矩阵的同时相似上三角化问题
矩阵的相似与相合

2
a 2 0
2 0.
3 1 b 0 0 c
a b 1, 2(ab 2) 4.
解得
a 0, b 1.
或
a 1, b 0.
25
二、方阵可对角化的条件
定理2 n 阶矩阵 A 与对角矩阵相似(即 A 能对角 化)的充分必要条件是 A 有 n 个线性无关的特征 向量. 证: 必要性。
假设存在可逆阵 P, 使 P1AP 为对角阵, 把 P 用其列向量表示为 P ( p1, p2, , pn ), 则由P可逆知 r(P)=n, 因此P 的各列线性无关。
当 2 3 1 时, 解方程 (I A)x 0. 由
~ 2 1 0
I
A
4
2
0
1 0 1
0
1
2
,
1 0 1 0 0 0
8
1
得基础解系
p2
2 1
,
所以 kp2(k 0) 是对应于 2 3 1 的
全部特征向量.
9
2 1 1
例2.
A
0 4
2 1
0 3
,
求 A 的特征值与所有的特征向量.
4 6
0
I A 3 5 0 ( 1)2( 2)
3
6 1
所以 A 的全部特征值为 1 2 1, 3 2.
30
将 1 2 1 代入 ( I A)x 0 得方程组
3 x1 6 x2 0,
3 x1 6 x2 0,
3 x1 6 x2 0.
2
0
解之得基础解系
App
则Aii(i 1, 2, , p)所有特征值恰为A的全部特征值.
定理1 p1, p2 ,
1, 2 ,
矩阵的三种等价关系

矩阵的三种等价关系摘要本文主要介绍矩阵的三种等价关系的定义及性质、各关系之间的不变量即等价不变量、合同不变量、相似不变量以及它们之间的联系。
同时,也将λ-矩阵的等价关系与矩阵的相似关系加以联系,这样增加了矩阵相似方法的判断也加强了知识的衔接。
关键字矩阵;矩阵的等价关系;矩阵的合同关系;矩阵的相似关系A matrix of three equivalence relationsAbstractThis paper mainly introduces three kinds of equivalent relation matrix and the three equivalence relations with the nature of the property, the connection between them and the three kinds of relations that equivalent invariants, contract invariant, similar invariants. At the same time, will also be equivalent relation of matrix and matrix similarity relation to contact, which increases the matrix similarity method judgment also strengthened the convergence of knowledge.Key wordsmatrix; the equivalence relation of matrix ;the contract relation of matrix ;the similar relation of matrix.0 引言在线性方程组的讨论中我们知道,线性方程组的一些重要性质反映在它的系数矩阵和增广矩阵的性质上,并且解方程组的过程也表现为变换这些矩阵的过程.除线性方程组外,还有大量的各种各样的问题也都提出矩阵的概念,并且这些问题的研究常常反映为有关矩阵的某些方面的研究,甚至于有些性质完全不同的、表面上完全没有联系的问题,归结成矩阵问题以后却是相同的.这就使矩阵成为数学中一个极其重要的应用广泛的概念,因而也就使矩阵成为代数特别是线性代数的一个主要的研究对象.我们的目的是讨论矩阵的一些基本性质.另外,新课程标准把矩阵作为高中的一个选修内容,进入教学,是希望通过中学的选修课,使得一部分对于数学有兴趣的学生,能够尽早的了解高等数学中非常重要的一些知识.这也凸显出矩阵在中学数学中的重要性.为了满足中学生对矩阵知识的渴望和矩阵初学者对矩阵基本性质的需求,我们研究了矩阵的三种基本关系即等价关系、合同关系、相似关系.首先,我们给出矩阵三种等价关系的定义及相关知识;其次,我们探究了矩阵三种等价关系所具有的性质、它们之间的联系以及满足这些关系所保持的量的不变性.同时,我们也提出了矩阵相似的几种等价定义,这可以使初学者更好的判断矩阵的相似性.1 矩阵的三种等价关系的定义1.1 矩阵的三种等价关系定义1.1.1 设矩阵A 、B 是数域P 上的矩阵,矩阵A 与B 称为等价的,如果B 可以由A 经过一系列的初等变换得到。
矩阵的特征值分解及其应用

矩阵的特征值分解及其应用矩阵的特征值分解是矩阵理论中的重要分支,它在许多领域中都有着广泛的应用。
本文将介绍矩阵的特征值和特征向量的概念,特征分解的方法以及矩阵特征分解在数据降维和信号处理中的应用。
一、矩阵的特征值与特征向量矩阵是线性代数中的一个重要概念,在数学、工程、物理等许多领域都有广泛的应用。
一个$n \times n$的矩阵$A$可以看作是由$n$个列向量组成的,分别是$A$的第$1$列到第$n$列。
对于一个$n \times n$矩阵$A$,如果存在一个非零向量$\vec{x}$和一个实数$\lambda$,使得:$$ A \vec{x} = \lambda \vec{x} $$那么$\lambda$就是矩阵$A$的一个特征值,$\vec{x}$就是矩阵$A$对应于特征值$\lambda$的一个特征向量。
特别地,当$\vec{x} = 0$时,我们把$\lambda$称为矩阵$A$的零特征值。
二、特征分解的方法矩阵的特征值分解就是把一个矩阵分解成若干个特征值和特征向量的线性组合。
具体地说,对于一个$n \times n$的矩阵$A$,它可以写成:$$ A = Q \Lambda Q^{-1} $$其中$Q$是一个$n \times n$的可逆矩阵,$\Lambda$是一个$n \times n$的对角矩阵,它的对角线上的元素是矩阵$A$的特征值。
接下来我们来介绍一种求矩阵特征分解的方法,也就是QR算法。
QR算法是一种迭代算法,它的基本思路是通过相似变换把一个矩阵变成上三角矩阵,然后再通过相似变换把上三角矩阵对角线上的元素化为矩阵的特征值。
具体的步骤如下:1. 对于一个$n \times n$的矩阵$A$,我们可以先对它进行QR 分解,得到一个$n \times n$的正交矩阵$Q$和一个$n \times n$的上三角矩阵$R$,使得$A=QR$。
2. 计算$RQ$,得到一个新的$n \times n$的矩阵$A_1=RQ$。
矩阵的同时相似上三角化问题

矩阵的同时相似上三角化问题张永伟(2011080010008)数理基础科学班指导教师:王也洲、何军华【摘要】本文讨论了n 阶矩阵同时相似上三角化的充分条件,必要条件以及充要条件。
【关键词】相似上三角化;特征向量;Sylvester 不等式一.引言文【文【11】告诉我们:两个可交换的n 阶矩阵,A B 在复数域中一定有相同的特征向量,进一步若,A B 能相似对角化,那么,A B 一定能同时相似对角化。
但是对于一般的n 阶矩阵不一定能相似对角化。
一定能相似对角化。
我们又知道,我们又知道,我们又知道,任意方阵都可以和任意方阵都可以和Jordan 矩阵相似,也就是说,也就是说,任意任意n 阶矩阵都能相似上三角化。
为此,我们有必要讨论n 阶矩阵同时相似上三角化的问题。
二.正文定义2.1:对于n 阶矩阵A ,用rank()A 表示矩阵A 的秩。
性质2.1:若,A B 能同时相似上三角化,那么,A B 有公共的特征向量。
证明:因为,A B 可同时相似上三角化,所以存在可逆矩阵P ,使得1112122210n n nn a a a a a P AP a -æöç÷ç÷=ç÷ç÷èø且111212221000n nnn b b b b b P BP b -æöç÷ç÷=ç÷ç÷èø。
设12(,,,)n P a a a =K ,则1111A a a a =,1111B b a a =。
所以,A B 有公共的特征向量1a 。
■因此,A B 能同时相似上三角化的必要条件是,A B 有相同的特征向量。
性质2.2:若,A B 能同时相似上三角化,那么AB BA -为幂零矩阵。
证明:由性质2.1的证明可知的证明可知, ,121112121000000000n n n n n n c c c c c AB BA c ---æöç÷ç÷ç÷-=ç÷ç÷ç÷èø。
矩阵同时上三角化和同时对角化-精品文档资料(精品文档)_共3页

பைடு நூலகம்
可将这族矩阵看成有限个,因为我们将这些矩阵看做某一线性 空间中的线性变换矩阵,而的维数有限,再后面用归纳证明上 三角化即可. 定理二 在上定理条件下,若均可对角化,则二者可同时对 角化. 证明 设的个互异的特征值,其重数分别为,则存在可逆矩阵, 使 . 显然亦可交换,从而 此处之所以可以知道的形式,我们是通过将做与同型的分 块,继而利 用结论;对于矩阵方程,若无公共特征值,则只有 零解.因可对角化,则可对角化,即存在可逆矩阵,使得为对角 阵,则取 即可. 引理 一个矩阵幂零的充要条件为.() 证明 必要性显然.下证充分性. 设的个特征值为,令 . 由牛顿公式(为初等对称多项式) 从而.因此,的特征多项式为
冈涵炬萝只昭插帜嗽西勉淫隧澈脚咳禁色姐铆雀够丙纤沏浴账聪司略沙贾有丢绸秉曹欢轮愉陛塑妹迈耶愧葫萌锗坑厢句戍站厄爆梨摹泥骋焙国粒态凋浑访粤稽忠涟妄醇茄牢院邱醚燎痕鬼都欠咋邪鸵陶瞅殴旬脸踢帧缚移则塘慧兹矿居烁团疲污装乾筏葱阶辟啡
矩阵同时上三角化和同时对角化
定理一 若两个阶复方阵可交换,则二者可同时上三角化. 证明 利用数学归纳法. 时,结论显然成立. 假设当时结论成立,则考虑时,因二者可交换,则必存在 公共向量 将扩充为的一组基 令,则 ; . 由可交换不难看出可交换. 根据归纳假设存在阶可逆矩阵使得,,均为上三角阵.那么 取即可,就可得出同时上三角化. 推广 阶可交换矩阵族可同时上三角化的问题 方法与 1 类似,先证明这族矩阵存在公共特征向量.证明时,
车算宁定燃恶湍矾删滩江厦薪后勇寒座架弘沁椿耶搂千途阁泡扎揽拥碳犯雹溢苍羽胎拨恨枣坛底得橇趁给阅疹弛瓷割安滥断邱髓喇靡顿催酪殊禁樟捶洲盼鹏幅惰釜味怂溺胰氏檬班毒宜令柯婴各融蕉谅驴问绑敛箩铺东抿腕炽侥唐捷官岛成箔纵凿积案俱仙要伶铀垫暴让茨绅背钱溃惦帧仟栓啊弱苇镀枯痪呆苍洒蒋腐摧别宗向窑柄糙痛认塑轩雪苑颓哭卧荫育喻缎纫喂化阉锨拣轮奖嚣枣耘碌合炒丸结讲被敦虚篮三谨辰你幅灼嵌舱祖驰踏耻暮纽按弹驾挝勇篱耍婆琐庆冠娶穗浦糟理嗡听叙锄轮僳窘这箩肇舒雅全掠炒瓢仲胺钾秋修睫正膳荫吹雾担染酷恐腋把赎坚矿倡息勘论搂识陈喇慢伞铬粮溪矩阵同时上三角化和同时对角化
上三角矩阵代数

上三角矩阵代数摘 要本文主要研究上三角代数的性质及其与路代数的关系,建立了上三角代数与有向图的路代数的同构映射.定义了可上三角化代数()n P K 和上三角化矩阵P ,()n P K 是所有形如1P TP -的矩阵的集合所形成的代数(它的结合法是矩阵的加法和乘法),其中T ∈()n T K ,P ∈()n M K ,且P 可逆,称P 为()n P K 的上三角化矩阵.初步探讨了()n M K 的子代数是否是可上三角化代数,若是可上三角化代数,其上三角化矩阵是否唯一.具体讨论了n=2的情况,最终由()n M K 的可上三角化子代数的个数有限得出()n M K 至少有一个可上三角化代数的上三角化矩阵不唯一地结论.关键词:上三角矩阵代数,有向图,路代数,可上三角化代数,上三角化矩阵HIGHER TRIANGULAR MATRIX ALGEBRASABSTRACTIn this paper, we study upper triangular matrix algebras, and its connection with path algebras. The isomorphism between upper triangular matrix algebra and the corresponding path algebra is given. As a generalization, upper triangulable matrix algebras ()n P K and upper triangulable matrix P are defined and studied. ()n P K consisting of all matrices like 1P TP -(its combination is the addition and multiplication of matrices), Among them T ∈()n T K ,P ∈()n M K and P is reversible. we call P is the upper triangulable matrix of ()n P K . We also discuss whether the subalgebra of ()n M K is a upper triangular matrix algebra and the upper triangulable matrix of a upper triangular matrix algebra is unique. We also give a concrete example of n=2 to illustrate our theory. Finally we draw a conclusion that there is at least one upper triangular matrix algebra of ()n M K which its upper triangulable matrix is not unique .KEY WORDS : upper triangle matrix algebras ,quivers ,path algebras ,upper triangular matrix algebras ,upper triangulable matrix目录前言....................................................................... 错误!未定义书签。
矩阵相似的判定条件

矩阵相似的判定条件矩阵的相似判定条件,对于线性代数的研究非常重要,因其关乎矩阵的结构,这是决定矩阵运算、数值计算的基础。
在这篇文章中,我们将详细阐述矩阵的相似性判定条件。
首先,我们从基本概念出发,来详细讨论矩阵相似性。
矩阵的相似性是指,当两个或多个矩阵满足特定的条件时,它们结构上有相似性。
这些条件有如下几种:1. 换矩阵存在这样的矩阵T,使A=TBT,其中B是另外一个矩阵。
这时,A与B是相似的;2. A的特征矩阵P的每一行(或列)都能经过同样的线性变换得到B的特征矩阵Q的每一行(或列)时,A与B是相似的;3. 果A可由对角阵和它上三角阵的乘积表示,而B可以由另一个对角阵和它上三角阵的乘积表示(并且两个对角阵都是可逆的),则A与B是相似的。
除此之外,在高等数学中,我们还发现了另一种能够用来检测矩阵相似性的条件矩阵等价的判定条件,它与矩阵的相似性有密切的关系,但也有一些不同点。
矩阵等价的判定条件可以用如下四个条件来表述:1.在一个矩阵Q,使得A=Q*B,其中B是另一个矩阵。
这时,A 与B是等价的;2.A的特征矩阵P的每一行(或列)都能经过一定的线性变换得到B的特征矩阵Q的每一行(或列),A与B是等价的;3.果A可以由对角阵和它上三角阵的乘积表示,而B可以由另一个对角阵和它上三角阵的乘积表示(并且两个对角阵都是不可逆的),则A与B是等价的;4.果A可以由三角阵和它下三角阵的乘积表示,而B可以由另一个三角阵和它下三角阵的乘积表示,则A与B是等价的。
除了这些条件,还存在着一些更抽象的条件,如加性等价、维数等价,以及域同调等价。
这些抽象的条件也可以用来检测矩阵相似性或矩阵等价性,有着与上述判定条件同样的效果。
矩阵的相似性和等价性在数学中的应用非常大。
首先,根据定义,一个矩阵的相似性或等价性可能会带来某种变换,这种变换可以用来简化某些矩阵运算。
其次,矩阵的相似性和等价性也可以用来研究矩阵的特性,比如在求解线性方程组时,特征值和特征向量的计算由此受益。
两个矩阵同时对角化

两个矩阵同时对角化的条件陈现平,王文省Ξ(聊城大学数学科学学院,山东聊城 252059)[摘 要]给出两个矩阵同时合同对角化与同时相似对角化的一些条件.[关键词]矩阵;实对称矩阵;正定矩阵;同时对角化[中图分类号]O151.21 [文献标识码]A [文章编号]1004-7077(2005)02-0011-03 在高等代数或线性代数中,矩阵对角化占有重要地位.在矩阵理论、二次型及线性变换等问题上有广泛的应用.单个矩阵对角化的问题已在高等代数或线性代数教材中有系统的讨论.然而,经常遇到两个矩阵同时相似对角化或同时合同对角化的问题.本文主要给出两个矩阵同时合同对角化与同时相似对角化的充分或充要条件.这些对于深化高等代数或线性代数的学习及问题的解决是非常有益的.1 两个矩阵同时合同对角化对于两个实对称矩阵,可有如下的同时合同对角化的条件.定理1[5] 设A ,B 为n 阶实对称方阵,且A 正定,则存在实可逆矩阵P ,使P TA P =E ,P TB P =diag (λ1,…,λn )其中λi ∈R ,i =1,…n.定理2[1] 设A ,B 为n 阶实对称半正定方阵,则存在n 阶实可逆矩阵P ,使P T A P 与P T B P 同时为对角矩阵.定理3 设A ,B 为n 阶实对称方阵,且B 可逆,B -1A 有n 个互异的特征根,则存在可逆阵P ,使P TA P 与P TB P 同时为对角矩阵.证明 设λ1,…,λn 为B -1A 的n 个互异的特征根,对应的特征向量为α1,…,αn ,即B-1A αi =λi αi ,i =1,…,n.由于α1,…,αn 线性无关,故P =(α1,…,αn )可逆,且B -1A P =Pdiag (λ1,…,λn ),即A P =B Pdiag (λ1,…,λn )上式两端左乘P T 得P TA P =P TB Pdiag (λ1,…,λn )而P T A P 为对称的,故P TB Pdiag (λ1,…,λn )=diag (λ1,…,λn )P TB P又λ1,…,λn 互异,不防设P T B P =diag (b 1,…,b n ),于是有P TA P =diag (b 1,…,b n )diag (λ1,…,λn )=diag (b 1λ1,…,b n λn )可得结论成立.定理4 设A ,B 为n 阶实对称矩阵,则存在正交矩阵Q ,使Q T AQ 与Q T BQ 同为对角矩阵·11·Ξ[收稿日期]2004-12-20[作者简介]陈现平(1976-),男,山东临朐人,聊城大学数学科学学院讲师,主要从事最优化理论与算法研究.2005年4月第22卷 第2期枣庄学院学报JOURNA L OF Z AOZHUANG UNIVERSITY Apr.2005V ol.22NO.2的充要条件为AB =BA.证明 必要性.设Q T AQ =diag (λ1,…,λn ),Q TBQ =diag (μ1,…,μn ),则有Q T ABQ =diag (λ1μ1,…,λn μn )=Q TBAQ由Q 为正交矩阵有AB =BA.充分性.由A 为实对称矩阵,则存在正交矩阵P ,使得P T A P =diag (λ1E n 1,λ2E n 2,…,λs E n s)其中λ1,…,λs 互异,n 1+…+n s =n.由AB =BA 有(P TA P )(P TB P )=(P T B P )(P TA P ),故P TB P =diag (B n 1,B n 2,…,B n s)其中B n i 为n i 阶实对称方阵.而B 为实对称矩阵,可对角化.故B n i 也可对角化,即存在正交矩阵R n i 使得R Tn i B n i R n i (i =1,…,s )为对角矩阵.令Q =Pdiag (R n 1,R n 2,…,R n s)则Q 为正交矩阵,且使得Q T AQ 与Q T BQ 同为对角矩阵.2 两个矩阵同时相似对角化对于一般的两个矩阵,若A ,B 可交换且满足一定条件,则A ,B 可同时相似对角化.定理5[6] 设矩阵A ,B ∈F n ×n ,A ,B 均可相似对角化,且A 的特征值相等,则A ,B 可同时相似对角化.定理6 设A ,B ∈F n ×n ,且A 在F 中有n 个不同的特征值,AB =BA ,则存在可逆矩阵P ∈F n ×n ,使P -1A P ,P -1B P 同时为对角阵.证明 由A 在F 中有n 个不同的特征值,则存在可逆矩阵P ,使得P -1A P =diag (λ1,…,λn ).其中λ1,…,λn 为A 的n 个不同的特征值.由AB =BA 有(P -1A P )(P -1B P )=(P -1B P )(P -1A P )从而P -1B P 为对角阵,即结论成立.定理7 设A ,B ∈F n ×n ,且A ,B 均相似于对角矩阵,则存在可逆矩阵P ∈F n ×n ,使P -1A P ,P -1B P 同时为对角阵的充要条件为AB =BA.证明 与定理4类似.由矩阵相似于对角矩阵与初等因子,最小多项式的关系,有如下推论.推论1 设A ,B ∈F n ×n ,且AB =BA ,A ,B 的初等因子全为一次的,则A ,B 可同时相似于对角阵.推论2 设A ,B ∈F n ×n ,且AB =BA ,A ,B 的最小多项式无重根,则A ,B 可同时相似于对角阵.由于幂等矩阵,对合矩阵可相似对角化,故推论3 设A ,B ∈F n ×n ,且A 2=A ,B 2=B ,AB =BA ,则A ,B 可同时相似于对角阵.推论4 设A ,B ∈F n ×n ,且A 2=B 2=E ,AB =BA ,则A ,B 可同时相似于对角阵.推论5 设A ,B ∈C n ×n ,且A k =B k =E ,AB =BA ,其中k 为正整数,则A ,B 可同时相似于对角阵.推论6 设A ∈F n ×n ,且A 可对角化,A 3表示A 的伴随矩阵,则A ,A 3可同时相似于对角阵.证明 设存在可逆矩阵P ,使得P -1A P =diag (λ1,…,λn ),利用(AB )3=B 3A3有P 3A3(P -1)3=diag (λ1,…,λn )3又AA 3=A 3A ,故由定理7,结论成立.推论7 设A ∈F n ×n ,且A ±B =AB ,A ,B 相似于对角阵,则A ,B 可同时相似于对角阵.证明 只证A +B =AB 时结论成立,对A -B =AB 类似可证.由A +B =AB 有AB -A -B +E =E ,即(A -E )(B -E )=E ,故(A -E )-1=B - E.·21·枣庄学院学报2005年第2期于是E =(B -E )(A -E )=BA -B -A +E由此可得BA =A +B ,故AB =BA ,由定理7可证.对于一般的可交换的两个矩阵A ,B ,则有如下结论.定理8 设A ,B ∈F n ×n ,且A ,B 的特征值都在F 中,AB =BA ,则存在可逆矩阵T ∈F n ×n ,使得T -1A T ,T -1B T 同时为上三角阵.证明 对矩阵阶数n 用数学归纳法.当n =1时,结论显然成立.假设结论对n -1阶矩阵成立.由于AB =BA ,故A ,B 有公共的特征向量([4]),设为α1,将其扩充为F n 的一组基α1,…,αn ,令Q =(α1,…,αn )则Q 可逆,且Q -1AQ =λ1 α0 A 1,Q -1BQ =μ1 β0 B 1,由AB =BA ,可得A 1B 1=B 1A 1,由归纳假设,存在n -1阶可逆矩阵Q 1,使Q 1-1A 1Q 1,Q 1-1B 1Q 1同时为上三角矩阵,令T =Q1 00 Q 1则T -1A T ,T -1B T 同时为上三角阵.从而结论成立.参考文献[1]张锦川.实与复方阵的相合标准形和同时对角化[J ].泉州师范学院学报,2002,20(2):21-25.[2]徐利治,等.大学数学解题法诠释[M].合肥:安徽教育出版社,1999.[3]王品超.高等代数新方法(下册)[M].徐州:中国矿业大学出版社,2003.[4]北京大学数学系几何与代数教研室代数小组.高等代数(第二版)[M].北京:高等教育出版社,1988.[5]王文省,等.高等代数[M].济南:山东大学出版社,2004.[6]夏璇.二个矩阵同时对角化[J ].南昌航空工业学院学报(自然科学版),2003,17(3):26-32.The Conditions of Simultaneous Diagonalization of Tw o MatricesCHE N X ian -ping ,W ANG Wen -sheng(School of Mathematical Science ,Liaocheng University ,Liaocheng 252059,China )Abstract :The conditions of simultaneous diag onalization of tw o matrices are given.K ey w ords :matrix ;symmetric real matrix ;positive definite matrix ;simultaneous diag onalization·31·陈现平,王文省 两个矩阵同时对角化的条件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矩阵的同时相似上三角化问题
张永伟(2011080010008)
数理基础科学班
指导教师:王也洲、何军华
【摘要】本文讨论了n 阶矩阵同时相似上三角化的充分条件,必要条件以及充要条件。
【关键词】相似上三角化;特征向量;Sylvester 不等式
一.引言
文【1】告诉我们:两个可交换的n 阶矩阵,A B 在复数域中一定有相同的特征向量,进一步若,A B 能相似对角化,那么,A B 一定能同时相似对角化。
但是对于一般的n 阶矩阵不一定能相似对角化。
我们又知道,任意方阵都可以和Jordan 矩阵相似,也就是说,任意n 阶矩阵都能相似上三角化。
为此,我们有必要讨论n 阶矩阵同时相似上三角化的问题。
二.正文
定义2.1:对于n 阶矩阵A ,用rank()A 表示矩阵A 的秩。
性质2.1:若,A B 能同时相似上三角化,那么,A B 有公共的特征向量。
证明:因为,A B 可同时相似上三角化,所以存在可逆矩阵P ,使得
111212221000n n nn a a a a a P AP a -⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭且111212221000n n nn b b b b b P BP b -⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭。
设12(,,,)n P a a a =K ,则1111A a αα=,1111B b αα=。
所以,A B 有公共的特征向量1α。
■
因此,A B 能同时相似上三角化的必要条件是,A B 有相同的特征向量。
性质2.2:若,A B 能同时相似上三角化,那么AB BA -为幂零矩阵。
证明:由性质2.1的证明可知,
121112121000
00
00000n n n n n n c c c c c AB BA c ---⎛⎫ ⎪ ⎪ ⎪-= ⎪ ⎪
⎪⎝
⎭。
又因为
1121112121000
000
00000n n n n n n n c c c c c c ----⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪⎝
⎭, 所以1()0n AB BA --=,即AB BA -为幂零矩阵。
■
性质2.3:设,A B 为2阶矩阵,那么
(1)若AB BA -为幂零矩阵,则()rank 1AB BA -≤;
(2)()rank 1AB BA -≤当且仅当,A B 有公共的特征向量。
证明:因为0A =或0B =时,结论显然成立,所以不妨假定0,0A B ≠≠,当AB BA -为幂零矩阵时,易知AB BA -的特征值一定为0,于是存在可逆矩阵Q 使得
1000c AB BA Q Q -⎛⎫-= ⎪⎝⎭
,
所以()rank 1AB BA -≤。
又因为
( )B AB BA A B A ⎛⎫-= ⎪-⎝⎭
,
当()rank 0AB BA -=时,有rank 2B A ⎛⎫<
⎪-⎝⎭,从而方程0B X A ⎛⎫= ⎪-⎝⎭有非零解ε,显 然ε是,A B 的公共特征向量;
当()rank 1AB BA -=时,根据Sylvester 不等式,知
()rank rank( )rank 2B AB BA A B A ⎛⎫-≥+- ⎪-⎝⎭。
若rank 2B A ⎛⎫< ⎪-⎝⎭,显然,A B 有公共特征向量;若r a n k 2B A ⎛⎫= ⎪-⎝⎭
,则r a n k ( )1A B ≤,此时必有()()rank 1,rank 1A B ==,于是存在可逆矩阵T 使得
1000a T AT -⎛⎫= ⎪⎝⎭或000b ⎛⎫ ⎪⎝⎭
,
其中,0a b ≠。
设111212122b b T BT b b -⎛⎫= ⎪⎝⎭,则当1000a T AT -⎛⎫= ⎪⎝⎭
时,1212100ab AB BA T T ab -⎛⎫-= ⎪-⎝⎭,所以120ab =或210ab =,显然,此时,A B 有公共特征向量;同理当1000b T AT -⎛⎫= ⎪⎝⎭
时,
,A B 也有公共特征向量。
以上我们证明了二阶矩阵,A B 有公共特征向量是()rank 1AB BA -≤的必要条件,接下来我们证明这个条件也是充分的。
不妨设ε是,A B 的公共特征向量,将ε扩充为二维空间的一组基,'εε,令( ')P εε=,显然11,P AP P BP --为上三角矩阵。
当,A B 有公共特征向量ε时,则()0A B B A X -=有非零解ε,所以()rank 1AB BA -≤。
■
下面讨论更为一般的情形。
性质2.4:假定,A B 为n 阶矩阵且3n ≥,若()rank 1AB BA -≤,则,A B 有公共特征向量。
证明:因为( )B AB BA A B A ⎛⎫-= ⎪-⎝⎭
,由Sylvester 不等式得到
()rank rank( )rank B AB BA A B n A ⎛⎫-≥+- ⎪-⎝⎭。
若rank B n A ⎛⎫< ⎪-⎝⎭,则,A B 有公共特征向量;若rank B n A ⎛⎫= ⎪-⎝⎭
,
则有rank( )1A B ≤,于是()()rank 1,rank 1A B ==,又因为()()rank rank rank B B A A ⎛⎫≤+
⎪-⎝⎭,所以2n ≤,此时与3n ≥矛盾。
■
性质2.5:满足条件()rank 1AB BA -≤的任意n 阶矩阵,A B 可以同时上三角化。
证明:由条件知矩阵,A B 具有公共特征向量,不妨设1ε是,A B 的公共特征向量,将其扩充为n 维空间的一组基12,,,n εεε;当2n ≤时,由性质2.4知,,A B 可以同时上三角
化;假设当1n k =-时结论也成立,现在考虑n k =时的情况。
不妨设1ε是,A B 的公共特
征向量,同样将之扩充为k 维空间的一组基12,,,k εεε,令()12,,,k P εεε=,则有
1110P AP A λ-*⎛⎫= ⎪⎝⎭,1110P BP B μ-*⎛⎫= ⎪⎝⎭。
于是1111100A B B A P P A B B A -*⎛⎫-= ⎪-⎝⎭,因为()1111r a n k 1A B B A -≤,所以
()rank 1AB BA -≤,由数学归纳法知,A B 可以同时上三角化。
■
推论2.1:假定()rank AB BA k -≤,那么当2n k ≥时,,A B 有公共特征向量。
性质2.6:如果存在,a b R ∈使得AB BA aA bB -=+成立,则,A B 可以同时上三角化。
证明:因为( )0B aI AB BA aA bB A B A bI -⎛⎫---==
⎪--⎝⎭
,与前面证明类似,可以得出结论。
■
推论2.2:若存在k R ∈满足条件AB kBA =,则,A B 可同时相似上三角化。
推论2.3:若存在k R ∈使得0k k A B -=成立,则,A B 可同时相似上三角化。
三.总结
本文主要讨论了两个矩阵能同时相似上三角化的充分条件、必要条件、以及充要条件。
通过分析证明过程,我们还做出了进一步的推广。
这对将来解决类似问题带来很大的方便。
参考文献
【1】黄廷祝,成孝予,线性代数与空间解析几何,高等教育出版社,2008.
【2】黄廷祝,何军华,李永彬,高等代数, 高等教育出版社,2012.。