电 磁 屏 蔽 解 决 方 案
电磁脉冲屏蔽专项方案

一、方案背景随着科技的发展,电子设备在现代社会中扮演着越来越重要的角色。
然而,电磁脉冲(Electromagnetic Pulse,简称EMP)作为一种强大的电磁干扰源,对电子设备的安全性构成了严重威胁。
为了确保电子设备在电磁脉冲环境下的稳定运行,本方案针对电磁脉冲屏蔽进行专项设计。
二、方案目标1. 最大限度地减少电磁脉冲对电子设备的影响;2. 提高电子设备的电磁兼容性(EMC);3. 确保电子设备在电磁脉冲环境下的可靠性和安全性。
三、方案内容1. 电磁屏蔽材料选择根据电磁脉冲的特性,本方案选用以下屏蔽材料:(1)金属材料:铝、铜等具有良好电导性能的金属材料;(2)特殊合金材料:钽、镍等具有较高屏蔽效果的合金材料。
2. 电磁屏蔽结构设计(1)金属屏蔽箱:针对电子设备的外壳,设计金属屏蔽箱,确保设备在箱内形成封闭空间;(2)屏蔽房:对于较大型的电子设备,可设计屏蔽房,以满足屏蔽需求;(3)电磁屏蔽网:在屏蔽房或屏蔽箱内,设置电磁屏蔽网,以增强屏蔽效果。
3. 电磁屏蔽地线系统设计(1)地线杆:在屏蔽房或屏蔽箱周围设置地线杆,确保地线系统与地面良好接触;(2)地线网:在地线杆之间设置地线网,形成完整的地线系统;(3)导线连接:确保地线系统内部导线连接牢固,避免因连接不良导致的屏蔽效果下降。
4. 电磁屏蔽措施(1)电磁屏蔽层:在电子设备的关键部位,如电路板、传输线等,设置电磁屏蔽层;(2)滤波器:在电源线和信号线上安装滤波器,以降低电磁干扰;(3)接地措施:对电子设备进行合理的接地处理,确保电磁能量能够顺利导入地下。
5. 电磁脉冲防护措施(1)抗干扰设计:在电子设备内部,采用抗干扰设计,提高设备在电磁脉冲环境下的稳定性;(2)冗余设计:在关键部件上采用冗余设计,确保在电磁脉冲影响下,设备仍能正常工作;(3)定期检测:对电子设备进行定期检测,确保其电磁兼容性和屏蔽效果。
四、方案实施与验收1. 方案实施:按照设计方案,进行材料采购、施工安装等环节;2. 验收:在方案实施完成后,对电磁脉冲屏蔽效果进行检测,确保达到预期目标。
电磁兼容解决方案

电磁兼容解决方案电磁兼容(Electromagnetic Compatibility,简称EMC)是指各种电子设备在相互连接和共存的情况下,能够在无干扰和无辐射的条件下正常工作的能力。
在现代社会中,电子设备的广泛应用使得电磁兼容问题日益突出。
为了解决这一问题,人们提出了各种电磁兼容解决方案。
本文将从五个方面详细介绍这些解决方案。
一、电磁屏蔽技术1.1 金属屏蔽:利用金属材料对电磁波进行屏蔽,如使用金属外壳、金属屏蔽罩等。
1.2 电磁屏蔽涂料:在电子设备表面涂覆电磁屏蔽涂料,以提高设备的屏蔽性能。
1.3 电磁隔离设计:通过合理的电路布局和屏蔽结构设计,减少电磁辐射和电磁感应。
二、电磁干扰抑制技术2.1 滤波器设计:在电子设备的电源线路、信号线路等关键位置添加滤波器,以阻止电磁干扰信号的传播。
2.2 接地设计:合理的接地设计能够有效地抑制电磁干扰,如采用单点接地、分层接地等方法。
2.3 电磁屏蔽设计:在电子设备内部采用屏蔽隔离措施,减少电磁干扰的传播。
三、电磁辐射控制技术3.1 电磁辐射测试:通过对电子设备进行电磁辐射测试,了解辐射源和辐射路径,从而采取相应的控制措施。
3.2 电磁辐射限制:根据不同的电子设备,制定相应的辐射限制标准,确保设备的辐射水平在合理范围内。
3.3 电磁辐射抑制:采用电磁屏蔽、滤波器等措施,减少电磁辐射的产生和传播。
四、电磁感应抑制技术4.1 电磁感应测试:通过对电子设备进行电磁感应测试,了解感应源和感应路径,从而采取相应的控制措施。
4.2 电磁感应限制:根据不同的电子设备,制定相应的感应限制标准,确保设备的感应水平在合理范围内。
4.3 电磁感应抑制:采用电磁屏蔽、隔离设计等措施,减少电磁感应的产生和传播。
五、电磁兼容测试技术5.1 电磁兼容测试方法:制定合理的测试方法,对电子设备进行电磁兼容测试,评估设备的兼容性能。
5.2 电磁兼容测试标准:根据不同的应用领域和设备类型,制定相应的兼容性测试标准,确保设备的兼容性能达到要求。
低频emi干扰解决方法

低频emi干扰解决方法低频EMI干扰解决方法引言:低频电磁干扰(EMI)是指频率低于300kHz的电磁辐射或传导干扰现象。
低频EMI可能对电子设备的性能和可靠性造成不良影响,因此需要采取相应的解决方法来减轻干扰并确保设备的正常运行。
本文将介绍几种常见的低频EMI干扰解决方法。
一、电磁屏蔽电磁屏蔽是一种常见且有效的低频EMI干扰解决方法。
通过在电子设备周围或内部添加屏蔽材料,可以阻挡外界的电磁辐射或传导干扰,减少EMI的影响。
常用的屏蔽材料包括金属壳体、金属箔、导电涂层等,它们能够吸收或反射电磁波,从而减少干扰。
在设计电子设备时,可以考虑增加屏蔽结构和屏蔽层,以提高电磁屏蔽效果。
二、地线设计良好的地线设计对于减少低频EMI干扰非常重要。
地线是电子设备中起到回路和屏蔽作用的导体,能够将干扰电流有效地引导到地上,从而减少对其他电路的干扰。
在地线设计中,应考虑地线的路径、长度和宽度等因素。
合理布置地线路径,避免过长过窄的地线,减少地线的电阻和电感,可以有效地降低低频EMI干扰。
三、滤波器应用滤波器是一种常用的低频EMI干扰解决方法。
通过在电子设备的电源线、信号线或接口处添加滤波器,可以滤除低频EMI信号,从而减少干扰。
常见的滤波器包括LC滤波器、RC滤波器和Pi滤波器等。
在选择滤波器时,应考虑其频率响应、阻抗匹配和耐压能力等因素,以确保滤波器能够有效过滤低频EMI干扰。
四、接地技术良好的接地技术对于减少低频EMI干扰非常重要。
通过合理布置接地电极,减小接地电阻和电感,可以提高接地系统的效果,减少EMI的影响。
在接地设计中,应遵循短、粗、低阻抗的原则,尽量减小接地回路的面积,增加接地电极的截面积和导电性能。
此外,还可以采用分级接地和星形接地等技术,提高接地系统的抗干扰能力。
五、屏蔽线路布局合理的线路布局对于减少低频EMI干扰非常重要。
在设计电子设备时,应将敏感线路与干扰源保持足够的距离,避免相互干扰。
可以采用线路隔离、差分信号传输和屏蔽线束等技术,减少线路之间的交叉干扰。
屏蔽机房解决方案

数据机房在没有做屏蔽的情况下,电子设备会受到直击雷或间接雷等强电磁干扰源的影响导致设备无法工作或工作出现异常,最严重时出现损坏,这是比较常见的电磁干扰显现,另外一种现象就是,在打雷的时候听收音机,看电视,使用电脑,收音机会出现"吱啦"的噪音,电视机,电脑会出现图像抖动等等,这些都是雷电产生的干扰造成的电磁干扰。
具体的措施能够使用屏蔽产品,并可靠接地,将外接的电磁干扰阻隔在外,把内部的设备产生的电磁波阻隔在内,这样构成一个等电位体,能够有效屏蔽电磁干扰。
屏蔽机房建设规则影响屏蔽机房效能主要有以下因素:1、屏蔽室所用材料2、屏蔽材料的接缝处理3、屏蔽门4、通风窗5、屏蔽窗6、电源线的滤波处理7、信号线的屏蔽处理机房电磁屏蔽工程的保护1.在施工中不得在屏蔽壳体内喷洒水或其它有腐蚀性的液体。
2.对施工结束的机房屏蔽体及其它安装附件要及时做防腐处理。
防腐要求应符合《建筑防腐工程施工及验收规范》(TJ212-76 )中的有关规定的要求。
3.对于焊接缝应按规定检查焊接效果,合格后对焊缝应及时作防腐处理。
4.对电磁屏蔽体有关的各种管道、电缆等应按有关规定进行保护处理。
机房电磁屏蔽工程的测试1.机房屏蔽壳体与原建筑的地面、墙体、楼板的绝缘性能测试应符合要求2.机房屏蔽效能的测试3.电磁屏蔽效能的测试应按设计要求确定.测试的方法应按《高效能屏蔽室屏蔽效能测试方法》执行。
屏蔽机房整体建设步骤屏蔽机房整体建设一般包括以下几个方面:综合布线、抗静电地板铺设、棚顶墙体装修、隔断装修、UPS电源、专用恒温恒湿空调、机房环境及动力设备监控系统、新风系统、漏水检测、地线系统、防雷系统、门禁、监控、消防、报警、屏蔽工程等。
一、防静电地板铺设机房工程的技术施工中,机房地面工程是一个很重要的组成部分。
机房地板一般采用防静电活动地板-屏蔽室。
活动地板具有可拆卸的特点,因此,所有设备的导线电缆的连接、管道的连接及检修更换都很方便。
如何减少电磁干扰解决方案

如何减少电磁干扰解决方案
电磁干扰是指电子设备之间或电子设备与电磁环境之间的相互干扰现象。
它会影响到无线通信、无线电和电力系统的正常运行,并对人体健康造成负面影响。
为了减少电磁干扰,我们可以采取以下几个解决方案:
1.设计合理的电磁屏蔽结构:在电子设备的设计过程中,应尽量采用电磁屏蔽结构,如金属外壳或屏蔽罩,以减少电磁辐射,阻断外界电磁波的干扰。
2.优化电源电路设计:电源线是电磁干扰的主要源头之一、通过优化电源电路的设计,可以降低电源的电磁辐射和干扰。
例如,采用低噪声电源模块和滤波电容器,可以有效减少电源线上的干扰信号。
3.使用合适的屏蔽材料:在设计和制造电子设备的过程中,选择合适的屏蔽材料是非常重要的。
屏蔽材料应该具有良好的电磁屏蔽性能,能够有效地吸收和反射电磁波,减少电磁辐射和干扰。
常用的屏蔽材料包括金属薄膜、导电海绵、射频吸波材料等。
4.合理布局电路板和组织线缆:电磁干扰的产生与电路板和线缆的布局有关。
在设计电子设备时,应合理布局电路板和组织线缆,避免不必要的电信号互相干扰。
例如,将高频和低频电路分开布局,或者采用地平面铺设和分层线缆等方法,可以有效减少电磁干扰。
5.进行电磁兼容性测试:在产品开发和生产过程中,应进行电磁兼容性测试,以确保电子设备符合相关的国际和国家标准。
通过测试,可以及早发现和解决可能存在的电磁干扰问题,确保产品的质量和性能。
总的来说,减少电磁干扰主要包括电磁屏蔽、电源电路优化、合适的屏蔽材料选择、合理布局电路板和线缆以及进行电磁兼容性测试等措施。
通过采取这些解决方案,可以有效减少电磁干扰,提高电子设备的性能和可靠性。
电器使用中的防止电路中的噪声干扰的屏蔽方法

电器使用中的防止电路中的噪声干扰的屏蔽方法电路中的噪声干扰是一种常见的问题,它会干扰到电子设备的正常工作,降低系统的性能和可靠性。
因此,为了确保电子设备的稳定和可靠工作,我们需要采取相应的屏蔽方法来减少噪声干扰的影响。
首先,我们需要了解噪声的种类和来源。
噪声可以分为外部噪声和内部噪声。
外部噪声主要来自于电源线、天线、无线电发射设备等,而内部噪声则源自于电子设备本身的运行。
了解噪声的来源,有助于我们采取相应的屏蔽措施。
在屏蔽噪声方面,我们可以采用以下几种方法:1. 电磁屏蔽材料:电磁屏蔽材料是一种具有良好电磁波吸收和反射性能的特殊材料。
通过在电路周围使用电磁屏蔽材料,可以抑制外部噪声的传播和内部噪声的辐射,从而有效降低噪声干扰。
常见的电磁屏蔽材料有金属屏蔽罩、铁氟龙屏蔽带、电磁波吸收材料等。
2. 地线屏蔽:电路中的地线可以用来屏蔽噪声。
通过将地线与噪声源进行电连接,可以消除或减轻噪声对电路的干扰。
同时,在布线时要注意地线的走向和长度,避免形成地线信号回路,从而减少噪声的传播。
3. 滤波器:滤波器是一种能够从电路中滤除特定频率成分的电子器件。
通过在电路中添加低通滤波器、高通滤波器、带通滤波器等,可以滤除噪声中的干扰成分,保持电路的稳定和可靠运行。
4. 电源滤波:电源线是噪声传播的主要途径之一。
因此,在电源线上添加滤波器可以有效地减少噪声对电路的干扰。
常见的电源滤波器包括电源隔离变压器、磁环滤波器、电源滤波电容器等。
5. 端口屏蔽:在电子设备中,信号输入输出端口是噪声干扰的重要来源。
为了减少噪声对端口的干扰,可以采取端口屏蔽的方法。
通过在端口周围添加屏蔽罩、屏蔽环、屏蔽带等,可以有效地隔离噪声信号。
除了以上屏蔽方法,还需注意合理布局电路板,避免信号线和电源线之间的干扰。
此外,在电子设备的设计中引入抑制噪声的措施,如增加阻尼电阻、使用低噪声元器件等,也是减少噪声干扰的有效手段。
综上所述,电器使用中防止电路中的噪声干扰的屏蔽方法可以通过选择电磁屏蔽材料、地线屏蔽、滤波器、电源滤波、端口屏蔽等手段来实现。
电磁屏蔽的一般方法分享

电磁屏蔽的一般方法分享电磁屏蔽普通可分为三种:静电屏蔽、静磁屏蔽和高频电磁场屏蔽。
三种屏蔽的目的都是防止外界的电磁场进入到某个需要庇护的区域中,原理都是利用屏蔽对外场的感应产生的效应来抵消外场的影响。
但是因为所要屏蔽的场的特性不同,因而对屏蔽壳材料的要求和屏蔽效果也就不相同。
一、静电屏蔽静电屏蔽的目的是防止外界的静电场进入需要庇护的某个区域。
静电屏蔽依据的原理是:在外界静电场的作用下导体表面电荷将重新分布,直到导体内部总场强到处为零为止。
接地的封闭金属壳是一种良好的静电屏蔽装置。
所示,接地的封闭金属壳把空间分割成壳内和壳外两个区域,金属壳维持在零电位。
按照静电场的唯一性定理,可以证实:金属壳内的电场仅由壳内的带电体和壳的电位所确定,与壳外的电荷分布无关。
当壳外电荷分布变幻时,壳层外表面上的电荷分布随之变幻,以保证壳内电场分布不变。
因此,金属壳对内部区域具有屏蔽作用。
壳外的电场仅由壳外的带电体和金属壳的电位以及无限远处的电位所确定,与壳内电荷分布无关。
当壳内电荷分布转变时,壳层内表面的电荷分布随之变幻,以保证壳外电场分布不变。
因此,接地的金属壳对外部区域也具有屏蔽作用。
在静电屏蔽中,金属壳接地是非常重要的。
当壳内或壳外区域中的电荷分布变幻时,通过接地线,电荷在壳层外表面和大地之间重新分布,以保证壳层电势恒定。
从物理图像上看,由于在静电平衡时,金属内部不存在电场,壳内外的电场线被金属隔断,彼此无联系,因此,导体壳有隔离壳内外静电互相作用的效应。
假如金属壳未彻低封闭,壳上开有孔或缝,也同样具有静电屏蔽作用。
在许多实际应用中,静电屏蔽装置经常是用金属丝编织成的金属网代替闭合的金属壳,即使一块金属板,一根金属线,亦有一定的静电屏蔽作用,只是屏蔽的效果不如金属壳。
在外电场的作用下,电荷在导体上的重新分布,在10-19秒数量级时第1页共5页。
磁屏蔽方法

磁屏蔽方法磁屏蔽是指通过一系列技术手段,将磁场限制在特定区域内,以保护敏感设备或场所免受外部磁场的干扰。
磁场干扰可能导致设备故障、数据丢失或泄露等问题,因此磁屏蔽方法的应用变得尤为重要。
磁屏蔽方法主要包括以下几种:一、屏蔽材料屏蔽材料是磁屏蔽方法中最常见的一种。
这种材料具有良好的磁导率和导磁性能,可以吸收和分散磁场,从而实现屏蔽效果。
常见的屏蔽材料有软铁、镍铁合金、钴铁合金等。
这些材料可以通过制成屏蔽罩、屏蔽垫、屏蔽套等形式使用,用于包裹或隔离敏感设备,从而达到磁场屏蔽的目的。
二、磁屏蔽结构设计磁屏蔽结构设计是一种通过改变电路或设备的结构,降低磁场干扰的方法。
通过合理设计电路布局、增加磁屏蔽层或设置屏蔽罩等手段,可以减少磁场的传播和干扰。
例如,在集成电路设计中,可以采用屏蔽穿孔、屏蔽接地等措施,有效降低磁场对电路的影响。
三、磁屏蔽绝缘材料磁屏蔽绝缘材料是一种特殊的材料,它可以在一定程度上抵抗磁场的干扰。
这种材料通常具有高温耐受性、低磁导率和良好的电绝缘性能。
在磁场干扰严重的环境中,可以使用磁屏蔽绝缘材料制作绝缘层、绝缘垫等,以保护敏感设备的安全运行。
四、磁屏蔽涂层磁屏蔽涂层是一种将磁屏蔽材料涂覆在设备表面的方法。
这种涂层通常具有高导磁性和高吸收磁场的能力,可以有效地屏蔽外部磁场。
磁屏蔽涂层可以应用于电子设备、通信设备、航空航天设备等领域,保护设备免受磁场干扰。
磁屏蔽方法在现代科技领域中有着广泛的应用。
随着科技的不断进步,磁场干扰问题也在不断增加,对磁屏蔽方法提出了更高的要求。
因此,研究和应用更加先进的磁屏蔽方法是当前的热点和挑战之一。
磁屏蔽方法是一种重要的技术手段,用于保护敏感设备免受磁场干扰。
通过选择合适的屏蔽材料、设计合理的磁屏蔽结构、应用磁屏蔽绝缘材料和磁屏蔽涂层等方法,可以达到有效的磁场屏蔽效果。
随着科技的不断发展,磁屏蔽方法也在不断创新和完善,为保护敏感设备的安全运行提供了有力的保障。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电磁屏蔽解决方案
导电漆的应用
电磁兼容性(Electromagnetic Compatibility)缩写EMC,就是指某电子设备既不干扰其它设备,同时也不受其它设备的影响。
电磁兼容性和我们所熟悉的安全性一样,是产品质量最重要的指标之一。
安全性涉及人身和财产,而电磁兼容性则涉及人身和环境保护。
电磁波会与电子元件作用,产生干扰现象,称为EMI(Electromagnetic Interference)。
例如,TV荧光屏上常见的“雪花”,便表示接受到的讯号被干扰。
屏蔽就是对两个空间区域之间进行金属的隔离,以控制电场、磁场和电磁波由一个区域对另一个区域的感应和辐射。
具体讲,就是用屏蔽体将元部件、电路、组合件、电缆或整个系统的干扰源包围起来,防止干扰电磁场向外扩散;用屏蔽体将接收电路、设备或系统包围起来,防止它们受到外界电磁场的影响。
因为屏蔽体对来自导线、电缆、元部件、电路或系统等外部的干扰电磁波和内部电磁波均起着吸收能量(涡流损耗)、反射能量(电磁波在屏蔽体上的界面反射)和抵消能量(电磁感应在屏蔽层上产生反向电磁场,可抵消部分干扰电磁波)的作用,所以屏蔽体具有减弱干扰的功能。
(1)当干扰电磁场的频率较高时,利用低电阻率的金属材料中产生的涡流,形成对外来电磁波的抵消作用,从而达到屏蔽的效果。
(2)当干扰电磁波的频率较低时,要采用高导磁率的材料,从而使磁力线限制在屏蔽体内部,防止扩散到屏蔽的空间去。
(3)在某些场合下,如果要求对高频和低频电磁场都具有良好的屏蔽效果时,往往采用不同的金属材料组成多层屏蔽体。
许多人不了解电磁屏蔽的原理,认为只要用金属做一个箱子,然后将箱子接地,就能够起到电磁屏蔽的作用。
在这种概念指导下结果是失败。
因为,电磁屏蔽与屏蔽体接地与否并没有关系。
真正影响屏蔽体屏蔽效能的只有两个因素:一个是整个屏蔽体表面必须是导电连续的,另一个是不能有直接穿透屏蔽体的导体。
屏蔽体上有很多导电不连续点,最主要的一类是屏蔽体不同部分结合处形成的不导电缝隙。
这些不导电的缝隙就产生了电磁泄漏,如同流体会从容器上的缝隙上泄漏一样。
解决这种泄漏的一个方法是在缝隙处填充导电弹性材料,消除不导电点。
这就像在流体容器的缝隙处填充橡胶的道理一样。
这种弹性导电填充材料就是电磁密封衬垫。
在许多文献中将电磁屏蔽体比喻成液体密封容器,似乎只有当用导电弹性材料将缝隙密封到滴水不漏的程度才能够防止电磁波泄漏。
实际上这是不确切的。
因为缝隙或孔洞是否会泄漏电磁波,取决于缝隙或孔洞相对于电磁波波长的尺寸。
当波长远大于开口尺寸时,并不会产生明显的泄漏。
现在有许多关于产品辐射和传导发射限制的国家标准和国际标准。
有些还规定了对各种干扰的最低敏感度要求。
通常,对于不同类型的电子设备有不同的标准。
虽然一个产品要获得市场的成功,满足这些标准是必要的,但符合这些标准是自愿的。
但是,有些国家给出的是规范,而不是标准,因此要在这些国家销售产品,符合标准是强制性的。
有些规范不仅规定了标准,还赋予当局罚没不符合产品的权力。
笔记本电脑,ADSL和移动电话等3C产品都会因高频电磁波干扰产生杂讯,影响通讯品质。
另若人体长期暴露于强力电磁场下,则可能易患癌症病变。
因此防电磁干扰已是必备而且势在必行的制程。
EMI导电漆喷涂技术具有高导电性、高电磁屏蔽效率、喷涂操作简单(同表面喷漆操作一样只须要在塑胶外壳内喷上薄薄一层导电漆)等特点,广泛应用于通讯制品(移动电话)、电脑(笔记本)、便携式电子产品、消费电子、网络硬件(服务器等)、医疗仪器、家用电子产品和航天及国防等电子设备的EMI屏蔽。
适用于各种塑胶制品的屏蔽(PC、PC+ABS、ABS等)。
喷涂导电漆解决了因做金属屏蔽罩受空间限制、操作、成本压力的限制,因其导电漆喷涂操作极其简单,做到了塑胶金属化,而受到越来越多的关注及推广。
逐渐取代了
以往贴锡箔、铜纸、做金属屏蔽罩的工艺。
在临近变电线路或电力设备的环境中,只涉及电场与磁场分析,3000赫兹以下的极低频电场和磁场(变电站即是)是以“场”的形式存在,根本不形成辐射,无法向外界辐射能量。
工频电场、磁场与高频电磁辐射的生物作用机理不同,并不类似高频电磁场那样以电磁波形式形成有限的电磁能量辐射或形成体内能力吸收。
电磁辐射通常是通过天线向外进行发射的,而电力设施在周围环境中产生的是工频电场与工频磁场,频率只有50赫兹,波长达6000千米,因此不可能在其周围(所谓“静场区”)形成有效的电磁能量辐射。
所谓“工频电磁辐射“的不确切概念,长期被国内一些文件引用并在社会上谬传,在很大程度上增加了公众对低频电场和磁场的误解。
有鉴于此,世界卫生组织(WHO)以及NIEHS、ICNIRP等权威的环境卫生组织和机构,在电磁环境与公众健康领域中,均无例外地严格引用“电场、磁场”(100赫兹以下)、电磁场(100k Hz以上)或统一运用ELF这一术语,不会采用“电磁辐射”这一不适当的概念。