导数有关的构造函数方法

导数有关的构造函数方法
导数有关的构造函数方法

专题07 导数有关的构造函数方法

二.题型分析 1.构造多项式函数 2.构造三角函数型 3.构造x

e 形式的函数 4.构造成积的形式

5.与ln x 有关的构造

6.构造成商的形式

7.对称问题

(一)构造多项式函数

例1.已知函数满足(1)1f =,且的导函数,则的解集为( ) A. B. C.

D.

【答案】D

考点:函数的单调性与导数的关系.

【方法点晴】本题主要考查了函数的单调性与函数的导数之间的关系,其中解答中涉及到利用导数研究函数的单调性,利用导数研究函数的极值与最值等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及转化与化归思想的应用,本题的解答中根据题设条件,构造新函数,利用新函数的性质是解答问题的关键,属于中档试题.

练习 1.设函数在上存在导函数,对于任意的实数,都有2

()4()f x x f x =--,当

时,1

()42

f x x +

<'. 若(1)()42f m f m m +≤-++,则实数m 的取值范围是( ) A . B . C . D . 【答案】A

()()f x x R ∈()f x ()1'2f x <()1

22

x f x <+{}|x 1x <-{}|1x x

>()F x ()f x R '()f x x (,0)x ∈-∞1[,)2-+∞3[,)2

-+∞[1,)-+∞[2,)-+∞

【解析】∵22()2()20f x x f x x -+--=,设2

()()2g x f x x =-,则()()0g x g x +-=,∴为奇函数,又1

()()42

g x f x x '='-<-

,∴在上是减函数,从而在上是减函数, 又(1)()42f m f m m +≤-++等价于2

2

(1)2(1)()2()f m m f m m +-+≤---, 即(1)()g m g m +≤-,∴,解得. 考点:导数在函数单调性中的应用. 【思路点睛】因为

,设

,则

,可得为奇函数,又

,得在上是减函数,从而在上是减函数,在根据函

数的奇偶性和单调性可得

,由此即可求出结果.

练习2.

设奇函数()f x 在R 上存在导数()f x ',且在()0,+∞上2

()f x x '<,若

33

1(1)()(1)3f m f m m m ??--≥--?

?,则实数m 的取值范围为( ) A . B .

C .

D .

【答案】B

【方法点晴】本题主要考查了函数的奇偶性及其应用,其中解答中涉及到利用导数求函数的单调性、利用导数研究函数的极值、以及函数的奇偶性的判定等知识点的综合考查,着重考查了转化与化归的思想方法,以及学生的推理与运算能力,属于中档试题,解答中得出函数的奇函数和函数的单调性是解答的关键.

练习3. 设函数()f x 在R 上存在导数()f x ',,对任意,都有2

()()f x f x x +-=,且()g x ()g x (,0)-∞R 1m m +≥-1

2

m ≥-()

g x ()g x (,0)-∞R x R ∈(0,)

x ∈+∞

时,,若(2)()22f a f a a --≥-,则实数的取值范围是( ) A . B . C . D .

【答案】B

【解析】令,则,则

,得为上的奇函数.∵时,

,故在单调递增,再结合

及为奇函数,知在为增函数,又

,即.故选B . 考点:函数的单调性及导数的应用.

【方法点晴】本题考查了利用导数研究函数的单调性,然后构造函数,通过新函数的性质把已知条件转化为关于的不等式来求解.本题解答的关键是由已知条件进行联想,构造出新函数

,然后结合

来研究函数的奇偶性和单调性,再通过要解的

不等式

构造

,最终得到关于的不等式,解得答案.

(二)构造三角函数型

例2.已知函数的定义域为,为函数的导函数,当时,

且,

.则下列说法一定正确的是( )

A. B.

C. D.

【答案】B 【解析】令

,则

.因为当时,

,即

,所以

,所以

在上单调递增.又,

,所以

()f x x '>a [)1,+∞(],1-∞(],2-∞[

)2,+∞()g x R 0x >()g x (0,)+∞(0)0g =()g x ()g x (,)-∞

+∞(]

,1a ∈-∞a ()f x x '>()g x a ()f x R ()'

f

x ()f x [)0,x ∈+∞x R ?∈[

)0,x ∈+∞[

)0,x ∈+∞x R ?∈

,所以,故

为奇函数,所以

在上单调递增,所以

.即,故选B.

练习1.已知函数对任意的

满足

(其中是函数

的导函数),则下列不等式成立的是( )

A .

B .

C .

D .

【答案】A

【解析】构造函数,

则,即函数g (x )在单调递增,

则,,即

,故A 正确.

,即 练习2.定义在上的函数,是它的导函数,且恒有

成立,则

( )

A.

B.

C .

D.

R )(x f y =)('

x f )(x f )2

,0(π

)(x f ()'f x

【答案】D

【解析】在区间上,有,即令

,则

,故在区间上单调递增. 令,则有,D 选项正确.

【思路点晴】本题有两个要点,第一个要点是“切化弦”,在不少题目中,如果遇到,往往转化为

来思考;第二个要点是构造函数法,题目中,可以化简为

,这样我们就可以构造一个除法的函数,而选项正好是判断

单调性的问题,顺势而为.

(三)构造x

e 形式的函数

例3.已知函数的导数为,且对恒成立,则下列函数在实数

集内一定是增函数的为( )

A. B. C. D.

【答案】D 【解析】设

,则

.

对恒成立,且.

在上递增,故选D.

练习1. 设函数是函数的导函数,,且

,则

的解集为( ) A. B. 0,

2π??

??

?

()F x 0,

2π??

??

?

tan x sin cos x

x

()f x ()f x ′x R ∈()f x ()xf x ()x

e f x ()x

xe f x R x ∈0x

e >R )(x

f '1)0(=f ),34ln (

+∞),3

2

ln (+∞

导数运算中构造函数解决抽象函数问题

导数运算中构造函数解决抽象函数问题 【模型总结】 关系式为“加”型 (1)'()()0f x f x +≥ 构造[()]'['()()]x x e f x e f x f x =+ (2)'()()0xf x f x +≥ 构造[()]''()()xf x xf x f x =+ (3)'()()0xf x nf x +≥ 构造11[()]''()()['()()]n n n n x f x x f x nx f x x xf x nf x --=+=+ (注意对x 的符号进行讨论) 关系式为“减”型 (1)'()()0f x f x -≥ 构造2()'()()'()()[]'()x x x x x f x f x e f x e f x f x e e e --== (2)'()()0xf x f x -≥ 构造2()'()()[ ]'f x xf x f x x x -= ! (3)'()()0xf x nf x -≥ 构造121 ()'()()'()()[]'()n n n n n f x x f x nx f x xf x nf x x x x -+--== (注意对x 的符号进行讨论) 小结:1.加减形式积商定 2.系数不同幂来补 3.符号讨论不能忘 典型例题: 例1.设()()f x g x 、是R 上的可导函数,'()()()'()0f x g x f x g x +<,(3)0g -=,求不等式()()0f x g x <的解集 变式:设()()f x g x 、分别是定义在R 上的奇函数、偶函数,当0x <时,'()()()'()0f x g x f x g x +>,(3)0g -=,求不等式()()0f x g x <的解集. 例 2.已知定义在R 上的函数()()f x g x 、满足()() x f x a g x =,且'()()()'()f x g x f x g x <,(1)(1)5(1)(1)2f f g g -+=-,若有穷数列*()()()f n n N g n ??∈???? 的前n 项和等于3132,则n 等于 . 变式:已知定义在R 上的函数()()f x g x 、满足()() x f x a g x =,且'()()()'()f x g x f x g x <,

专题6.1 导数中的构造函数 高考数学选填题压轴题突破讲义(解析版)

【方法综述】 函数与方程思想、转化与化归思想是高中数学思想中比较重要的两大思想,而构造函数的解题思路恰好是这两种思想的良好体现,尤其是在导数题型中.在导数小题中构造函数的常见结论:出现()()nf x xf x '+形式,构造函数()()F n x x f x =;出现()()xf x nf x '-形式,构造函数()() F n f x x x = ;出现()()f x nf x '+形式,构造函数()()F nx x e f x =;出现()()f x nf x '-形式,构造函数()() F nx f x x e = . 【解答策略】 类型一、利用()f x 进行抽象函数构造 1.利用()f x 与x (n x )构造 常用构造形式有()xf x , ()f x x ;这类形式是对u v ?,u v 型函数导数计算的推广及应用,我们对u v ?,u v 的导函数观察可得知,u v ?型导函数中体现的是“+”法,u v 型导函数中体现的是“-”法,由此,我们可以猜测,当导函数形式出现的是“+”法形式时,优先考虑构造u v ?型,当导函数形式出现的是“-”法形式时,优先考虑构造 u v . 例1.【2019届高三第二次全国大联考】设 是定义在上的可导偶函数,若当 时, ,则函数 的零点个数为 A .0 B .1 C .2 D .0或2 【答案】A 【解析】 设 ,因为函数 为偶函数,所以 也是上的偶函数,所以 .由已知, 时, ,可得当 时, , 故函数在上单调递减,由偶函数的性质可得函数在 上单调递增.所以

,所以方程,即无解,所以函数没有零点.故选A. 【指点迷津】设,当时,,可得当时,,故函数 在上单调递减,从而求出函数的零点的个数. 【举一反三】【新疆乌鲁木齐2019届高三第二次质量检测】的定义域是,其导函数为,若,且(其中是自然对数的底数),则 A.B. C.当时,取得极大值D.当时, 【答案】C 【解析】 设,则 则 又得 即,所以 即 , 由得,得,此时函数为增函数 由得,得,此时函数为减函数 则,即,则,故错误 ,即,则,故错误 当时,取得极小值 即当,,即,即,故错误 当时,取得极小值 此时,则取得极大值

构造函数解导数综合题

构造辅助函数求解导数问题 对于证明与函数有关的不等式,或已知不等式在某个范围内恒成立求参数取值范围、讨论一些方程解的个数等类型问题时,常常需要构造辅助函数,并求导研究其单调性或寻求其几何意义来解决;题目本身特点不同,所构造的函数可有多种形式,解题的繁简程度也因此而不同,这里是几种常用的构造技巧. 技法一:“比较法”构造函数 [典例] (2017·广州模拟)已知函数f(x)=e x-ax(e为自然对数的底数,a为常数)的图象在点(0,1)处的切线斜率为-1. (1)求a的值及函数f(x)的极值; (2)证明:当x>0时,x2<e x. [解] (1)由f(x)=e x-ax,得f′(x)=e x-a. 因为f′(0)=1-a=-1,所以a=2, 所以f(x)=e x-2x,f′(x)=e x-2, 令f′(x)=0,得x=ln 2, 当x<ln 2时,f′(x)<0,f(x)单调递减; 当x>ln 2时,f′(x)>0,f(x)单调递增. 所以当x=ln 2时,f(x)取得极小值,且极小值为f(ln 2)=e ln 2-2ln 2=2-ln 4,f(x)无极大值. (2)证明:令g(x)=e x-x2,则g′(x)=e x-2x. 由(1)得g′(x)=f(x)≥f(ln 2)>0, 故g(x)在R上单调递增. 所以当x>0时,g(x)>g(0)=1>0,即x2<e x. [方法点拨] 在本例第(2)问中,发现“x2,e x”具有基本初等函数的基因,故可选择对要证明的“x2<e x”构造函数,得到“g(x)=e x-x2”,并利用(1)的

结论求解. [对点演练] 已知函数f (x )=x e x ,直线y =g (x )为函数f (x )的图象在x =x 0(x 0<1) 处的切线,求证:f (x )≤g (x ). 证明:函数f (x )的图象在x =x 0处的切线方程为y =g (x )=f ′(x 0)(x -x 0)+f (x 0). 令h (x )=f (x )-g (x )=f (x )-f ′(x 0)(x -x 0)-f (x 0), 则h ′(x )=f ′(x )-f ′(x 0)= 1-x e x - 1-x 0 e 0 x = ?1-x ?e 0 x -?1-x 0?e x e 0 +x x . 设φ(x )=(1-x )e 0 x -(1-x 0)e x , 则φ′(x )=-e 0 x -(1-x 0)e x , ∵x 0<1,∴φ′(x )<0, ∴φ(x )在R 上单调递减,又φ(x 0)=0, ∴当x <x 0时,φ(x )>0,当x >x 0时,φ(x )<0, ∴当x <x 0时,h ′(x )>0,当x >x 0时,h ′(x )<0, ∴h (x )在区间(-∞,x 0)上为增函数,在区间(x 0,+∞)上为减函数, ∴h (x )≤h (x 0)=0, ∴f (x )≤g (x ). 技法二:“拆分法”构造函数 [典例] 设函数f (x )=ae x ln x +be x -1 x ,曲线y =f (x )在点(1,f (1)) 处的切线为y =e (x -1)+2. (1)求a ,b ; (2)证明:f (x )>1. [解] (1)f ′(x )=ae x ? ?? ??ln x +1x +be x -1 ?x -1? x 2 (x >0), 由于直线y =e (x -1)+2的斜率为e ,图象过点(1,2),

【高考数学】构造函数法证明导数不等式的八种方法

第 1 页 共 6 页 构造函数法证明不等式的八种方法 1、利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点。 2、解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。 以下介绍构造函数法证明不等式的八种方法: 一、移项法构造函数 【例1】 已知函数x x x f -+=)1ln()(,求证:当1->x 时,恒有 x x x ≤+≤+-)1ln(1 11 分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数 11 1)1ln()(-++ +=x x x g ,从其导数入手即可证明。 【解】1111)(+-=-+='x x x x f ∴当01<<-x 时,0)(>'x f ,即)(x f 在)0,1(-∈x 上为增函数 当0>x 时,0)(<'x f ,即)(x f 在),0(+∞∈x 上为减函数 故函数()f x 的单调递增区间为)0,1(-,单调递减区间),0(+∞ 于是函数()f x 在),1(+∞-上的最大值为0)0()(max ==f x f ,因此,当1->x 时,0)0()(=≤f x f ,即0)1ln(≤-+x x ∴x x ≤+)1ln( (右面得证), 现证左面,令111)1ln()(-+++=x x x g , 22) 1()1(111)(+=+-+='x x x x x g 则 当0)(,),0(;0)(,)0,1(>'+∞∈<'-∈x g x x g x 时当时 , 即)(x g 在)0,1(-∈x 上为减函数,在),0(+∞∈x 上为增函数, 故函数)(x g 在),1(+∞-上的最小值为0)0()(min ==g x g , ∴当1->x 时,0)0()(=≥g x g ,即011 1)1ln(≥-++ +x x ∴111)1ln(+-≥+x x ,综上可知,当x x x x ≤+≤-+->)1ln(11 1,1有时 【警示启迪】如果()f a 是函数()f x 在区间上的最大(小)值,则有()f x ≤()f a (或()f x ≥()f a ), 那么要证不等式,只要求函数的最大值不超过0就可得证. 2、作差法构造函数证明 【例2】已知函数.ln 21)(2x x x f += 求证:在区间),1(∞+上,函数)(x f 的图象在函数33 2)(x x g =的图象的下方;

用导数的基本运算法则巧构造导函数的原函数

用导数的基本运算法则巧构造导函数的原函数 构造函数是解决抽象不等式的基本方法,根据题设的条件,并借助初等函数的导数公式和导数的基本运算法则,相应地构造出辅助函数. 通过进一步研究辅助函数的有关性质,给予巧妙的解答. 本文从一到高考试题出发,追根溯源,研究并揭示高考试题的本质. 1 高考真题 真题 设函数()f x '是奇函数()()f x x R ∈的导函数,(1)0f -=,当0x >时,()()0xf x f x '-<,则使得()0f x >成立的x 取值范围( ). A. (,1)(0,1)-∞- B. (1,0)(1,)-+∞ C. (,1)(1,0)-∞-- D. (0,1)(1,)+∞ 解析:设()()f x F x x =,则2 ()()'()xf x f x F x x '-=. 因为0x >时,()()0xf x f x '-<,所以'()0F x <,即当0x >时,()F x 单调递减. 又因为()f x 为奇函数,且(1)0f -=,所以()()f x F x x = 为偶函数,且(1)(1)0F F -==, 则当0x <时,()F x 单调递增.当(,1)x ∈-∞-时,()0F x <,()0f x >.当(0,1)x ∈时,()0F x <,()0f x >.所以()0f x >成立的x 取值范围(,1)(0,1)-∞-,即答案为A.. 上述题为2015年课标全国Ⅱ选择题第12题,创新有难度,丰富有内涵. 此其题表面看上,不知道如何入手,解决问题. 因为这是一道没有具体函数表达式的不等式试题,且不等式中含有()f x '和()f x ,更是难上加难. 从试题的解析可以看出,巧妙地构造出了函数()F x ,通过分析()F x 的单调性和奇偶性,解答问题. 解题突破口不易寻找,给人一种“旧时茅店社林边,路转溪桥忽见”的感觉. 对题的解析过程进行回顾,本题是如何构造出()()f x F x x = ,从而给出极其巧妙的解答. 为了寻求问题的本质,这里对以下例题进行分析. 2 巧构导函数的原函数 例 1 已知函数()f x 的图像关于y 轴对称,且当(,0)x ∈-∞时,()()0f x xf x '+<成立,若0.20.22(2)a f =?,log 3(log 3)b f ππ=?,33log 9(log 9)b f =?,则,,a b c 的大小关系( ) A. b a c >> B. c a b >> C. c b a >> D. a b c >> 解析:设()()F x xf x =,则'()()()F x f x xf x '=+.因为0x <时,()()0f x xf x '+<,所以'()0F x <,则 当0x <时,()F x 单调递减.又因为函数()f x 的图像关于y 轴对称,所以()f x 为奇函数,当0x >时, ()F x 单调递减.又因为0.2122<<,0log 31π<<,3log 92=,则b a c >>,即答案为A. 例 2已知函数()f x 满足:()2()0f x f x '+>,那么系列不等式成立的是( ) A. (1)f B. (0)(2)f f e < C. (1)(2)f D. 2(0)(4)f e f > 解析:设12()2()x F x e f x =,则1 112221'()2[()()][()2()]2 x x x F x e f x e f x e f x f x ''=+=+.因为()2()0f x f x '+>,所以'()0F x >,则()F x 在定义域上单调递增,所以(1)(0)F F >,则(1)f ,即答案为A. 例 3 已知()f x 为定义在(,)-∞+∞上的可导函数,且()()f x f x '<对于x R ∈恒成立且e 为自然对数的底,则( ) A. 2012(1)(0),(2012)(0)f e f f e f >?>? B. 2012(1)(0),(2012)(0)f e f f e f ? C. 2012(1)(0),(2012)(0)f e f f e f >?,(2012)(0)F F >即答案为A. 例4 定义在(0, )2π上的函数()f x ,()f x '是它的导函数,且恒有()()tan f x f x x '>成立,则( ) ()()43π π B. (1)2()sin16f f π>()()64f ππ>()()63f ππ > 解析:因为(0,)2x π ∈,所以sin 0x >,cos 0>.由()()tan f x f x x '>,得()cos ()sin 0f x x f x x '->

构造函数法证明导数不等式的八种方法Word版

构造函数法证明不等式的八种方法 1、利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点。 2、解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。 以下介绍构造函数法证明不等式的八种方法: 一、移项法构造函数 【例1】 已知函数x x x f -+=)1ln()(,求证:当1->x 时,恒有x x x ≤+≤+-)1ln(1 11 分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数 11 1)1ln()(-++ +=x x x g ,从其导数入手即可证明。 【解】1111)(+-=-+='x x x x f ∴当01<< -x 时,0)(>'x f ,即)(x f 在)0,1(-∈x 上为增函数 当0>x 时,0)(<'x f ,即)(x f 在),0(+∞∈x 上为减函数 故函数()f x 的单调递增区间为)0,1(-,单调递减区间),0(+∞ 于是函数()f x 在),1(+∞-上的最大值为0)0()(max ==f x f ,因此,当1->x 时,0)0()(=≤f x f , 即0)1ln(≤-+x x ∴x x ≤+)1ln( (右面得证), 现证左面,令111)1ln()(-++ +=x x x g , 22)1()1(111)(+=+-+='x x x x x g 则 当0)(,),0(;0)(,)0,1(>'+∞∈<'-∈x g x x g x 时当时 , 即)(x g 在)0,1(-∈x 上为减函数,在),0(+∞∈x 上为增函数, 故函数)(x g 在),1(+∞-上的最小值为0)0()(min ==g x g , ∴当1->x 时,0)0()(=≥g x g ,即0111)1ln(≥-++ +x x ∴111) 1ln(+-≥+x x ,综上可知,当x x x x ≤+≤-+->)1ln(11 1,1有时 【警示启迪】如果()f a 是函数()f x 在区间上的最大(小)值,则有()f x ≤()f a (或()f x ≥()f a ),那么要 证不等式,只要求函数的最大值不超过0就可得证. 2、作差法构造函数证明 【例2】已知函数.ln 2 1)(2x x x f += 求证:在区间),1(∞+上,函数)(x f 的图象在函数332)(x x g =的图象的下方; 分析:函数)(x f 的图象在函数)(x g 的图象的下方)()(x g x f =F

专题24 逆用导数运算法则构造函数型-2021年高考数学压轴题解法分析与强化训练

专题24 逆用导数运算法则构造函数型 [真题再现] 例1 设奇函数f (x )定义在(-π,0)∪(0,π)上其导函数为f '(x ),且f (π2)=0,当0<x <π时,f '(x )sin x -f (x )cos x <0,则关于x 的不等式 f (x )<2f (π6)sin x 的解集为 . 【答案】(-π6,0)∪(π6,π) 【分析】这是一道难度较大的填空题,它主要考查奇函数的单调性在解不等式中的应用,奇函数的图象关于坐标原点中心对称,关于原点对称的区间上具有相同的单调性;在公共定义域上两个奇函数的积与商是偶函数,偶函数的图象关于y 轴轴对称,关于原点对称的区间上具有相反的单调性,导数是研究函数单调性的重要 工具,大家知道(f g )'=f 'g -fg 'g 2,(sin x )'=cos x ,于是本题的本质是 构造f (x )sin x 来解不等式 【解析】设g(x )= f (x )sin x ,则g ' (x )= (f (x )sin x )'=f '(x )sin x -f (x )cos x sin 2x , 所以当0<x <π时,g ' (x )<0,g(x ) 在(0,π)上单调递减 又由于在(0,π)上sin x >0,考虑到sin π6=12,所以不等式f (x )< 2f (π6)sin x 等价于f (x )sin x <f (π6)sin π6 ,即g(x )< g (π6),所以此时不等式等价于π6

<x <π. 又因为f (x ) 、sin x 为奇函数,所以g(x )是偶函数,且在(-π,0)上sin x <0,所以函数g(x )在(-π,0)是单调递增函数,原不等式等价 于g(x )>g(-π6)=f (-π6)sin(-π6) ,所以此时不等式等价于-π6<x <0, 综上,原不等式的解集是(-π6,0)∪(π6,π). 例2 函数)(x f 的定义域为R ,2)1(=-f ,对任意R ∈x ,2)(>'x f ,则42)(+>x x f 的解集为 . 【答案】(1-,+∞) 【分析】题目应归结为“解抽象函数型不等式”问题,解决方法是“逆用函数的单调性”.题目中哪个条件能让你联想到“函数的单调性”呢?注意到已知中2)(>'x f ,只需构造函数()g x ,使得()()2g x f x ''=-,不难得到()()2g x f x x c =-+(这里c 为常数,本题中取0c =),进而利用()g x 的单调性,即可找到解题的突破口. 【解析】构造函数()()2g x f x x =-,则()g x '=()20f x '->,故()g x 单调递 增,且(1)(1)214g f -=--?-=(). 另一方面所求不等式42)(+>x x f , 就转化为()()(1)g x f x x g =->-,逆用单调性定义易知1x >,则不等式的解集为(1,)-+∞. 例3 设f (x )是定义在R 上的可导函数,且满足f (x )+xf ′(x )>0,则不等式f (x +1)>x -1·f (x 2-1)的解集为________.

构造函数法在导数不等式中应用

构造函数在导数不等式中的应用 构造函数是解决抽象不等式的基本方法,根据题设的条件,并借助初等函数的导数公式和导数的基本运算法则,相应地构造出辅助函数. 通过进一步研究辅助函数的有关性质,给予巧妙的解答. 1 真题 设函数()f x '是奇函数()()f x x R ∈的导函数,(1)0f -=,当0x >时,()()0xf x f x '-<,则使得()0f x >成立的x 取值范围( ). A. (,1)(0,1)-∞-U B. (1,0)(1,)-+∞U C. (,1)(1,0)-∞--U D. (0,1)(1,)+∞U 解析:设()()f x F x x = , 则2()()'()xf x f x F x x '-=. 因为0x >时,()()0xf x f x '-<,所以'()0F x <,即当0x >时,()F x 单调递减. 又因为()f x 为奇函数,且(1)0f -=,所以()()f x F x x = 为偶函数,且(1)(1)0F F -==, 则当0x <时,()F x 单调递增. 当(,1)x ∈-∞-时,()0F x <,()0f x >. 当(0,1)x ∈时,()0F x <,()0f x >. 所以()0f x >成立的x 取值范围 (,1)(0,1)-∞-U ,即答案为A.. 对题的解析过程进行回顾,本题是如何构造出()()f x F x x = ,从而给出极其巧妙的解答. 为了寻求问题的本质,这里对以下例题进行分析. 【典例】 例 1 已知函数()f x 的图像关于y 轴对称,且当(,0)x ∈-∞时,()()0f x xf x '+<成立,若0.20.22(2)a f =?,log 3(log 3)b f ππ=?,33log 9(log 9)b f =?,则,,a b c 的大小关系( ) A. b a c >> B. c a b >> C. c b a >> D. a b c >> 解析:设()()F x xf x =,则'()()()F x f x xf x '=+. 因为0x <时,()()0f x xf x '+<,所以'()0F x <,则当0x <时,()F x 单调递减. 又因为函数()f x 的图像关于y 轴对称,所以()f x 为奇函数,当0x >时,()F x 单调递减. 又因为0.2122<<,0log 31π<<,3log 92=,则b a c >>,即答案为A. 例 2已知函数()f x 满足:()2()0f x f x '+>,那么系列不等式成立的是( ) A. (1)f >

高考数学(文)专题07+导数有关的构造函数方法(教师版)

专题07 导数有关的构造函数方法 一.知识点 基本初等函数的导数公式 (1)常用函数的导数 ①(C )′=________(C 为常数); ②(x )′=________; ③(x 2)′=________; ④???? 1x ′=________; ⑤(x )′=________. (2)初等函数的导数公式 ①(x n )′=________; ②(sin x )′=__________; ③(cos x )′=________; ④(e x )′=________; ⑤(a x )′=___________; ⑥(ln x )′=________; ⑦(log a x )′=__________. 5.导数的运算法则 (1)[f (x )±g (x )]′=________________________; (2)[f (x )·g (x )]′=_________________________; (3)???? ??f (x )g (x )′=____________________________. 6.复合函数的导数 (1)对于两个函数y =f (u )和u =g (x ),如果通过变量u ,y 可以表示成x 的函数,那么称这两个函数(函数y =f (u )和u =g (x ))的复合函数为y =f (g (x )). (2)复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为___________________,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积. 二.题型分析 1.构造多项式函数 2.构造三角函数型 3.构造x e 形式的函数 4.构造成积的形式 5.与ln x 有关的构造 6.构造成商的形式

2021届高三理科数学二轮复习专练:构造函数解决导数问题(含解析)

《构造函数解决导数问题》专练 一.选择题(在每小题给出的四个选项中,只有一项是符合题目要求的) 1.函数()f x 的定义域为R ,(1)2f -=,对任意x ∈R ,()2f x '>,则 ()24f x x >+的解集为( ). A .R B .(),1-∞- C .()1,1- D .()1,-+∞ 2.设函数()f x 是定义在()0-∞, 上的可导函数,其导函数为()'f x ,且有22()()f x x f x x '+?>,则不等式2(2021)(2021)4(2)0x f x f +?+-?->的解集为 ( ) A .(2023)-∞-, B .()2-∞-, C .(20)-, D .(20220)-, 3.设()f x 是定义在(,0) (0,)ππ-的奇函数,其导函数为()'f x ,当(0,)x π∈时, ()sin ()cos 0f x x f x x '-<,则关于x 的不等式()2()sin 6 f x f x π <的解集为 ( ) A .(,0)(0,)66 π π - ? B .(,0)(,)66 π π π- C .(,)(,)66 π π ππ-- ? D .()(0,)66 π π π-- , 4.定义在R 上的函数()f x 的导函数为()'f x ,若()()f x f x '>,(2)1008f =,则不等式2 1 e ( 1) 1008e 0x f x ++->的解集为( ) A .(1,)-+∞ B .(2,)+∞ C .(,1)-∞ D .(1,)+∞ 5.已知()f x 是定义在()(),00,-∞?+∞上的奇函数,且0x >时 ()()20xf x f x '+>,又()10f -=,则()0f x <的解集为( ) A .() (),11,-∞-+∞ B .()()1,00,1- C .()()1,01,-?+∞ D .()(),10,1-∞-? 6.设定义在R 上的函数()f x 的导函数为()'f x ,若()()'2f x f x +<, ()02021f =,则不等式()22019x x e f x e >+(其中e 为自然对数的底数)的解集 为( )

(完整版)在导数运算中构造函数解决问题(一)

在导数运算中构造函数解决问题(一) Ex1:设()()f x g x 、是R 上的可导函数,'()'()f x g x 、分别为()()f x g x 、的导函数,且满足'()()()'()0f x g x f x g x +<,则当a x b <<时,有( C ) .()()()()A f x g b f b g x > .()()()()B f x g a f a g x > .()()()()C f x g x f b g b > .()()()()D f x g x f b g a > 变式1:设()()f x g x 、是R 上的可导函数,'()()()'()0f x g x f x g x +<,(3)0g -=,求不等式()()0f x g x <的解集. 变式2::设()()f x g x 、分别是定义在R 上的奇函数、偶函数,当0x <时,'()()()'()0f x g x f x g x +>,(3)0g -=,求不等式()()0f x g x <的解集. Ex2:已知定义在R 上的函数()()f x g x 、满足()() x f x a g x =,且'()()()'()f x g x f x g x <,(1)(1)5(1)(1)2f f g g -+=-,若有穷数列*()()()f n n N g n ??∈???? 的前n 项和等于3132,则n 等于 5 . 变式:已知定义在R 上的函数()()f x g x 、满足()() x f x a g x =,且'()()()'()f x g x f x g x <,若若(1)(1)5(1)(1)2 f f g g -+=-,求关于x 的不等式log 1a x >的解集. Ex3:已知定义域为R 的奇函数()f x 的导函数为'()f x ,当0x ≠时,()'()0f x f x x +>,若111(),2(2),ln (ln 2)222 a f b f c f ==--=,则下列关于,,a b c 的大小关系正确的是( D ) .Aa b c >> .B a c b >> .C c b a >> .Db a c >> Ex4:(10黄冈3月检测)已知函数()f x 为定义在R 上的可导函数,且()'()f x f x <对于任意x R ∈恒成立,e 为自然对数的底数,则( C ) 2013.(1)(0)(2013)(0)A f e f f e f >??、 2013.(1)(0)(2013)(0)C f e f f e f >?>?、 2013.(1)(0)(2013)(0)D f e f f e f

逆用导数运算法则构造函数型

逆用导数运算法则构造函数型 知识点:题目已知中出现含f (x )、f ′(x )的不等式,一般应考虑逆用导数的运算法则构造新, 然后再逆用单调性等解决问题,构造新函数的方法有: 1.对于()f x a '>,构造()()h x f x ax b =-+. 2.对于()()0(0)xf x f x '+><,构造()()h x xf x '=; ()()0(0)xf x nf x '+><,构造()()n h x x f x =. 3.对于()()0(0)xf x f x '-><,构造()()x x f x h =; ()()0(0)xf x nf x '-><,构造()()n f x h x x =. 4.对于()()0(0)f x f x '-><,构造()()x e x f x h =; 对于()()0(0)f x nf x '-><,构造()()nx f x h x e =. 5.对于()()0(0)f x f x '+><,构造()()x f e x h x =; 一般的,对于()()0(0)f x nf x '+><,构造()()nx h x e f x =. 6.对于()()tan (()()tan )f x f x x f x f x x ''><或,即()cos ()sin 0(0)f x x f x x '-><,构造()()cos h x f x x =. 7.对于()cos ()sin 0(0)f x x f x x '+><,构造()()cos f x h x x = . 8.对于()0() f x f x '>,构造()ln ()h x f x =. 9.对于()ln ()0(0)f x af x '+><,构造()()x h x a f x =. 10.对于()()ln 0(0)f x f x x x '+><,构造()()ln h x f x x =. 例1设奇函数f (x )定义在(-π,0)∪(0,π)上其导函数为f '(x ),且f (π2 )=0,当0<x <π时,f '(x )sin x -f (x )cos x <0,则关于x 的不等式f (x )<2f (π6 )sin x 的解集为 . 【分析】这是一道难度较大的填空题,它主要考查奇函数的单调性在解不等式中的应用,奇函数的图象关于坐标原点中心对称,关于原点对称的区间上具有相同的单调性;在公共定义域上两个奇函数的积与商是偶函数,偶函数的图象关于y 轴轴对称,关于原点对称

构造函数解决导数问题

16. 已知)(x f 的导函数为)(x f ',当x >0时,)(2x f >)(x f x ',且1)1(=f 。若存 在x ∈+ R 使 )(x f =2x ,求x 的值。

构造函数解决导数问题 变式:已知)(x f 、)(x g 都是定义在R 上的函数,且满足以下条件① a x g a x f x ).(()(=>0,)0≠a 。 ② 0)(≠x g 。③ )()(x g x f '>)()(x g x f '。若25 )1()1()1()1(= --+g f g f 。 求:关于x 的不等式 x a log >1的解集。

导数的常见构造 1.对于()()x g x f ''>,构造()()()x g x f x h -= 遇到()()0'≠>a a x f ,即导函数大于某种非零常数(若a =0,则无需构造),则可构()()ax x f x h -= 2.对于()()0''>+x g x f ,构造()()()x g x f x h += 3.对于()()0'>+x f x f ,构造()()x f e x h x = 4.对于()()x f x f >'[或()()0'>-x f x f ],构造()()x e x f x h = 5.对于()()0'>+x f x xf ,构造()()x xf x h = 6.对于()()0'>-x f x xf ,构造()()x x f x h = 7.对于 ()() 0'>x f x f ,分类讨论:(1)若()0>x f ,则构造()()x f x h ln =; (2)若()0

导数选择题之构造函数法解不等式的一类题

导数选择题之构造函数法解不等式的一类题 一、单选题 1.定义在上的函数的导函数为,若对任意实数,有,且为奇函数,则不等式的解集为 A. B. C. D. 2.设函数是奇函数的导函数,,当时,,则使得 成立的的取值范围是() A. B. C. D. 3.定义在上的偶函数的导函数,若对任意的正实数,都有恒成立,则使成立的实数的取值范围为() A. B. C. D. 4.已知函数定义在数集上的偶函数,当时恒有,且,则不等式的解集为( ) A. B. C. D. 5.定义在上的函数满足,,则不等式的解集为() A. B. C. D. 6.设定义在上的函数满足任意都有,且时,有,则的大小关系是() A. B. C. D. 7.已知偶函数满足,且,则的解集为 A. B. C. D.

8.定义在R上的函数满足:是的导函数,则不等式(其中e为自然对数的底数)的解集为( ) A. B. C. D. 9.已知定义在上的函数的导函数为,满足,且,则不等式 的解集为() A. B. C. D. 10.定义在上的函数f(x)满足,则不等式的解集为A. B. C. D. 11.已知定义在上的函数满足,其中是函数的导函数.若 ,则实数的取值范围为() A. B. C. D. 12.已知函数f(x)是定义在R上的可导函数,且对于?x∈R,均有f(x)>f′(x),则有() A. e2017f(-2017)e2017f(0) B. e2017f(-2017)f(0),f(2017)>e2017f(0) D. e2017f(-2017)>f(0),f(2017)

导数运算中构造函数解决抽象函数问题

. 导数运算中构造函数解决抽象函数问题 【模型总结】 关系式为“加”型 xx)](x'(x)?fx[ef()]'?e[f0f'(x)?f(x)? 1)构造()(x'(x)?f)?0[xf(x)]'?xfxf'(x)?f(x 2()构造n?1nn?1n[xf'(x)?(xx)]'?xf'(x)?nx)?xnf(x)]fx[f(0nf(x)?xf'(x)?)构造3(x(注意对的符号进行讨论)关系式为“减”型xx f'(x)?f(x?f(x)e)f(x)f'(x)e?[]'?0(x)?f'(x)?f(1)构造 xx2x ee(e)f(x)xf'(x)?f(x)]'?[0?f(x)xf'(x)?构造(2) 2xx nn?1f(x)xf'(x)?nff(x)x(f'(x)?nxx)?[]'?0x)?'(x)?nf(xf 3)构造 (n2nn?1xx(x)x的符号进行讨论)(注意对小结:1.加减形式积商定 2.系数不同幂来补 3.符号讨论不能忘 典型例题: f(x)、g(x)f'(x)g(x)?f(x)g'(x)?0g(?3)?0R,求不是,例1.设上的可导函数,f(x)g(x)?0的解集等式 f(x)、g(x)x?0R时,函数当变式:设,上的奇函数、偶分别是定义在 f'(x)g(x)?f(x)g'(x)?0g(?3)?0f(x)g(x)?0的解集. ,求不等式, f(x)2.例R)x(x)、g(f x满足已知定义在上的函数a?f'(x)g(x)?f(x)g'(x),,且 g(x)??5(f(1)f?1)31)nf(*??nn(n?N). 的前项和等于,则等于若有穷数列,?? 2?(1)gg(1)32g(n)??f(x)x a?f'(x)g(x)?f(x)g'(x)f(x)、g(x)R满足上的函数,,且变式:已知定义在)g(xf(1)f(?1)5??logx?1x的解集. 若若,求关于的不等式a g(1)g(?1)2 1 / 2 . )(xf3.例R0?x)f'(x)f(x时,的奇函数的导函数为,已知定义域为当0??)f'(x, x111)ln2?lnf(f(?2)c,f(),b?a??2c,,ba,则关于若的大小关系是222 4.例RR?x?x)f'(x)f()(xf上的可导奇函数,且已知函数对于任意恒成为定义在)xf(f(3)=e,则/e^x<1的解集为立,且 1?f(2))xf((1))f(0)?1f(f'(x)??fx R. ,求是,变式:设上的可导函数,且的值. 2e2x2f(x?'(x))?xf)xf()xf'(R上的导函数为,例5.设函数在,且)xf(1?f(1)?xf'(x)2f'(x)f(x)0x?,若存在,且时,,当的导函数为变式:已知2?x)?f(xRx?x. ,使,求的值: 巩固练习??????''x31xff?x2?f)xf(R的不,且,则关于定义在1.满足上的函数,其导函数??1xx??f.等式的解集为▲//)(xy?f)(x)?ff(x)f(x R,且2.已知定义在 的导函数为上的可导函数,满足x1?1)f(2)y?f(x?ex()?f为偶函数,▲,则不等式的解集为 ????0?xx)g)))f(x)g(xf(f)(xg((xI上恒成立,的导函数,若3.设分别是和在区间和 132))g(xf(xax??2xf(x)?2bxx)?xg(I在若函数在区间和与则称上单调性相反.3(a,b)b?a0a?的最

导数中的构造函数

【解析】构造 F (x ) = xf (x ) ,则 F ' (x ) = f (x ) + xf ' (x ) ,当 x < 0 时,f (x ) + xf ' (x ) < 0 , 可以推出 x < 0 , F ' (x ) < 0 , F (x ) 在(-∞,0) 上单调递减.∵ f (x ) 为偶函数, x 为奇函数, 所以 F (x ) 为奇函数, ∴ F (x ) 在 (0,+∞) 上也单调递减. 根据 f (-4) = 0 可得F (-4) = 0 ,根据函数的单调性、奇偶性可得函数图像,根据图像可知 xf (x ) > 0 的解 集为(-∞,-4) ? (0,4) . ???思路点拨:出现“ + ”形式,优先构造 F (x ) = xf (x ) ,然后利用函数的单调性、奇偶性和数形结合求解即可. 导数小题中构造函数的技巧 函数与方程思想、转化与化归思想是高中数学思想中比较重要的两大思想, 而构造函数的解题思路恰好是这两种思想的良好体现,尤其是在导数题型中,下面我就导数小题中构造函数的技巧和大家进行分享和交流。 (一)利用 f (x ) 进行抽象函数构造 1、利用 f (x ) 与 x 构造;常用构造形式有 xf (x ), f (x ) ;这类形式是对u ? v , u 型函 x v 数导数计算的推广及应用,我们对u ? v , u 的导函数观察可得知, u ? v 型导函数中 v 体现的是“ + ”法, u v 型导函数中体现的是“ ”法,由此,我们可以猜测,当 导函数形式出现的是“ + ”法形式时,优先考虑构造u ? v 型,当导函数形式出现 的是“-”法形式时,优先考虑构造 u ,我们根据得出的“优先”原则,看一看 v 例 1,例 2. 【例 1】 f (x ) 是定义在 R 上的偶函数,当 x < 0 时, f (x ) + xf ' (x ) < 0 ,且 f (-4) = 0 ,则不等式 xf (x ) > 0 的解集为 【例 2 】设 f (x ) 是定义在 R 上的偶函数, 且 f (1) = 0 , 当 x < 0 时, 有 xf ' (x ) - f (x ) > 0 恒成立,则不等式 f (x ) > 0 的解集为

相关文档
最新文档