出了光合作用的“三碳途径”——卡尔文循环。

为此,卡尔文荣获“诺贝尔奖”。

4.噬菌体侵染细菌的实验1952年,赫尔希和蔡斯以T2噬菌体为实验材料,用35S、32P分别标记噬菌体的蛋白质外壳和DNA,再让被35S、32P分别标记的两种噬菌体去侵染大肠杆菌,经离心处理后,分析放射性物质的存在场所。

此实验有力证明了DNA是遗传物质。

5.DNA的半保留复制1957年,美国科学家梅塞尔森和斯坦尔用含15N的培养基培养大肠杆菌,使之变成“重”细菌,再把它放在含14N的培养基中继续培养。

在不同时间取样,并提取DNA进行密度梯度离心,根据轻重链浮力等的不同,就分出新生链和母链,这就证实了DNA复制的半保留性。

同位素示踪法在高中生物中的应用归纳

同位素示踪法在高中生物中的应用归纳

同位素示踪法在高中生物中的应用归纳1同位素示踪法,是利用放射性核素作为示踪剂对研究对象进行标记的微量分析的方法。

常用的标记元素有:(1)14C:常用于标记CO2,葡萄糖,生长素等物质中的C,也可用与标记生长素的运输方向(2)18O:常用于标记光合作用和呼吸作用过程中的H2O,CO2,O2,葡萄糖等,(3)3H:经常用于标记核苷酸示踪DNA,RNA的分布(4)15N:常用于标记无机盐,示踪在自然界中的N循环,也可用来标记氨基酸等(5)32P:常用于标记核酸,标记含P的无机盐可示踪无机盐在植物体内的利用状况,也可用来标记DNA的复制情况(6)35S:标记蛋白质,在研究遗传的物质基础实验中标记噬菌体例11.陆生植物光合作用所需要的碳源,主要是空气中的C02,CO2主要是通过叶片气孔进入叶内。

陆生植物能不能通过根部获得碳源,且用于光合作用?请做出假设,且根据提供的实验材料,完成相关实验问题。

(1)假设为:。

(2)利用实验器材,补充相关实验步骤。

(3)方法和步骤:①;②;③对菜豆幼苗的光合作用产物进行检查。

结果预测和结论:。

该实验最可能的结果是,原因是。

答案 (1)陆生植物能通过根部获得碳源 (2)①把适量含有NaH14CO3,的营养液置于锥形瓶中,并选取生长正常的菜豆幼苗放入锥形瓶中②将上述装置放在温暖、阳光充足的地方培养③结果预测和结论:在光合作用产物中发现有14C,说明陆生植物能通过根部获得碳源,用于光合作用。

如果是在光合作用产物中没有发现14C,说明陆生植物不能通过根部获得碳源,用于光合作用。

最可能的结果和结论是:在光合作用产物中发现有14C,说明陆生植物能通过根部获得碳源,用于光合作用。

原因是陆生植物的根部可以吸收土壤中的CO2和碳酸盐,用于光合作用。

例2将植物细胞放在有3H标记的胸腺嘧啶脱氧核糖核苷酸存在的环境中,温育数小时。

然后收集细胞,粉碎并轻摇匀浆,进行分级离心以获得各种细胞结构。

放射性3H将主存在于()A.核仁、质体和高尔基体 B.细胞核、核仁和溶酶体C.细胞核、核糖体和液泡 D.细胞核、线粒体和叶绿体例3 从某腺体的细胞中提取一些细胞器,放入含有14C氨基酸的培养液中,培养液中有这些细胞器完成其功能所需的物质和条件,连续取样测定标记的氨基酸在这些细胞器中的数量,下图中能正确描述的曲线是()例4.用32P标记了水稻体细胞(含24条染色体)的DNA分子双链,再次这些细胞转入不含32P的培养基中培养,在第二次细胞分裂的中期、后期,一个细胞中的染色体总条数和被32P标记的染色体条数分别是()A.中期24和12、后期48和12 B.中期24和12、后期48和24C.中期24和24、后期48和12 D.中期24和24、后期48和24 例5.用32P和35S分别标记噬菌体的DNA分子和蛋白质外壳,然后去侵染含31P与32S的细菌,待细菌解体后,子代噬菌体的DNA分子和蛋白质外壳()A.少数含32P、大多数含31P和全部含32SB.只含31P和少数含32SC.少数含32P、大多数含31P和少数含35S、大多数含32SD.只含32P和大多数含35S。

热点专题7同位素标记法-2025年生物学高考总复习课件

热点专题7同位素标记法-2025年生物学高考总复习课件
返回导航
高考总复习·生物学
2.与荧光标记法的区别 (1)常用的荧光蛋白有绿色和红色两种:①绿色荧光蛋白(GFP)常用的是 来源于发光水母的一种功能独特的蛋白质,蓝光或近紫外光照射,发射 绿色荧光;②红色荧光蛋白来源于珊瑚虫,是一种与绿色荧光蛋白同源 的荧光蛋白,在紫外光的照射下可发射红色荧光。 (2)运用到荧光标记法的实验:①“细胞融合实验”:这一实验证明了细 胞膜的结构特点是具有一定的流动性;②“基因在染色体上的实验证 据”:通过现代分子生物学技术,运用荧光标记的手段,直接观察到某 一基因在染色体上的位置。
返回导航
高考总复习·生物学
【解析】蛋白质和DNA中都含有N,用15N标记的噬菌体并没有将蛋白质 和DNA分开,侵染未标记的大肠杆菌,探究控制生物性状的遗传物质时, 不能说明为DNA;胸腺嘧啶脱氧核苷酸只存在于DNA中,用15N或32P标 记的胸腺嘧啶脱氧核苷酸,可研究有丝分裂过程中DNA的复制方式;用 3H标记的亮氨酸注射到豚鼠的胰腺腺泡细胞中,带标记的亮氨酸能参与 蛋白质的合成,故能研究分泌蛋白的合成、加工和分泌过程;H2O和 CO2是光合作用的原料,用18O标记H2O、14C标记CO2,可分别研究光合 作用中O2的来源和C的转移途径。
返回导航
【解析】1941年鲁宾和卡门用氧的同位素18O分别标记H2O和CO2,证明 光合作用释放的氧气来自水;20世40年代,美国科学家卡尔文利用14C标 记CO2,探明了CO2转化成有机物的途径,这一途径就是卡尔文循环; 噬菌体侵染细菌的实验中,分别用32P和35S标记噬菌体,跟踪进入细菌内 的化学物质是蛋白质还是DNA,从而证明DNA是遗传物质;生物学家研 究患者遗传家系推测红绿色盲的遗传方式,没有使用同位素示踪技术。
返回导航
高考总复习·生物学

高中同位素标记法

高中同位素标记法

高中同位素标记法是一种利用放射性同位素或稳定性同位素作为示踪剂对研究对象进行标记的微量分析方法。

这种方法可以用于追踪物质的运行和变化规律,在生物学、化学等领域有广泛的应用。

在生物学中,同位素标记法常被用于研究生物大分子的结构和功能,如蛋白质、核酸等。

例如,在研究分泌蛋白的合成和分泌过程中,科学家使用3H标记的亮氨酸来追踪蛋白质的合成和分泌路径。

此外,在光合作用的研究中,同位素标记法也被用来追踪二氧化碳的固定和氧气的释放过程。

在化学领域,同位素标记法也被广泛应用于反应机理的研究。

例如,通过使用同位素标记的底物或试剂,科学家可以追踪化学反应中化学键的形成和断裂过程,从而揭示反应机理。

同位素标记法的优点在于示踪元素标记的化合物化学性质不变,因此可以通过追踪示踪元素标记的化合物来弄清化学反应的详细过程。

此外,放射性同位素具有灵敏度高、测量方法简便易行、能准确地定量、准确地定位及符合所研究对象的生理条件等特点。

需要注意的是,同位素标记法也有其局限性。

例如,放射性同位素具有放射性,需要特殊的防护措施;稳定性同位素虽然不具有放射性,但其灵敏度较低,价格较昂贵,应用范围受到限制。

因此,在使用同位素标记法时需要根据具体的研究对象和目的来选择合适的同位素示踪剂。

【生物】同位素标记法应用例析(一)

【生物】同位素标记法应用例析(一)

【生物】同位素标记法应用例析(一)放射性同位素自被发现以来,人类很快在将其作为标记物应用于物学研究,为探究生命过程的奥秘起了非常重要的作用。

放射性同位素用于追踪物质运行和变化过程时,叫示踪元素。

用示踪元素标记的化合物,其化学性质不变。

人们可以根据这种化合物的放射性,对有关的一系列化学反应进行追踪。

这种科学研究方法叫做同位素标记法。

现结合必修1《分子与细胞》中所学的知识,就放射性同位素的应用原理及例析归纳如下:1.研究蛋白质或核酸合成的原料及过程原理:把具有放射性的原子掺到合成蛋白质或核酸的原料(氨基酸或核苷酸)中,让它们一起运动、迁移,再用放射性探测仪器进行追踪,就可知道放射性原子通过什么路径、运动到哪里以及分布如何。

典例1 愈伤组织细胞在一种包含所有必需物质的培养基中培养了几个小时,其中一种化合物具有放射性(3H标记)。

当这些细胞被固定后进行显微镜检,利用放射性自显影技术发现放射性集中于细胞核、线粒体和叶绿体。

可以有理由肯定被标记的化合物是A.一种氨基酸B.尿嘧啶核苷C.胸腺嘧啶脱氧核苷酸D.葡萄糖解析细胞中的DNA只存在于细胞核、线粒体和叶绿体中,而胸腺嘧啶脱氧核苷酸是构成DNA的基本结构单位之一。

答案:C2.研究分泌蛋白的合成和分泌原理:研究细胞器在分泌蛋白合成中的作用时,标记某一氨基酸如亮氨酸的3H,在一次性给予放射性标记的氨基酸的前提下,通过观察细胞中放射性物质在不同时间出现的位置,就可以明确地看出细胞器在分泌蛋白合成和运输中的作用。

研究手段:观察放射性在不同细胞器中出现的时间,来观察不同细胞器在分泌蛋白中的作用。

典例2 (多选)科学家用含3H标记的亮氨酸培养豚鼠的胰腺腺泡细胞,下表为在腺泡细胞几种结构中最早检测到放射性的时间表。

下列叙述中正确的是细胞结构附有核糖体的内质网高尔基体靠近细胞膜的囊泡时间/min 3 17 117A.形成分泌蛋白的多肽最早在内质网内合成B.高尔基体膜向内与内质网膜相连,向外与细胞膜相连C.高尔基体具有转运分泌蛋白的作用D.靠近细胞膜的囊泡可由高尔基体形成解析本题考查分泌蛋白的合成和分泌过程。

高中生物用到同位素标记法

高中生物用到同位素标记法

高中生物用到同位素标记法同位素标记法是一种现代生物学和医学中常用的技术手段。

它利用同位素的放射性或稳定性标记,对生物分子和生物过程进行标记、追踪、分离和定量分析。

它被广泛应用于生命科学研究、医学诊断、药物研发等领域。

同位素是指具有相同原子序数但质量数不同的元素。

例如,氢元素的三种同位素分别为氢-1、氘-2和氚-3,它们都具有一个质子,但氘和氚中分别含有一个中子和两个中子。

同位素的放射性和稳定性取决于其核内所含的中子和质子比例。

放射性同位素具有不稳定的核,会自发地放射出粒子和电磁波,而稳定性同位素则不会发生这样的现象。

在生物分子中,常用同位素标记方法是将一个或多个原子替换为同位素,从而标记分子的位置和数量。

例如,碳、氢、氮和氧等元素都有丰富的同位素。

其中,碳的同位素碳-14、碳-13和碳-12常被用来标记有机分子,如葡萄糖、氨基酸、核酸等;氢的同位素氚和氘则常被用来标记水分子、脂肪酸、核酸等;氮的同位素氮-15和氮-14则常被用来标记蛋白质、核酸等,而氧的同位素氧-18、氧-17和氧-16则常被用来标记水分子、呼吸气体等。

同位素标记法的常用技术包括放射免疫测定、同位素稀释法、轨迹追踪、放射性荧光探针等。

放射免疫测定是一种用于检测微量分子和生物活性物质的方法。

它利用同位素标记的抗体或抗原,与待测分子结合后,通过放射性测量来检测分子的存在和数量。

同位素稀释法则利用同位素标记的化合物来追踪物质的代谢和分布。

例如,在糖代谢研究中,可以用碳-14标记的葡萄糖注射到动物体内,然后测量其代谢产物中的碳-14含量,从而了解糖代谢的进程和参与的分子。

轨迹追踪是一种用于研究分子运动和交互的方法。

它利用同位素标记的分子,可在细胞和组织中标记多种生物大分子,然后追踪其在细胞内的位置、转运和转化。

放射性荧光探针是一种通过放射性信号和光信号相互转化的方法来追踪分子和细胞的方法。

同位素标记法在生命科学研究中有着广泛的应用。

它可以用于研究代谢过程、蛋白质互作、基因表达、疾病诊断、药物代谢等。

高中生物中的“同位素标记法

高中生物中的“同位素标记法

“同位素标记法”的总结利用放射性同位素不断地放出特征射线的核物理性质, 就可以检测和追踪它在体内或体外的位置、 数量及其转变等。

同位素标记在工业、农业生产、日常生活和科学科研等方面都有着极其广泛的应用。

在生物学领域可用来测定生物化石的年代,也可利用其射线进行诱变育种、防治病虫害和临床治癌,还可利用其射线作为示踪原子来研究细胞内的元素或化合物的来源、组成、分布和去向等,进而了解细胞的结构和功能、化学物质的变化、反应机理。

高中生物教材中的实验(或内容)和相关习题中许多知识都涉及同位素标记法的应用。

下面我就相关内容通过有关例题进行归纳阐述,以便大家对这项技术有一个深刻的体会,并学会同位素标记的应用。

一、氢( 3H )例 1:科学家用含 3 H 标记的亮氨酸的培养液培养豚鼠的胰腺腺泡细胞,下表为在腺泡细胞几种结构中最早检测到放射性的时间表。

下列叙述中正确的是()A .形成分泌蛋白的多肽最早在内质网内合成B .高尔基体膜向内与内质网膜相连,向外与细胞膜相连C .高尔基体具有转运分泌蛋白的作用D .靠近细胞膜的囊泡可由高尔基体形成解析:分泌蛋白的多肽最早在核糖体上合成,高尔基体并不直接和内质网与细胞膜相连,而是通过囊泡间接连接。

答案: CD 。

知识盘点:1. 科学家在研究分泌蛋白的合成和分泌时, 曾经做过这样一个实验: 他们在豚鼠的胰脏腺泡细胞中注射3H 标记的亮氨 酸, 3min 后,被标记的氨基酸出现在附着有核糖体的内质网中, 17min 后,出现在高尔基体中, 117min 后,出现在靠近细胞膜内侧的运输蛋白质的小泡中,以及释放到细胞外的分泌物中。

这个实验说明分泌蛋白在附着于内质网上的核 糖体中合成之后,是按照内质网→高尔基体→细胞膜的方向运输的,从而证明了细胞内的各种生物膜在功能上是紧密 联系的。

2.研究肝脏细胞中胆固醇的来源时,用3H —胆固醇作静脉注射的示踪实验,结果放射性大部分进入肝脏,再出现在粪便中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

同位素标记法在高中生物知识中的应用
【摘要】在中子和质子组成的原子核内,质子数相同,中子数不同的这一类原子称为同位素。

同位素用于追踪物质运行和变化过程时,叫示踪元素,用示踪元素标记的化合物,其化学性质不变。

人们根据这种化合物的放射性,对生物体内各种复杂的生理、生化过程进行追踪,这种科学研究方法就叫做同位素示踪法。

同位素标记法是利用放射性同位素作为示踪剂对研究的对象的运行和变化规律进行追踪的分析法。

【关键词】同位素;标记;应用
一、概述
在中子和质子组成的原子核内,质子数相同,中子数不同的这一类原子称为同位素。

同位素包括稳定同位素和放射性同位素。

稳定同位素是指原子核结构稳定,不会发生衰变的同位素,如15N、18O等。

放射性同位素是指原子核不稳定会发生衰变,发出α射线或β射线或γ射线的同位素,如3H、14C、32P、35S、131I、42K等。

同位素用于追踪物质运行和变化过程时,叫示踪元素,用示踪元素标记的化合物,其化学性质不变。

人们根据这种化合物的放射性,对生物体内各种复杂的生理、生化过程进行追踪,这种科学研究方法就叫做同位素示踪法。

同位素标记法是利用放射性同位素作为示踪剂对研究的对象的运行和变化规律进行追踪的分析法。

在生物学科中,经常利用14C、18O、15N、3H、32P和35S等同位素作为示踪原子,来考察学生分析、判断和推断能力。

二、方法应用
同位素示踪法是利用放射性核素作为示踪剂对研究对象进行标记的微量分析方法,即把放射性同位素的原子参到其他物质中去,让它们一起运动、迁移,再用放射性探测仪器进行追踪,就可知道放射性原子通过什么路径,运动到哪里了,是怎样分布的。

用来研究细胞内的元素或化合物的来源、组成、分布和去向等,进而了解细胞的结构和功能、化学物质的变化、反应机理等。

三.放射性同位素示踪法的特点
⑴灵敏度高:放射性示踪法可测到10-14-10-18克水平,即可以从1015个非放射性原子中检出一个放射性原子。

它比目前较敏感的重量分析天平要敏感108-107倍,而迄今最准确的化学分析法很难测定到10-12克水平。

⑵方法简便:放射性测定不受其它非放射性物质的干扰,可以省略许多复杂
的物质分离步骤,体内示踪时,可以利用某些放射性同位素释放出穿透力强的r 射线,在体外测量而获得结果,这就大大简化了实验过程,做到非破坏性分析,随着液体闪烁计数的发展,14C和3H等发射软β射线的放射性同位素在医学及生物学实验中得到越来越广泛的应用。

⑶定位定量准确:放射性同位素示踪法能准确定量地测定代谢物质的转移和转变,与某些形态学技术相结合,可以确定放射性示踪剂在组织器官中的定量分布,并且对组织器官的定位准确度可达细胞水平、亚细胞水平乃至分子水平。

⑷符合生理条件:在放射性同位素实验中,所引用的放射性标记化合物的化学量是极微量的,它对体内原有的相应物质的重量改变是微不足道的,体内生理过程仍保持正常的平衡状态,获得的分析结果符合生理条件,更能反映客观存在的事物本质
四、应用分析
⑴标记某元素,追踪其转移途径。

①碳的同位素:自然界中碳元素有三种同位素,即稳定同位素12C、13C和放射性同位素14C。

14C能够发射B射线,因此可以用放射性14C取代化合物中它的稳定同位素12C,并以14C作为标记的放射性标记化合物。

例如教材中介绍了科学家用含有14C的二氧化碳来追踪光合作用中的C原子的转移途径是:二氧化碳一→三碳化合物一→糖类
②氧的同位素:自然界中氧元素有三种同位素,即16O、17O、18O,它们都不具有放射性,因此不能通过放射性进行追踪。

在示踪研究中,常用18O代替化合物中的16O进行标记,最后通过质谱仪测定代谢物的质量的方法进行确定。

例如在教材中,介绍的鲁宾和卡门的实验,研究光合作用中释放的氧到底是来自于水,还是来自于二氧化碳。

他们用氧的同位素18O分别标记H2O和CO2,使它们分别成为H218O和C18O2,然后进行两组光合作用实验:第一组向绿色植物提供H218O和CO2,第二组向同种绿色植物提供H2O和C18O2。

在相同条件下,他们对两组光合作用释放的氧进行了分析,结果表明第一组释放的氧全部是18O2,第二组释放的氧全部是O2,从而证明了光合作用释放的氧全部来自水。

⑵标记特征元素,探究化合物的作用。

①磷的同位素:磷的同位素磷是一个简单的元素,除了质量数为31的一种稳定性同位素外,还有几个放射性同位素,其质量数为29、30、32、33和34;但只有质量数为32和33的同位素存在足够长的时间可以作为示踪物之用,32和33都可以发射负B射线。

在教材中介绍了用32P标记噬菌体的DNA,然后用被标记的噬菌体去感染细菌的实验。

由于DNA中含有P元素,因而用放射性的32P取代DNA中的P,就使得DNA具有可识别性,从而和细菌的DNA相区别开来。

②硫的同位素:硫的同位素32S、33S、34S、35S和36S中,除35S外,其它放射性同位素的半衰期都很短,因此在放射性同位素示踪法中,用的多是35S。

教材中同样是在介绍噬菌体侵染细菌的实验中,介绍了35S的标记应用。

即是用35S标记噬菌体的蛋白质外壳来显示其最后的存在部位。

由于蛋白质含有S 元素,而DNA中不含S元素,可以把蛋白质和DNA区别开来。

⑶标记特征化合物,探究详细生理过程,研究生物学原理。

①氢的同位素:已知氢有三种同位素,即氕、氘和氚,氕和氘是稳定的同位素,而氚具有放射性,能够发射负B射线,因而可以通过探测器进行追踪。

3H 标记化合物是指用放射性3H取代化合物中的稳定同位素氕或氘,并以3H作为标记的放射性标记化合物。

例如,在介绍科学家在研究分泌蛋白的合成和分泌时,曾经做过这样一个实验:他们在豚鼠的胰脏腺泡细胞中注射3H标记的亮氨酸,3min后,被标记的氨基酸出现在附着有核酸体的内质网中,17min后,出现在高尔基体中,117min后,出现在靠近细胞膜内侧的运输蛋白质的小泡中,以及释放到细胞外的分泌物中,这个实验说明分泌蛋白在附着于内质网上的核糖体中合成之后,是按照内质网叶高尔基体一细胞膜的方向运输的,从而证明了细胞内的各种生物膜在功能上是紧密联系的。

用3H 标记胸腺嘧啶脱氧核苷酸,研究有丝分裂过程中染色体的变化规律。

②氮的同位素:有13N 14N 15N 等,如用15N 标记的脱氧核苷酸研究DNA 复制的特点,证明DNA的复制为半保留复制。

除了课本中介绍的这些实验中涉及到同位素标记法的应用之外,利用N的同位素15N标记氨基酸,研究其在动植物体内的转移途径;用42K标记的培养基来研究矿质元素在植物体内的运输途径等。

只要我们了解其中的原理便能触类旁通,解决学习中的困难。

参考文献:
[1]人教版高中生物必修I教材
[2]普通高中生物课程标准
[3]梁吉春2012生物创新大课堂
[4]中国生物器材网。

相关文档
最新文档