实变函数与泛函分析总复习题
实变函数与泛函分析概要第1~3章复习

2020/4/20
40
第五节 集的势·序集
2020/4/20
41
5. 连续势集的定义
定义:与[0,1]区间对等的集合称为连续势集,
其势记为 , 显然:n 0
例:1)R~ (0,1) ~ [0,1] ~ [0,1) ~ R+~ (a,b)
存在大量既不开又不闭的集合,如: E=[0,1)
2020/4/20
25
定理3.3 任何集E的导集 E`为闭集
2020/4/20
26
闭集性质:
任意一簇闭集之交为闭集; 任意有限个闭集之并仍为闭集。
2020/4/20
27
例8 f(x)是直线上的连续函数当且仅当 对任意实数a,E={x|f(x)≤a}和 E1={x|f(x)≥a}都是闭集
2020/4/20
48
2 连续势集的性质(卡氏积)
有限个、可数个连续势的卡氏积仍为连续势集
定理:设A {(x1, x2, , xn, ) : xi (0,1)},则A
2020/4/20
49
推论 n维Euclid空间Rn的势为
平面与直线有“相同多”的点
2020/4/20
50
推论
例1 闭区间[0,1]与闭正方形[0,1;0,1]
(即可数集 是无限集中具有最小势的集合)
2020/4/20
15
可数集的性质(并集) •有限集与可数集的并仍为可数集 •有限个可数集的并仍为可数集 •可数个可数集的并仍为可数集
2020/4/20
16
例:有限个可数集的卡氏积是可数集
设A,B是可数集,则A×B也是可数集
实变函数与泛函分析课后答案(郭大均)

ρ~( x, y) = ρ ( x, y) = 1 −
1
≤ 1−
1
1+ ρ(x, y)
1+ ρ(x, y)
1+ ρ(x,z)+ ρ(z, y)
=
ρ ( x, z)
+
ρ(z, y)
1+ ρ(x,z)+ ρ(z, y) 1+ ρ(x, z)+ ρ(z, y)
≤ ρ ( x, z) + ρ (z, y) = ρ~( x, z) + ρ~(z, y) 1+ ρ(x,z) 1+ ρ(z, y)
14. 试证按 C[a, b]中的范数, C m [a, b] (m ≥ 1) 是 C[a, b] 的非闭子空间 .
C m[a, b] 显然是 C[a, b]的线性子空间,因为任 一连续函数 x(t ) 都可以多项式序列一致 逼近,故多项式的全体 P 在 C[a, b]中稠密(即 P = C[a, b]),显然, P ⊂ C m [a, b],故 C m [a, b]=C[a, b],即 C m [a, b] 是 C[a, b]的非闭子空间 .
1
2
19. 设 E 是实线性空间,{ x1 ,L, xn } 是 E 中线性无关元,
x ∈ E,证明存在 n 个实数 λ1',L, λn',使得
x − (λ1' x1 + L + λn ' xn )
= inf λ1 ,L,λn
x − (λ1 x1 + L + λn xn )
记 E0 = L{ x1,L, xn },则 E0 是 E 的 n 维子空间,令
再由 ρ ( y, w ) ≤ ρ ( y, x) + ρ ( x, z) + ρ (z, w ) 得 ρ ( y, w) − ρ ( x, z) ≤ ρ ( x, y) + ρ (z, w) (4)
实变函数论与泛函分析课后答案

第一章习题参考解答3.等式)()(C B A C B A --=⋃-成立的的充要条件是什么?解: 若)()(C B A C B A --=⋃-,则 A C B A C B A C ⊂--=⋃-⊂)()(. 即,A C ⊂.反过来, 假设A C ⊂, 因为B C B ⊂-. 所以, )(C B A B A --⊂-. 故,C B A ⋃-)(⊂)(C B A --.最后证,C B A C B A ⋃-⊂--)()(事实上,)(C B A x --∈∀, 则A x ∈且C B x -∉。
若C x ∈,则C B A x ⋃-∈)(;若C x ∉,则B x ∉,故C B A B A x ⋃-⊂-∈)(. 从而, C B A C B A ⋃-⊂--)()(.A A CB AC B A C =∅-⊂--=⋃-⊂)()(. 即 A C ⊂.反过来,若A C ⊂,则 因为B C B ⊂-所以)(C B A B A --⊂- 又因为A C ⊂,所以)(C B A C --⊂故 )()(C B A C B A --⊂⋃-另一方面,A x C B A x ∈⇒--∈∀)(且C B x -∉,如果C x ∈则 C B A x )(-∈;如果,C x ∉因为C B x -∉,所以B x ∉故B A x -∈. 则 C B A x ⋃-∈)(. 从而C B A C B A ⋃-⊂--)()(于是,)()(C B A C B A --=⋃-4.对于集合A ,定义A 的特征函数为⎩⎨⎧∉∈=Ax Ax x A ,0,1)(χ, 假设 n A A A ,,,21是一集列 ,证明:(i ))(inflim )(inf lim x x nnA nnA χχ=(ii ))(sup lim )(sup lim x x n nA nnA χχ=证明:(i ))(inf lim n nm N n n nA A x ≥∈⋂⋃=∈∀,N ∈∃0n ,0n m ≥∀时,m A x ∈.所以1)(=x m A χ,所以1)(inf=≥x mA n m χ故1)(inf sup )(inf lim ==≥∈x x mnA nm N b A nχχN n A x n n∈∀⇒∉∀inf lim ,有n k A x n n nm ≥∃⇒⋂∉≥有0)(inf0=⇒=⇒∉≥x A x mnk m A nm A k χχ,故0)(i n f s u p =≥∈x mA nm N b χ ,即)(in f l i m x nA nχ=0 ,从而)(inflim )(inf lim x x nnA nnA χχ=5.设}{n A 为集列,11A B =,)1(11>⋃-=-=i A A B j i j i i 证明(i )}{n B 互相正交(ii )i ni i ni B A N n 11,===∈∀证明:(i )m n N m n ≠∈∀,,;不妨设n>m ,因为m n i n i n n A A A A B -⊂-=-=11,又因为m m A B ⊂,所以m n m n n B A A A B -⊂-⊂,故 ∅=m n B B ,从而 {∞=1}n n B 相互正交.(ii )因为)1(n i i ≤≤∀,有i i A B ⊂,所以i n i i n i A B 11==⋃⊂⋃,现在来证:i ni i n i B A 11==⋃⊂⋃当n=1时,11B A =;当1≥n 时,有:i ni i ni B A 11===则)()()()()(11111111111i ni n i n i i n i n i n i n i n i i n i B B B A A A A A A =+==++=+=+=-=-==事实上,i ni A x 1=⋃∈∀,则)1(n i i ≤≤∃使得i A x ∈,令}{ni A x i i i ≤≤∈=1|m in 0且则 i ni i i i i i B B A A x 111000=-=⊂=-∈ ,其中,当10=i 时,∅=-=i i i A 110 ,从而, i ni i n i B A 11===6.设)(x f 是定义于E 上的实函数,a 为常数,证明: (i )})(|{a x f x E >=}1)({1n a x f n +≥∞=(ii)})(|{a x f x E ≥=}1)({1na x f n ->∞=证明:(i )})(|{a x f x E x >∈∀E x ∈⇒且a x f >)(}1)(|{1)(,na x f x E x E x a n a x f N n +≥∈⇒∈>+≥∈∃⇒且使得 ∈⇒x ⊂>⇒+≥∞=})(|{}1)(|{1a x f x E n a x f x E n }1)(|{1na x f x E n +≥∞=反过来,{N n n a x f x x E x n ∈∃+≥∈∀∞=},1)(|{1 ,使}1)(|{n a x f x E x +≥∈即E x a na x f ∈>+≥且1)( 故})(|{a x f x E x >∈ 所以 })(|{}1)(|{1a x f x E na x f x E n >⊂+≥⋃∞= 故}1)(|{})(|{1n a x f x E a x f x E n +≥>∞=7.设)}({x f n 是E 上的实函数列,具有极限)(x f ,证明对任意常数a 都有:}1)(|{inf lim }1)(|{inf lim })(|{11k a x f x E k a x f x E a x f x E n n k n n k +<=+≤=≤∞=∞=证明:N ∈∀≤∈∀k a x f x E x },)(|{,即k a a x f 1)(+≤≤,且E x ∈ 因为N n x f x f n n ∈∃=∞→,)()(lim ,使n m ≥∀,有ka x f n 1)(+≤,故,)}(1)(|{n m k a x f x E x m ≥∀+≤∈ 所以∈x }1)(|{ka x f x E m n m +≤≥ }1)(|{k a x f x E x m n m N n +≤∈≥∈ = }1)(|{inf lim ka x f x E m n +≤,由k 的任意性:}1)(|{inf lim 1k a x f x E x n n k +≤∈∞= ,反过来,对于}1)(|{inf lim 1ka x f x E x n n k +≤∈∀∞= ,N k ∈∀,有 }1)(|{inf lim k a x f x E x m n +≤∈= }1)(|{ka x f x E m n m N n +≤≥∈ ,即n m N n ≥∀∈∃,时,有:k a x f m 1)(+≤且E x ∈,所以,ka x f x f m m 1)()(lim +≤≤且E x ∈.∞→k 又令,故 E x a x f ∈≤且)( 从而})(|{a x f x E x ≤∈故 })(|{a x f x E ≤=}1)(|{inf lim 1ka x f x E n n k +≤∞=8. 设)}({x f n 是区间(a ,b )上的单调递增的序列,即≤≤≤≤)()()(21x f x f x f n若)(x f n 有极限函数)(x f ,证明:R a ∈∀,})({})({1a x f E a x f E n n >⋃=>∞=证明: })({a x f E x >∈∀,即:E x ∈且a x f >)(,因为)()(lim x f x f n n =∞→所以00,n n N n ≥∀∈∃,恒有:E )(∈>x a x f n 且,从而,})({0a x f E x n >∈})({1a x f E n n >⊂∞=反过来,N n a x f E x n n ∈∃>∈∀∞=01},)({ ,使})({0a x f E x n >∈,故0n n ≥∀,因此,a x f x f x f n n n >≥=∞→)()()(lim 0且E x ∈,即,})({a x f E x >∈,从而,})({})({1a x f E a x f E n n >=>∞=10.证明:3R 中坐标为有理数的点是不可数的。
实变函数与泛函分析基础习题.doc

n —1第一章集合4.证明,c s (u^)= nc-A.I —1 I证明 are C.( U All llli|工WS 、但工宅口 A ・,因此对任总2电4<t 所以z € 0>4<,因而t —1<—1X € n C,4t- SxG n CM <t 则对任总 i,工 € CMi,即 z W S,z £ 4,因此工 € s,但 U 儿,•—1 c —1t —1得 H € c.( u A t y 所以 C.( 0 ^) = A C.A.<>i —1& 证明 lim A n = U nfi —•<»n —1 m —f>证明lix€ lim 则存在M 使一切n>N^eAn.所以工€ A儿n u 0 Afl —*OQTIl ・fl 十 1 f>*»l TT>・fl所以lim zt n C 0 n 4m . X € 0 A 心,则右F 使工€ Q 仏,即对任总m > n, {j fl —*8H —■ 1 Ffl—FB fl —1FII —fl WV-»fl x € 所以工 € lim /4n-n —*txj因此 lim 4n = U n 4m .R —*00Fl —1 ni —fl12.证明,所有系数为宵理数的多:爼成 I 放集.远明 设俎是n 次存理系软多项式的全体,n=L2,-.*t WlM= J A n .A n 由n+1个 n —0独立的记号所決定,即几次多项式的n + l 个”理数系敖,其中肖项系数町取除0以外的一 列#理ft, Kte 系数叮取二切〃理数,因此毎个记号迪立地跑対•个可数集,因此由M 定理 6X =亠又由§4定理4亍=a.16. i 殳A 是■数集合,则A 的所WVR f •集作成的集4炉必可■证明 设4 = {却严…}"的有限片集的全^A.An = {SZ2,•••,%}, A B 的F 集的 ' 兀•易汁算兀中焦有2"个尤索,而4 = J 4W ,因此久至多为町数的.乂 4中个尤奈纽成的集今是町数的,因而j 是叮数的.第二章点集注:E 。
实变与泛函期末试题答案

实变与泛函期末试题答案06-07第二学期《实变函数与泛函分析》期末考试参考答案1. 设()f x 是),(+∞-∞上的实值连续函数, 则对于任意常数a , })(|{a x f x E >=是一开集, 而})(|{a x f x E ≥=总是一闭集. (15分) 证明 (1) 先证})(|{a x f x E >=为开集. (8分)证明一设E x ∈0,则a x f >)(0,由)(x f 在),(+∞-∞上连续,知0>?δ,使得),(00δδ+-∈x x x 时,a x f >)(, 即E x U ?),(0δ,故0x 为E 的内点. 由0x 的任意性可知,})(|{a x f x E >=是一开集.证明二 })(|{a x f x E >=可表为至多可数的开区间的并(由证明一前半部分), 由定理可知E 为开集.(2) 再证})(|{a x f x E ≥=是一闭集. (7分)证明一设0x E '∈, 则0x 是E 的一个聚点, 则E ?中互异点列},{n x 使得)(0∞→→n x x n . ………………………..2分由E x n ∈知a x f n ≥)(, 因为f 连续, 所以a x f x f x f n n n n ≥==∞→∞→)(lim )lim ()(0,即 E x ∈0.……………………………………………………………………………………6分由0x 的任意性可知,})(|{a x f x E ≥=是一闭集. …………………………………7分证明二对})(|{a x f x E ≥=, {|()}E x f x a E ??=?,……………………… 5分知 E E E E =?= ,E 为闭集. …………………………………………………… 7分证明三由(1)知,})(|{a x f x E >=为开集, 同理})(|{a x f x E <=也为开集, 所以})(|{a x f x CE ≥=闭集, 得证.2. 证明Egorov 定理:设,{()}n m E f x <∞是E 上一列..e a 收敛于一个..e a 有限的函数)(x f 的可测函数, 则对0>?δ, 存在子集E E ?δ, 使)}({x f n 在δE 上一致收敛, 且.)\(δδ<="" e="" m="" p="">证明任选一列自然数}{i n ,与此相应作E 的子集1111[{}][,][||,],i i k i i i E n E n E f f k n i i ∞∞====-<≥则)(x f n 必在}][{i n E 上一致收敛于)(x f .事实上,对0ε?>,选0,i 使01,i ε<则当0i n n >时,对一切00101[{}][,][,],o i i k i i x E n E n E f f k n i ∈?=-<≥都有 01()()n f x f x i ε-<<. ……………………… 6分所以, 0>?δ, 若能适当的选取}{i n , 使(\[{}])i m E E n δ<, 则令[{}]i E E n δ=即可.利用引理, 0,(\[,])0()m E E n n εε?>→→∞. 故对任给的0δ>, 对1,i ε=1,2,3,i =, i n ?,使得1(\[,])2i i m E E n i δ<,取}],[{i n E E =δ所以)}({x f n 在δE 上一致收敛.且……………………………………… 12分1111(\)(\[{}])(\[,])(\[,])i i i i i i i m E E m E E n m E E n mE E n δ∞∞=====111(\[,]),2i i i i m E E n i δδ∞∞==≤<=∑∑……………………………. 15分结论得证.3.证明勒贝格控制收敛定理:设(1) {})(x f n 是可测集E 上的可测函数列;(2) a.e.)()(x F x f n ≤于E ,n =1,2,…,)(x F 在E 上可积分; (3) )()(xf x f n ?, 则)(x f 在E 上可积分,且 ?=EEn ndx x f dx x f )()(lim. (15分)证明证明一由于)()(x f x f n ?,根据Rieze 定理,存在子列{})(x f i n a.e.收敛于)(x f .由于()()a.e.n f x F x ≤于E ,从而a.e.)()(x F x f i n ≤于E ,得 a.e.)()(x F x f ≤于E .因为)(x F 可积,可得到)(x f 在E 上是可积的,且每个)(x f n 在E 上是可积的. …………… ..2分下证lim ()()n Enf x dx f x dx =??.我们分两步证明:(1) 先设mE <+∞.对任何0ε>,因为()F x 在E 上可积,由勒贝格积分的绝对连续性,知存在0δ>,使当e E ?且me δ<时有()4eF x dx ε,使当n N ≥时有[]n mE f f σδ-≥<,其中02mEεσ=>.所以当n N ≥时,[]()4n E f f F x dx σε-≥<,………….………………… ..6分因此-EE n dx x f dx x f )()(=(()())n Ef x f x dx -?()()n Ef x f x dx ≤-?=[][]()()()()n n n n E f f E f f f x f x dx f x f x dx σσ-≥-<-+-?≤[][](()())()()n n n n E f f E f f f x f x dx f x f x dx σσ-≥-<++-?[]2()[]n n E f f F x dx mE f f σσσ-≥≤+-<?24mE εσ<?+?=22εεε+= ………………………….……….………………… ..9分这就证明了当mE <+∞时,成立lim ()()n EEnf x dx f x dx =??.(2)设mE =+∞.因()F x 在E 上可积,由非负可测函数L 积分的定义[](lim ()(),kk E E k F x dx F x dx →∞=?[]()()),kk E E F x dx F x dx ≤?? 知对任何0ε>,存在,k E E ?k mE <+∞,使得[]()()4kk EEF x dx F x dx ε<+?,所以dx x F kE E ?-)(=??-EE dx xF dx x F k)()(≤()[()]kk EE F x dx F x dx -?4ε<..……………… .11分另一方面,在k E 上的可测函数列{}n f f -满足:()()2()..n f x f x F x a e -≤于,1,2,k E n =,()()0n f x f x -?(从)()(x f x f n ?),故在k E 上利用(1)的结论(从(1)有lim ()()n EEnf x dx f x dx =??,所以由()()0n f x f x -?,得lim ()()0n Enf x f x dx -=?),知存在正整数N ,使当n N ≥时,()()2kn E f x f x dx ε-<, (13)(注意: 上一步若直接由(1)得到亦正确) 因此()()n EEf x dx f x dx -≤?-En dx x f x f )()(()()()()kkn n E E E f x f x dx f x f x dx -=-+-?2()2kE EF x dx ε-≤+242εεε证毕.证明二由)()(x f x f n ?及黎斯定理 ,存在子列{} )(x f i n a.e.收敛于)(x f . 因为a.e.)()(x F x f n ≤于E ,所以a.e.)()(x F x f i n ≤于E ,因此a.e.)()(x F x f ≤于E .由)(x F 可积,得到每个)(x f n 和)(x f 都是L 可积的. (2) 因为)(x F 在E 上可积,即[]?∞→=EE k k dx xF dx x F k)(lim )(,所以0>?ε,存在0>k ,使得[]?+<e< p="">E k dx xF dx x F k5)()(ε,因此dx x F kE E ?-)(=??-EE dx xF dx x F k)()())()()](([x F x F x F k k ≤=()()5kk E E F x dx F x dx ε≤-<.…………………6分由绝对连续性,0>?δ,使得E e ?,δ<=""><edx x F 5)(ε,对此δ,由)()(x f x f n ?(在E 上,从而在k E 上),所以存在0>N ,使得当N n ≥时,δε<??+≥-)1(5k n k mE f f mE ,……………………10分当N n ≥时,记n H =+≥-)1(5k n k mE f f E ε,所以从δ<n<="" mh="" p="">H dx x F 5)(ε. 因为)()()(n k k n n n H E E E H H E H E --=-= ,所以当N n ≥时-EEn dx x f dx x f )()(=[]?-En dx x f x f )()(≤-En dx x f x f )()(=?--nk H E n dx x f x f )()(+--kE E n dx x f x f )()(+?-nH n dx x f x f )()(([]5(1)k n k n k E H E f f mE ε-=-<+)≤k k mE mE )1(5+ε+2?-k E E dx x F )(+2?n H dx x F )(<εεε52525++ =ε.…………………………………………………………………………...................15分这证明了?=EEn ndx x f dx x f )()(lim.4.证明康托尔(Cantor)集合的测度为零. (10分) 证明证明一 Cantor 集[]??-= )98,97()92,91()32,31(1,0P ,………....................4分所以[]?+++-=?+++-= 3223232311 27492311,0m mP …………………................8分.0 3211311 3232321311 3322=-?-=++++-= …………………..............10分证明二去掉过程进行到第n 步时,剩下2n个长度为3n -的闭区间,n I 这些区间的总长为22()033n nn =→ (当n →∞时),……………….....4分故,0)32(*→≤n P m ………………………….............8分因此*0,m P = 即0.mP =……………………………………………….……….............10分 5.证明1(0,)lim 11nnndtt t n ∞=??+. (15分)证明当)1,0(∈t 时,2,11111≥≤+n tt n t nn ;……………………………..........2分当),1[+∞∈t 时,1121111112nnn n t t t t t nn =-??+++??+222124,2112n t t n n n t n--≤=<>--.………………............4分+∞∈∈=),,1[,4),1,0(,1t t t tt F 令则当2>n 时,有,)(111t F tn t nn ≤??? ?+………………………………..............6分且+∞∞=+=),0(12164)(dt tt dtdt t F , 即)(t F 在()∞,0上Lebesgue 可积. ……………………….…………………………..........8分又因为tn n ne t n t -∞→??→+111,所以由Lebesgue 控制收敛定理得………...........12分原式=+∞+∞-+∞→==,0(),0(111limdt e t n t dt t n n n .………………............15分6. 证明Banach 不动点定理:设X 是完备的度量空间, T 是X 上的压缩映射, 那么T 有且只有一个不动点. (15分) 证明设0x 为X 中的任一点,令,,,,01021201x T Tx x x T Tx x Tx x n n n =====-. (3)分下面证明点列{}∞=1n n x 是X 中的柯西点列.因为11(,)(,)m m m m d x x d Tx Tx +-=112(,)(,)m m m m d x x d Tx Tx αα---≤= 21210(,)(,),m m m d x x d x x αα--≤≤≤所以当m n >时,1121(,)(,)(,)(,)m n m m m m n n d x x d x x d x x d x x +++-≤+++1101()(,)m m n d x x ααα+-≤+++011(,),1n mmd x x ααα--=-又因为,10<<α所以,11<--mn α从而 )(),(1),(10m n x x d x x d m n m >-≤,αα.,0),(,,→∞→∞→n m x x d n m 时所以当即{}∞=1n n x 是X 中的柯西点列, …………...8分由X 的完备性知,存在x X ∈,使x x m →.因为…………..................................................10分(,)(,)(,)m m d x Tx d x x d x Tx ≤+1(,)(,)0,m m m d x x d x x α→∞-≤+→ 故(,)0d x Tx =,即x Tx =,所以x 为T 的不动点. ………..................................................12分下证其唯一性.如果又有X x ∈~,使x x T ~~=,则)~,()~,()~,(x x d x T Tx d x x d α≤=,因1<α,故0)~,(=x x d ,即x x ~=,得证. ………....................................................................15分7. 设0mE >, 又设E 上可积函数(),()f x g x 满足()()f x g x <, 试证:()d ()d EEf x xg x x <?. (5分)证明因为()()0g x f x ->, 所以[()()]d 0Eg x f x x -≥?…………………………………3分若[()()]d 0Eg x f x x -=?,则()()0g x f x -=, a.e. …………………………………………….…………………………5分与题设矛盾, 故得()d ()d EEf x xg x x <?.8. 设()f x 在[,]a b 上可导, 证明: ()f x 的导函数()f x '在[,]a b 上可测. (10分) 证明补充定义()()f x f b =(x b >时), 则()f x 在[,)a b 上可导, 对任意N n ∈, 令1()()(),[,)1n f x f x n g x x a b n+-=?∈..………………3分由f 连续, 知每个n g 连续,故可测. …………………………….…………………………5分由f 的可导性知()lim (),[,)n n f x g x x a b →∞'=?∈…….………………7分因此()f x '作为一列可测函数的极限在[,)a b 上必可测, 故在[,]a b 上亦可测….………10分</e<>。
《实变函数与泛函分析基础》第二版_程其襄第八章答案

1 t ∈ ,1 n 1 t ∈ −1, − n 1 1 t∈ − , n n
1 0 0 1 1 1 1 1 f ( xn ) = ∫ x (t )dt − ∫ x (t )dt = 2(1 − ) + ∫ 1 ( −nt )dt − ∫ n ( −nt ) dt = 2(1 − ) + + − 0 −1 0 n n 2 n 2n n
j =1
∞
证明: T = sup
i
∑a
i =1
ij
证明:设 M = sup
i
∑a
i =1
∞
ij
则若 x = ( ξ1 , ξ 2 ,L
) , y = (η1 ,η2 ,L ) = Tx ,
Tx = y = sup ηi = sup ∑ aijξ
i i j =1
n
j
≤ sup sup ξ j i j
∞
) ,其中
1 1 q yn = ∑ tmn xm , n = 1, 2,3L , ∑ ∑ tmn < ∞, + = 1 证明: T 是有界线性算子。 p q m =1 n =1 m =1
∞ ∞
p q
∞ 证明:若 Tx = ∑ ∑ tmn xm m =1 n =1
例题 2 设 F 是 C 0 ( −∞,+∞) 上的线性泛函, ( C 0 ( −∞,+∞) 的定义参见七章例题讲例 5) 。若 F 满足条件:若 ϕ ∈ C 0 ( −∞,+∞) 且任意 t ∈ ( −∞,+∞), ϕ (t ) ≥ 0, 则称 F 是正的线性泛 函,求证: C 0 ( −∞,+∞) 上的正的线性泛函的连续的。 证明 任意复值函数 f ∈ C 0 ( −∞,+∞) , 都可以写成 f = x + iy,其中 x,y 是 C 0 ( −∞,+∞) 中 的 实 值 函 数 , ||x|| ≤ f 且 ||y|| ≤|| f || . 而 实 值 函 数 又 可 以 x=
《实变函数论与泛函分析(曹广福)》1到5章课后习题答案

第一章习题参考解答3.等式(A -B) ⋃C =A - (B -C) 成立的的充要条件是什么?解: 若(A -B) ⋃C =A - (B -C),则 C ⊂ (A -B) ⋃C =A - (B -C) ⊂A .即, C ⊂A .反过来, 假设C ⊂A , 因为B -C ⊂B . 所以,A -B ⊂A - (B -C) . 故,( A -B) ⋃C ⊂A - (B -C) .最后证, A - (B -C) ⊂ (A -B) ⋃C事实上,∀x ∈A - (B -C) , 则x ∈A 且x ∉B -C 。
若x ∈C,则x ∈(A -B) ⋃C ;若x ∉C,则 x ∉B ,故 x ∈A -B ⊂ (A -B) ⋃C. 从而, A - (B -C) ⊂ (A -B) ⋃C.C ⊂ (A -B) ⋃C =A - (B -C) ⊂A -∅=A . 即 C ⊂A .反过来,若C ⊂A ,则因为B -C ⊂B 所以A -B ⊂A - (B -C) 又因为C ⊂A ,所以C ⊂A - (B -C) 故 (A -B) ⋃C ⊂A - (B -C)另一方面,∀x ∈A - (B -C) ⇒x ∈A 且x ∉B -C ,如果x ∈C则x ∈(A -B) C ;如果x ∉C, 因为x ∉B -C ,所以x ∉B 故x ∈A -B . 则x ∈(A -B) ⋃C . 从而A - (B -C) ⊂ (A -B) ⋃C于是, (A -B) ⋃C =A - (B -C)⎧1,x ∈A4.对于集合A,定义A 的特征函数为χA (x) =⎨,假设A1 , A2 , , A n 是⎩0, x ∉A一集列,证明:(i)χliminf A(x) = lim inf χA (x)n n n n(ii)χ(x) = lim sup χA (x)limsup An n n n证明:(i)∀x∈lim inf A n =⋃(⋂A n ),∃n0 ∈N,∀m ≥n0 时,x ∈A m .n n∈N m≥n所以 χA (x) = 1,所以 inf χA(x) = 1故lim inf χA (x) = supinf χA(x) = 1 m m≥nm n n b∈N m≥n m= i i1 1 ,使 m n n m nn n =1 1 1∀x ∉ lim inf A n ⇒ ∀n ∈ N ,有 x ∉ ⋂ A n ⇒ ∃k n ≥ nnm ≥n有 x ∉ A k ⇒ χ A = 0 ⇒ inf χ A (x ) = 0 ,故 s u p n f i χ A (x ) = 0,即 limn f iχ A (x ) =0 ,mk nm ≥n mb ∈N m ≥nmn n从而 χliminf A (x ) = lim inf χ A(x )nnnni -1 5. 设{A n } 为集列, B 1 = A 1 , B i = A i - ⋃ A j (i > 1) 证明j 1(i ) {B n } 互相正交n n(ii ) ∀n ∈ N , A i = B ii =1i =1n -1 证明:(i )∀n , m ∈ N , n ≠ m ;不妨设n>m ,因为 B n = A n - A i ⊂ A n - A m ,又因 i =1为 B ⊂ A ,所以 B ⊂ A - A ⊂ A - B , 故 B B = ∅ ,从而 {B }∞相互正交.n nnn(ii )因为 ∀i (1 ≤ i ≤ n ),有 B i ⊂ A i ,所以⋃ B i ⊂ ⋃ A i ,现在来证: ⋃ A i ⊂ ⋃ B i当n=1 时, A 1 = B 1 ; i =1i =1i =1i =1nn当 n ≥ 1时,有: A i = B ii =1i =1n +1 n n +1 n n n 则 A i = ( A i ) A n +1 = ( A i ) ( A n +1 - A i ) = ( B i ) (B n +1 - B i )i =1i =1i =1i =1i =1i =1n事实上, ∀x ∈ ⋃ A ,则∃i (1 ≤ i ≤ n ) 使得 x ∈ A ,令i = min i | x ∈ A 且1 ≤ i ≤ ni =1i 0 -1 n i 0 -1 n n则 x ∈ A i 0 - A i = B i 0 ⊂ B i ,其中,当 i 0 = 1 时, A i = ∅ ,从而, A i = B ii =1i =1i =1i =1i =16. 设 f (x ) 是定义于E 上的实函数,a 为常数,证明:∞(i ) E {x | f (x ) > a }= { f (x ) ≥ a + }n =1 n(ii) ∞E {x | f (x ) ≥ a }= { f (x ) > a - }n =1 n证明:(i ) ∀x ∈ E {x | f (x ) > a } ⇒ x ∈ E 且 f (x ) > a⇒ ∃n ∈ N ,使得f (x ) ≥ a + 1 > a 且x ∈ E ⇒ x ∈ E {x | f (x ) ≥ a + 1}⇒ x ∈ n ∞ E {x | f (x ) ≥ a + }⇒ E {x | f (x ) > a } ⊂ n∞E {x | f (x ) ≥ a + } n =1 n n =1 n反过来,∀x ∈ ∞E {x {x | f (x ) ≥ a + 1},∃n ∈ N x ∈ E {x | f (x ) ≥ a + 1} n =1 n nm n m m= n 0 1 1即 f (x ) ≥ a + 1 n∞> a 且x ∈ E 1故 x ∈ E {x | f (x ) > a }所 以 ⋃ E {x | f (x ) ≥ a + n =1 } ⊂ E {x | f (x ) > a } 故nE {x | f (x ) > a } ∞ E {x | f (x ) ≥ a + 1}n =1 n7. 设{ f n (x )} 是E 上的实函数列,具有极限 f (x ) ,证明对任意常数 a 都有:E {x | f (x ) ≤ a } = ∞lim inf E {x | f(x ) ≤ a + 1} = ∞lim inf E {x | f (x ) < a + 1} k =1 n n k k =1 n n k证明: ∀x ∈ E {x | f (x ) ≤ a },∀k ∈ N ,即 f (x ) ≤ a ≤ a + 1,且 x ∈ Ek因为 lim f n →∞(x ) = f (x ),∃n ∈ N ,使∀m ≥ n ,有 f n(x ) ≤ a + 1 ,故 kx ∈ E {x | f m (x ) ≤ a + 1}(∀m ≥ n ) k 所以x ∈ E {x | f m m ≥n (x ) ≤ a + 1} kx ∈ E {x | f (x ) ≤ a + 1}= lim inf E {x | f (x ) ≤ a + 1},由 k 的任意性:n ∈N m ≥n m k n mk∞ ∞ x ∈ lim inf E {x | f n (x ) ≤ a + },反过来,对于∀x ∈ lim inf E {x | f n (x ) ≤ a + },k =1 n k k =1 n k ∀k ∈ N ,有 x ∈ lim inf E {x | f (x ) ≤ a + 1} =E {x | f (x ) ≤ a + 1} , 即n m k n ∈N m ≥n m k∃n ∈ N ,∀m ≥ n 时,有: f (x ) ≤ a + 1 且 x ∈ E ,所以, lim f (x ) ≤ f (x ) ≤ a + 1且 m k m mkx ∈ E . 又令k → ∞ ,故 f (x ) ≤ a 且x ∈ E 从而 x ∈ E {x | f (x ) ≤ a }∞ 1故 E {x | f (x ) ≤ a }= lim inf E {x | f n (x ) ≤ a + }k =1 n k8.设{ f n (x )} 是区间(a ,b )上的单调递增的序列,即f 1 (x ) ≤ f 2 (x ) ≤ ≤ f n (x ) ≤∞若 f n (x ) 有极限函数 f (x ) ,证明: ∀a ∈ R , E { f (x ) > a } = ⋃ E { f n (x ) > a }n 1证明: ∀x ∈ E { f (x ) > a },即: x ∈ E 且 f (x ) > a ,因为lim f (x ) = n →∞f (x )所以∃n 0 ∈ N ,∀n ≥ n 0 ,恒有: f n (x ) > a 且x ∈ E ,从而, x ∈ E { f n(x ) > a }∞⊂ E { f n (x ) > a }n =1nn n k1 2 3 n n∞反过来, ∀x ∈ E { f n (x ) > a },∃n 0 ∈ N ,使 x ∈ E { f n (x ) > a },故∀n ≥n 0 ,因此,n =1lim f (x ) = n →∞f (x ) ≥ f (x ) > a 且 x ∈ E ,即, x ∈ E { f (x ) > a },∞从而, E { f (x ) > a } = E { f n (x ) > a }n =110.证明: R 3 中坐标为有理数的点是不可数的。
实变函数与泛函分析基础习题.doc

实变函数与泛函分析基础习题.docn —1第⼀章集合4.证明,c s (u^)= nc-A.I —1 I证明 are C.( U All llli|⼯WS 、但⼯宅⼝ A ?,因此对任总2电44<,因⽽t —1<—1X € n C,4t- SxG n CM—1 c —1t —1得 H € c.( u A t y 所以 C.( 0 ^) = A C.A.<>i —1& 证明 lim A n = U nfi —?n —1 m —f>证明lix€ lim 则存在M 使⼀切n>N^eAn.所以⼯€ A⼉n u 0 Afl —*OQTIl ?fl ⼗ 1 f>*?l TT>?fl所以lim zt n C 0 n 4m . X € 0 A ⼼,则右F 使⼯€ Q 仏,即对任总m > n, {j fl —*8H —■ 1 Ffl—FB fl —1FII —fl WV-?fl x € 所以⼯ € lim /4n-n —*txj因此 lim 4n = U n 4m .R —*00Fl —1 ni —fl12.证明,所有系数为宵理数的多:爼成 I 放集.远明设俎是n 次存理系软多项式的全体,n=L2,-.*t WlM= J A n .A n 由n+1个 n —0独⽴的记号所決定,即⼏次多项式的n + l 个”理数系敖,其中肖项系数町取除0以外的⼀列#理ft, Kte 系数叮取⼆切〃理数,因此毎个记号迪⽴地跑対?个可数集,因此由M 定理 6X =⼇⼜由§4定理4亍=a.16. i ⽎A 是■数集合,则A 的所WVR f ?集作成的集4炉必可■证明设4 = {却严…}"的有限⽚集的全^A.An = {SZ2,,%}, A B 的F 集的 ' 兀?易汁算兀中焦有2"个尤索,⽽4 = J 4W ,因此久⾄多为町数的.乂 4中个尤奈纽成的集今是町数的,因⽽j 是叮数的.第⼆章点集注:E 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实变函数与泛函分析总复习题第一章复习题(一)一、判断题1、大人全体构成集合。
(× )2、小个子全体构成集合。
(× )3、所有集合都可用列举法表示。
(× )4、所有集合都可用描述法表示。
(√ )5、对任意集合A ,总有A ??。
(√ )6、()A B B A -?=。
(× )7、()()A B B A B B A A -?=?=-?。
(√ )8、若B A ?,则()A B B A -?=。
(√ )9、c A A ?≠?,c A A X ?=,其中X 表示全集。
(× )10、A B B A ?=?。
(× )11、()c c c A B A B ?=?,()c c c A B A B ?=?。
(× )12、()()()A B C A C B C ??=,()()()A B C A C B C ??=。
(√ )13、若A B ,B C ,则A C 。
(√ )14、若A B ,则A B =,反之亦然。
(√ )15、若12A A A =?,12B B B =?,且11A B ,22A B ,则A B 。
(× )16、若A B ?,则A B ≤。
(√ )17、若A B ?,且A B ≠,则A B <。
(× )18、可数集的交集必为可数集。
(× )19、有限或可数个可数集的并集必为可数集。
(√ )20、因整数集Z ?有理数集Q ,所以Q 为不可数集。
(× ) 21、()c c A A =。
(√ )第二章复习题一、判断题1、设P ,n Q R ∈,则(,)0P Q ρ=?P Q =。
(× )2、设P ,n Q R ∈,则(,)0P Q ρ>。
(× )3、设123,,n P P P R ∈,则121323(,)(,)(,)P P P P P P ρρρ≥+。
(× )4、设点P 为点集E 的点,则P E ∈。
(√ )5、设点P为点集E的外点,则P E。
(√)6、设点P为点集E的边界点,则P E∈。
(×)7、设点P为点集E的点,则P为E的聚点,反之P为E的聚点,则P为E的点。
(×)8、设点P为点集E的聚点,则P为E的边界点。
(×)9、设点P为点集E的聚点,且不是E的点,则P为E的边界点。
(√)10、设点P为点集E的孤立点,则P为E的边界点。
(√)11、设点P为点集E的外点,则P不是E的聚点,也不是E的边界点。
(√)12、开集中的每个点都是点,也是聚点。
(√)13、开集中可以含有边界点和孤立点。
(×)14、E是开集?E E=的部(开核)。
(√)15、任意多个开集的并集仍为开集。
(√)16、任意多个开集的交集仍为开集。
(×)17、有限个开集的交集仍为开集。
(√)18、闭集中的每个点都是聚点。
(×)19、E'和E都是闭集。
(√)20、E是闭集?E E'?。
(√)21、任意多个闭集的交集仍为闭集。
(√)22、任意多个闭集的并集仍为闭集。
(×)23、有限个闭集的并集仍为闭集。
(√)24、E 是开集?c E 是闭集。
(√ )25、E 是完全集(完备集)?E E '=E ?是无孤立点的闭集。
(√ )二、填空题1、设1n R R =,1E 是[0,1]上的全部有理点,则1E '=[0,1];1E 的部= 空集;1E =[0,1]。
2、设2n R R =,1E =[0,1],则1E '=[0,1];1E 的部= 空集;1E =[0,1]。
3、设2n R R =,1E =22{(,)1}x y x y +<,则1E '=22{(,)1}x y x y +≤;1E 的部=1E ;1E =22{(,)1}x y x y +≤。
4、设P 是康托(三分)集,则P 为闭集;P 为完全集;P 没有点;P = c ;mP = 0 。
5、设(,)a b 为1R 上的开集G 的构成区间,则(,)a b 满足(,)a b ?G ,且a ?G ,b ?G 。
6、设(1,2)(3,4)E =?,写出E 的所有的构成区间(1,2),(3,4)。
7、设(1,3)(2,6)E =?,写出E 的所有的构成区间(1,6)。
8、设E 为1R 上的闭集,0x 为E 的孤立点,则0x 必为E 的两个邻接区间的公共端点。
9、设E 为1R 上的闭集,则E 的邻接区间必为c E 的构成区间。
第三章复习题一、判断题1、对任意n E R ?,*m E 都存在。
(√ )2、对任意n E R ?,mE 都存在。
(× )3、设n E R ?,则*m E 可能小于零。
(× )4、设A B ?,则**m A m B ≤。
(√ )5、设A B ?,则**m A m B <。
(× )6、**11()n n n n mS m S ∞∞===∑。
(× ) 7、**11()n n n n m S m S ∞∞==≤∑。
(√ )8、设E 为n R 中的可数集,则*0m E =。
(√ )9、设Q 为有理数集,则*0m Q =。
(√ )10、设I 为n R 中的区间,则*m I mI I ==。
(√ )11、设I 为n R 中的无穷区间,则*m I =+∞。
(√ )12、设E 为n R 中的有界集,则*m E <+∞。
(√ )13、设E 为n R 中的无界集,则*m E =+∞。
(× )14、E 是可测集?c E 是可测集。
(√ )15、设{n S }是可测集列,则1n n S ∞=,1n n S ∞=都是可测集。
(√ ) 16、零测集、区间、开集、闭集和Borel 集都是可测集。
(√ )17、任何可测集总可表示成某个Borel 集与零测集的差集。
(√ )18、任何可测集总可表示成某个Borel 集与零测集的并集。
(√ )19、若E =?,则*0m E >。
(× )20、若E 是无限集,且*0m E =,则E 是可数集。
(× )21、若mE =+∞,则E 必为无界集。
(√ )22、在n R 中必存在测度为零的无界集。
(√ )23、若A ,B 都是可测集,A B ?且mA mB =,则()0m B A -=。
(× ) 24、?和n R 都是可测集,且0m ?=,n mR =+∞。
(√ )25、设12,E E 为可测集,则12()m E E -≥12mE mE -。
(× )26、设12,E E 为可测集,且12E E ?,则12()m E E -=12mE mE -。
(× )二、填空题1、若E 是可数集,则*m E = 0 ;E 为可测集;mE = 0 。
2、若12,,,n S S S 为可测集,则1ni i m S = 小于或等于1n i i mS =∑;若12,,,nS S S 为两两不相交的可测集,则1n i i m S = 等于 1ni i mS =∑。
3、设12,E E 为可测集,则122()m E E mE -+ 大于或等于 1mE ;若还有2mE <+∞,则12()m E E - 大于或等于 12mE mE -。
4、设12,E E 为可测集,且12E E ?,2mE <+∞,则12()m E E -等于 12mE mE -。
5、设0x 为E 的点,则*m E 大于 0。
6、设P 为康托三分集,则P 为可测集,且mP = 0 。
7、m ?= 0 ,n mR = +∞ 。
8、叙述可测集与G δ型集的关系可测集必可表示成一个G δ型集与零测集的差集。
9、叙述可测集与F σ型集的关系可测集必可表示成一个F σ型集与零测集的并集。
第四章复习题一、判断题1、设()f x 是定义在可测集n E R ?上的实函数,如果对任意实数a ,都有[()]E x f x a >为可测集,则()f x 为E 上的可测函数。
(√ )2、设()f x 是定义在可测集n E R ?上的实函数,如果对某个实数a ,有[()]E x f x a >不是可测集,则()f x 不是E 上的可测函数。
(√ )3、设()f x 是定义在可测集n E R ?上的实函数,则()f x 为E 上的可测函数等价于对某个实数a ,[()]E x f x a ≥为可测集。
(× )4、设()f x 是定义在可测集n E R ?上的实函数,则()f x 为E 上的可测函数等价于对任意实数a , [()]E x f x a =为可测集。
(× )5、设()f x 是定义在可测集n E R ?上的实函数,则()f x 为E 上的可测函数等价于对任意实数a ,[()]E x f x a ≤为可测集。
(√ )6、设()f x 是定义在可测集n E R ?上的实函数,则()f x 为E 上的可测函数等价于对任意实数a 和b (a b <),[()]E x a f x b ≤<为可测集。
(× )7、设E 是零测集,()f x 是E 上的实函数,则()f x 为E 上的可测函数。
(√ )8、若可测集E 上的可测函数列{()n f x }在E 上几乎处处收敛于可测函数()f x ,则{()n f x }在E 上“基本上”一致收敛于()f x 。
(× )9、设()f x 为可测集E 上几乎处处有限的可测函数,则()f x 在E 上“基本上”连续。
(√ )10、设E 为可测集,若E 上的可测函数列()()n f x f x ?(x E ∈),则{()n f x }的任何子列都在E 上几乎处处收敛于可测函数()f x 。
(× )11、设E 为可测集,若E 上的可测函数列()()n f x f x →..a e 于E ,则()()n f x f x ?(x E ∈)。
(× )二、填空题1、[]E f a > 等于11[]n E f a n ∞-≥+,[]E f a ≥ 等于 11[]n E f a n ∞->-。
2、[]E a f b << 包含于 []E f a >,[]E a f b << 包含于[]E f b <;[]E a f b << 等于 [][]E f a E f b ><,[]E a f b << 等于 [][]E f a Ef b >-≥。
3、设1n n E E ∞==,则[]E f a < 等于 1[]n n E f a ∞=<。