八年级数学几何证明题技巧

八年级数学几何证明题技巧
八年级数学几何证明题技巧

几何证明题的技巧

1. 几何证明是平面几何中的一个重要问题,它有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。

2. 掌握分析、证明几何问题的常用方法:

(1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题解决; (2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止;

(3)分析综合法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。

3. 掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。 1、证明线段相等或角相等

两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。很多其它问题最后都可化归为此类问题来证。证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分

。求证:DE =DF

CD ,易得CD AD =,

证明:连结CD

ΘΘΘAC BC A B

ACB AD DB

CD BD AD DCB B A AE CF A DCB AD CD

=∴∠=∠∠=?=∴==∠=∠=∠=∠=∠=90,,,,

∴?∴=??ADE CDF

DE DF

说明:在直角三角形中,作斜边上的中线是常用的辅助线;在等腰三角形中,作顶角的平分线或底边上的中线或高是常用的辅助线。显然,在等腰直角三角形中,更应该连结CD ,因为CD 既是斜边上的中线,又是底边上的中

线。本题亦可延长ED 到G ,使DG =DE ,连结BG ,证?EFG 是等腰直角三角形。有兴趣的同学不妨一试。 说明:利用三角形全等证明线段求角相等。常须添辅助线,制造全等三角形,这时应注意: (1)制造的全等三角形应分别包括求证边或者角;

(2)添辅助线能够直接得到的两个全等三角形 2、证明直线平行或垂直

在两条直线的位置关系中,平行与垂直是两种特殊的位置。证两直线平行,可用同位角、内错角或同旁内角的关系来证。证两条直线垂直,

例2. 已知:如图4所示,AB =AC 证明一:连结AD

ΘΘAB AC BD DC

DAE BAC BD DC

BD AD

B DAB DAE

==∴+=?==?=∴=∴==,∠∠,∠∠,∠∠∠129090

在?ADE 和?BDF 中,

ΘAE BF B DAE AD BD ADE BDF

FD ED

===∴?∴∠=∠∴∠+∠=?∴⊥,∠∠,??31

3290

说明:有等腰三角形条件时,作底边上的高,或作底边上中线,或作顶角平分线是常用辅助线。 3、证明一线段和的问题

(一)在较长线段上截取一线段等一较短线段,证明其余部分等于另一较短线段。(截长法) 例3. 已知:如图6所示在?ABC 中,∠=?B 60,∠BAC 、∠BCA 的角平分线AD 、CE 相交于O 。

分析:在AC 上截取AF =AE 。易知??AEO AFO ?,∴∠=∠12。由∠=?B 60,知

∠+∠=?∠=?∠+∠=?566016023120,,。∴∠=∠=∠=∠=?123460,得:??FOC DOC FC DC ?∴=,

证明:在AC 上截取AF =AE

()

Θ∠=∠=∴?∴∠=∠BAD CAD AO AO

AEO AFO SAS ,??42

又∠=?B 60

∴∠+∠=?∴∠=?

∴∠+∠=?

∴∠=∠=∠=∠=?∴?∴=566016023120123460??FOC DOC AAS FC DC

()

即AC AE CD =+

(二)延长一较短线段,使延长后的线段等于另一较长线段,证明该线段等于较长线段。(补短法) 例4. 已知:如图7所示,正方形ABCD 中,F 在DC 上,E 在BC 上,∠=?EAF 45。求证:EF =BE +DF

分析:此题不易利用正方形这一条件。不妨延长CB 至G ,使BG =DF 。

证明:延长CB 至G ,使BG =DF 。 在正方形ABCD 中,∠=∠=?=ABG D AB AD 90,

∴?∴=∠=∠??ABG ADF SAS AG AF (),13

又∠=?EAF 45

∴∠+∠=?∴∠+∠=?

23452145

即∠GAE =∠FAE

∴=∴=+GE EF EF BE DF

【实战模拟】

1. 已知:如图11

求证:DE CD =

1

2

2. 已知:如图12

3. 已知:如图13所示,过?ABC 的顶点A ,在∠A 内任引一射线,过B 、C 作此射线的垂线BP 和CQ 。设M 为BC 的中点。 求证:MP =MQ

【试题答案】

1. 证明:取CD 的中点F ,连结AF

ΘAC AD AF CD AFC CDE =∴⊥∴∠=∠=?

90

又∠+∠=?∠+∠=?14901390,

∴∠=∠=∴?∴=∴=431

2

ΘAC CE

ACF CED ASA CF ED

DE CD

??()

2. 分析:本题采用“截长补短”的手法。“截长”即将长的线段截成两部分,证明这两部分分别和两条短线段相等;“补短”即将一条短线段延长出另一条短线段之长,证明其和等于长的线段。

证明:延长CA 至E ,使CE =CB ,连结ED 在?CBD 和?CED 中,

ΘΘCB CE BCD ECD CD CD CBD CED

B E

BAC B BAC E

=∠=∠=???

?

?∴?∴∠=∠∠=∠∴∠=∠??22

又∠=∠+∠BAC ADE E

∴∠=∠∴=∴==+=+ADE E AD AE

BC CE AC AE AC AD

3. 证明:延长PM 交CQ 于R

ΘCQ AP BP AP

BP CQ

PBM RCM

⊥⊥∴∴∠=∠,//

又BM CM BMP CMR =∠=∠,

∴?∴=??BPM CRM

PM RM

∴QM 是Rt QPR ?斜边上的中线 ∴=MP MQ

八年级上数学几何证明练习题

C A B C D E P 图 ⑴八年级数学(上)几何证明练习题 1、 已知:在⊿ABC 中,∠A=900 ,AB=AC ,在BC 上任取一点P ,作PQ ∥AB 交AC 于Q ,作PR ∥CA 交BA 于R ,D 是BC 的中点,求证:⊿RDQ 是等腰直角三角形。 B 2、 已知:在⊿ABC 中,∠A=900 ,AB=AC ,D 是AC 的中点,AE ⊥BD ,AE 延长线交BC 于F ,求 证:∠ADB=∠FDC 。 3、 已知:在⊿ABC 中BD 、CE 是高,在BD 、CE 或其延长线上分别截取BM=AC 、CN=AB ,求证: MA ⊥NA 。 4、已知:如图(1),在△ABC 中,BP 、CP 分别平分∠ABC 和∠ACB ,DE 过点P 交AB 于D ,交AC 于E ,且DE ∥BC .求证:DE -DB=EC .

5、在Rt △ABC 中,AB =AC ,∠BAC =90°,O 为BC 的中点。 (1)写出点O 到△ABC 的三个顶点A 、B 、C 的距离的大小关系(不要求证明); (2)如果点M 、N 分别在线段AB 、AC 上移动,在移动中保持AN =BM ,请判断△OMN 的形状,并证明你的结论。 6、如图,△ABC 为等边三角形,延长BC 到D ,延长BA 到E ,AE=BD , 连结EC 、ED ,求证:CE=DE 7、如图,等腰三角形ABC 中,AB =AC ,∠A =90°,BD 平分∠ABC ,DE ⊥BC 且BC =10,求△DCE 的周长。 A B C O M N

几何证明习题答案 1. 连接AD,由△ABC为等腰直角三角形可得AD垂直AC,且AD=BD,∠DAQ=∠DBR=45度, 又由平行关系得,四边形RPQA为矩形,所以AQ=RP, △BRP也是等腰直角三角行,即BR=PR,所以AQ=BR 由边角边,△BRD全等于△AQD,所以∠BDR=∠ADQ,DR=DQ, ∠RDQ=∠RDA+∠ADQ=∠RDA+∠BDR=90度, 所以△RDQ是等腰RT△。 2. 作AG平分∠BAC交BD于G ∵∠BAC=90°∴∠CAG= ∠BAG=45° ∵∠BAC=90°AC=AB ∴∠C=∠ABC=45° ∴∠C=∠BAG ∵AE⊥BD ∴∠ABE+∠BAE=90° ∵∠CAF+∠BAE=90°∴∠CAF=∠ABE ∵AC=AB ∴△ACF ≌△BAG ∴CF=AG ∵∠C=∠DAG =45°CD=AD ∴△CDF ≌△ADG ∴∠CDF=∠ADB 3. 易证△ABM≌△NAC.∠NAM=∠NAE+∠BAM=∠NAE+ANE=90° 4. 略 5.(1)因为直角三角形的斜边中点是三角形的外心, 所以O到△ABC的三个顶点A、B、C距离相等; (2)△OMN是等腰直角三角形。 证明:连接OA,如图, ∵AC=AB,∠BAC=90°,∴OA=OB,OA平分∠BAC,∠B=45°, ∴∠NAO=45°,∴∠NAO=∠B, 在△NAO和△MBO 中, AN=BM ,∠NAO=∠B ,AO=BO , ∴△NAO≌△MBO,∴ON=OM,∠AON=∠BOM, ∵AC=AB,O是BC的中点,∴AO⊥BC, 即∠BOM+∠AOM=90°,∴∠AON+∠AOM=90°, 即∠NOM=90°,∴△OMN是等腰直角三角形. 6. 延长CD到F,使DF=BC,连结EF ∵AE=BD ∴AE=CF ∵△ABC为正三角形∴BE=BF ∠B=60° ∴△EBF为等边三角形∴角F=60°EF=EB 在△EBC和△EFD中 EB=EF(已证)∠B=∠F(已证)BC=DF(已作) ∴△EBC≌△EFD(SAS)∴EC=ED 7. 周长为10.

初二数学压轴几何证明题含答案

1.四边形ABCD是正方形,△BEF是等腰直角三角形,∠BEF=90°,BE=EF,连接DF,G为DF的中点,连接EG,CG,EC. (1)如图1,若点E在CB边的延长线上,直接写出EG与GC的位置关系及的值; (2)将图1中的△BEF绕点B顺时针旋转至图2所示位置,请问(1)中所得的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由; (3)将图1中的△BEF绕点B顺时针旋转α(0°<α<90°),若BE=1,AB=,当E,F,D三点共线时,求DF的长及tan∠ABF的值. 解:(1)EG⊥CG,=, 理由是:过G作GH⊥EC于H, ∵∠FEB=∠DCB=90°, ∴EF∥GH∥DC, ∵G为DF中点, ∴H为EC中点, ∴EG=GC,GH=(EF+DC)=(EB+BC), 即GH=EH=HC, ∴∠EGC=90°, 即△EGC是等腰直角三角形, ∴=;

(2) 解:结论还成立, 理由是:如图2,延长EG到H,使EG=GH,连接CH、EC,过E作BC的垂线EM,延长CD,∵在△EFG和△HDG中 ∴△EFG≌△HDG(SAS), ∴DH=EF=BE,∠FEG=∠DHG, ∴EF∥DH, ∴∠1=∠2=90°-∠3=∠4, ∴∠EBC=180°-∠4=180°-∠1=∠HDC, 在△EBC和△HDC中 ∴△EBC≌△HDC. ∴CE=CH,∠BCE=∠DCH, ∴∠ECH=∠DCH+∠ECD=∠BCE+∠ECD=∠BCD=90°, ∴△ECH是等腰直角三角形, ∵G为EH的中点, ∴EG⊥GC,=, 即(1)中的结论仍然成立; (3) 解:连接BD,

小学数学常用解题技巧(解几何题技巧)

小学数学常用解题技巧:解几何题技巧 解几何题技巧 1.等分图形 【均分整体】有些几何问题,只要把大图形均分为若干个小图形,就能找到问题的答案。 例如,下面两图中的正方形分别内接于同一个等腰直角三角形(内接指四个顶点全在三角形的边上)。已知左图(图4.11)中正方形面积为72平方厘米,求右图( 4.12)中正方形的面积。 由于左右两个三角形完全相同,我们不妨把这两个图形进行等分,看看这两个正方形分别与同一个等腰直角三角 形有什么样的关系。等分后的情况见图 4.13和图 4.14。 积是 图4.12的正方形面积是 【均分局部】有些几何问题,整体的均分不太方便,或不能够办到,这时可以考虑把它的局部去均分,然后从整 体上去观察,往往也能使问题获得解决。 例如图 4.15,在正方形ABCD中,画有甲、乙、丙三个小正方形。问:乙、丙面积之和与甲相比,哪一个大些? 大家由前面的“均分整体”已经知道,像甲、乙这样的两个正方形,面积不是相等的。如图 4.16,经过等分,正方形甲的面积等于△ABC面积的一半;正方形丙的面积等于△EDF的一半,正方形乙的面积等于梯形ACFE面积的一半。这样,一个大正方形ABCD,就划分成了三个局部:等腰直角△ABC;等腰梯形ACFE;等腰直角△EDF。其中甲、乙、丙的面积分别为各自所在图形的一半,而△EDF的面积加梯形ACFE的面积等于△ADC的面积,即等于△ABC的面积。所以,乙、丙面积之和等于甲的面积。

2.平移变换 【平移线段】有些几何问题,通过线段的上、下、左、右平移以后,能使问题很快地得到正确的解答。 例如,下面的两个图形(图 4.17和图4.18)的周长是否相等? 单凭眼睛观察,似乎图 4.18的周长比图 4.17的要长一些。但把有关线段平移以后,图 4.18就变成了图 4.19,其中的线段,有的上移,有的左移,有的右移,它可移成一个正方形。于是,不难发现两图周长是相等的。 【平移空白或阴影部分】有些求阴影部分或空白部分面积的几何题,采用平移空白部分或平移阴影部分的办法, 往往能化难为易,很快使问题求得解答。例如,计算图 4.20中阴影部分的面积。 圆面积”,然后相加,得整个阴影部分的面积。这显然是很费时费力的。但认真观察一下就会发现,图 4.20左半左上部的空白部分,与右半左上部的阴影部分大小一样,只需将右半左上部的阴影部分,平移到左半左上部的空白部分,所 有的阴影部分便构成一个正方形了(如图 4.21)。所以,阴影部分的面积很快就可求得为5×5=25。 又如,一块长30米,宽24米的草地,中间有两条宽2米的走道,把草地分为四块,求草地的面积(如图 4.22)。 这只要把丙向甲平移靠拢,把丁向乙平移靠拢,题目也就很快能解答出来了。(具体解法略) 3.旋转变换 【旋转成定角】例如下面的题目: “在图 4.23中,半径为8厘米的圆的内外各有一个正方形,圆内正方形顶点都在圆周上,圆外正方形四条边与圆 都只有一个接触点。问:“大正方形的面积比小正方形的面积大多少?”

八年级上册几何证明题专项练习

八年级上册几何证明题专项练习 1.如图,△ABC、△CDE均为等腰直角三角形,∠ACB=∠DCE=90°,点E在AB上.求证:△CDA≌△CEB. 2.如图,BD⊥AC于点D,CE⊥AB于点E,AD=AE.求证:BE=CD. 3.如图,已知点B,E,C,F在一条直线上,AB=DF,AC=DE,∠A=∠D. (1)求证:AC∥DE; (2)若BF=13,EC=5,求BC的长. 4.如图:点C是AE的中点,∠A=∠ECD,AB=CD,求证:∠B=∠D. 5.如图,点D是AB上一点,DF交AC于点E,DE=FE,FC∥AB 求证:AE=CE. 6.如图,BE⊥AC,CD⊥AB,垂足分别为E,D,BE=CD.求证:AB=AC. 7.如图,点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD.求证:AE=FB.8.如图,在△ABC中,AC=BC,∠C=90°,D是AB的中点,DE⊥DF,点E,F分别在AC,BC上,求证:DE=DF. 9.如图,点A、C、D、B四点共线,且AC=BD,∠A=∠B,∠ADE=∠BCF,求证:DE=CF.10.如图,已知∠CAB=∠DBA,∠CBD=∠DAC. 求证:BC=AD. 11.如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF,求证:AB∥DE.12.如图,AB∥CD,E是CD上一点,BE交AD于点F,EF=BF.求证:AF=DF.13.已知△ABN和△ACM位置如图所示,AB=AC,AD=AE,∠1=∠2. (1)求证:BD=CE; (2)求证:∠M=∠N. 14.如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D,E. 求证:△ACD≌△CBE. 15.如图,四边形ABCD中,E点在AD上,∠BAE=∠BCE=90°,且BC=CE,AB=DE.求证:△ABC≌△DEC. 16.如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连结AE、DE、DC. ①求证:△ABE≌△CBD; ②若∠CAE=30°,求∠BDC的度数. 17.如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证: (1)FC=AD; (2)AB=BC+AD. 18.如图,在△ABC中,DM、EN分别垂直平分AC和BC,交AB于M、N两点,DM与EN相交于点F. (1)若△CMN的周长为15cm,求AB的长; (2)若∠MFN=70°,求∠MCN的度数. 19.已知△ABC中,AD是∠BAC的平分线,AD的垂直平分线交BC的延长线于F. 求证:∠BAF=∠ACF. 20.如图所示,在Rt△ABC中,∠ACB=90°,AC=BC,D为BC边上的中点,CE⊥AD于点E,BF∥AC交CE的延长线于点F,求证:AB垂直平分DF.

初二数学-几何证明题

初二数学-几何证明 1如图,在平行四边形中,点 E , F 是对角线BD 上两点,且BF DE . (1) 写出图中每一对你认为全等的三角形; (2) 选择(1)中的任意一对全等三角形进行证明. 2、如图,E 、F 是平行四边形 ABCD 对角线BD 上的两点,给出下列三个条件:① BE = DF ; ②/ AEB =Z DFC ;③AF // EC 。请你从中选择一个适当的条件 ________________________ ,使四 边形AECF 是平行四边形,并证明你的结论。 3、如图△ ADF 和厶BCE 中,/ A= / B ,点D 、E 、F 、C 在同一直线上, 有如下三个关系式: ① AD=BC :② DE=CF :③ BE // AF 。 1)请用其中两个关系式作为条件,另一个作为结论,写出一个你认为正确的命题. (用序号 写出命题书写形式,如:如果O ,那么◎ 2)选择(1)中你写出的命题,说明它正确的理由. 4、如图,在菱形 ABCD 中,/ A=60 ° , AB=4 , E 是边 AB 上一动 点,过点 E 作EF 丄AB 交AD 的延长线于点 F ,交BD 于点M .请判 断厶DMF 的形状,并说明理由. 匚 C

5、.如图,在口ABCD中,E为BC边上一点,且AB AE . (1)求证:△ ABC◎△ EAD . (2)若AE 平分/ DAB,/ EAC 25°,求/ AED 的度数. 6、如图,在等边△ ABC中,点D为AC中点,以AD为边作菱形ADEF,且AF // BC , 连结FC交DE于点G . 求证:△ ADB AFC ; 7、如图.在梯形纸片ABCD中.AD // BC, AD>CD .将纸片沿过点D的直线折叠,使点C 落在AD上的点C’处,折痕DE交BC于点E.连结C乍 ⑴求证:四边形CD C'E是菱形; ⑵若BC = CD+AD,试判断四边形ABED的形状,并加以 证明;

初二数学几何证明初步练习题含答案

几何证明初步练习题 1、三角形的内角和定理:三角形的内角和等于180°. 推理过程: ○ 1 作CM ∥AB ,则∠A= ,∠B= ,∵∠ACB +∠1+∠2=1800( ,∴∠A+∠B+∠ACB=1800. ○ 2 作MN ∥BC ,则∠2= ,∠3= ,∵∠1+∠2+∠3=1800,∴∠BAC+∠B+∠C=1800 . 2.求证:在一个三角形中,至少有一个内角大于或者等于60°。 3、.如图,在△ABC 中,∠C >∠B,求证:AB >AC 。 4. 已知,如图,AE 5. 已知:如图,EF ∥AD ,∠1 =∠2. 求证:∠AGD +∠BAC = 180°. 反证法经典例题 6.求证:两条直线相交有且只有一个交点. 7.如图,在平面内,AB 是L 的斜线,CD 是L 的垂线。 求证:AB 与CD 必定相交。 8.2 一.角平分线--轴对称 9、已知在ΔABC 中,E为BC的中点,AD 平分BAC ∠,BD ⊥AD 于D .AB =9,AC=13 求DE的长 第9题图 第10题图 第11题图 分析:延长BD交AC于F.可得ΔABD ≌ΔAFD .则BD =DF .又BE =EC ,即D E为Δ BCF 的中位线.∴DE=12FC=12 (AC-AB)=2. 10、已知在ΔABC 中,108A ∠=,AB =AC ,分ABC ∠.求证:BD 平BC =AB +CD . 分析:在BC上截取BE=BA,连接D E.可得ΔBAD ≌ΔBED .由已知可得:18ABD DBE ∠=∠=,108A BED ∠=∠=, 36C ABC ∠=∠=.∴72DEC EDC ∠=∠=,∴CD =CE ,∴BC =AB +CD . 11、如图,ΔABC 中,E是BC 边上的中点,DE ⊥BC 于E ,交BAC ∠的平分线AD 于D , 过D 作DM ⊥AB 于M,作DN ⊥AC 于N .求证:BM =CN . 分析:连接DB 与DC .∵DE 垂直平分BC ,∴DB =DC .易证ΔAMD ≌ΔAND . ∴有DM =DN .∴ΔBMD ≌ΔCND (HL).∴BM =CN . 二、旋转 12、如图,已知在正方形ABCD 中,E在BC 上,F在DC 上,BE +DF =EF . 求证:45EAF ∠=. 分析:将ΔADF 绕A顺时针旋转90得ABG .∴GAB FAD ∠=∠.易 证ΔAGE ≌ΔAFE . ∴ 1452FAE GAE FAG ∠=∠=∠= 13、如图,点E 在ΔABC 外部,D 在边BC 上,DE 交AC 于F .若123∠=∠=∠, AC=AE.求证:ΔABC ≌ΔADE . C B A D E F D A B C B A E D N M B D A C 213E D B A

数学几何解题技巧

初中数学教学中几何解题思路分析 【摘要】平面几何在初中数学中一直占据着很重要的位置。而学生在对几何知识进行学习和掌握的过程中,最重要的一个部分就是能够应用到实践中进行解题。正像美国一位著名的数学家曾经所说过的那样:“数学这门学科,真正的组成部分就是问题和解题,在问题与解题中,解题就是数学的心脏所在。”学生在学习的过程中是否会解题,能否对一定的解题技巧与方法进行掌握对学生学习效果有直接的影响。对教师来说,学生对基本的解题能力进行掌握,也是“双基”教学的一个方面。在数学中对基本的解题方法和技巧进行注意,对学生的学习能力的提高无疑有着重要的促进作用,与此同时还能够对学生良好学习习惯的形成有推动作用。 【关键词】初中数学;教学;几何;解题思路; 对初中的几何教学来说,初中几何中的重要部分是解题技巧与规律教学。尤其是在初中几何的后期与复习阶段,通过对学生的几何解题技巧的培养,能够使学生对知识有系统性的掌握,同时能够培养其对知识进行灵活应用的能力。当然,处了解题技巧与规律的培养,还应该注意对学生思维能力的培养。只有思维能力得到提高,才能更好地掌握解题技巧与规律。下面我们通过具体的实例进行详细分析初中数学几何题的解题思路, 一、初中数学几何的解题技巧 1、对常见的题型与解题方法进行归纳总结 初中的几何题中,其实常见的题型并不多,所以这对经常见的几何题型与解题方法进行归纳与总结,是初中几何解题一个和实用的解题技巧。初中几何,证明题是最常见的,而证明题中,又以线段或角的一些关系的证明最为常见。对线段的关系的证明通常包括相等及其和差关系等的证明。在这些中,相等关系的证明是学生应该进行的基本掌握,对线段相等关系的证明,在思路与方法上常用的包括“三角形全等”、“比例线段”以及“等角对等边”和对中间量的过渡进行选取等思路。在这些方法中,“三角形全等”是最常用的,也是应该掌握的基本解题方法。对线段不等关系则一般常用“线段公理”,而对线段的和差及其它(如倍、分)关系,在解题过程中要注意使用截长、补短等技巧。对常见技巧进行掌握,能有效提高学生的解题效率。 2、注意对辅助线进行添加和使用 在对初中几何进行解题的过程中,除了要对常用的解题方法与规律进行掌握外,还要对辅助线的添加与使用加以关注。在初中几何题中,当直接解题出现障碍使,添加辅助线是常见的解题技巧,往往会让人产生一种“柳暗花明又一村”的感觉。对常见技巧进行掌握,能有效提高学生的解题效率。下面我们通过一道例题详细进行分析几何证明题的解题方法及技巧: 如下图所示,已知:在ABC ?中,?=∠90C ,BC AC =,DB AD =,BF AE =,求证:DF DE =,

初二几何证明题

28.(本小题满分10分) 如图,在矩形ABCD中,AB=8,AD=6,点P、Q分别是AB边和CD边上的动点,点P从点A 向点B运动,点Q从点C向点D运动,且保持AP-CQ。设AP=x (1)当PQ∥AD时,求x的值; (2)当线段PQ的垂直平分线与BC边相交时,求x的取值范围; (3)当线段PQ的垂直平分线与BC相交时,设交点为E,连接EP、EQ,设△EPQ的面积为S,求S关于x的函数关系式,并写出S的取值范围。 21.(本小题满分9分) 如图,直线y x m =+与双曲线 k y x =相交于A(2,1)、B两点. (1)求m及k的值; (2)不解关于x、y的方程组 , , y x m k y x =+ ? ? ? = ?? 直接写出点B的坐标; (3)直线24 y x m =-+经过点B吗?请说明理由. (第21题)

28.(2010江苏淮安,28,12分)如题28(a)图,在平面直角坐标系中,点A坐标为(12,0),点B坐标为(6,8),点C为OB的中点,点D从点O出发,沿△OAB的三边按逆时针方向以2个单位长度/秒的速度运动一周. (1)点C坐标是( ,),当点D运动8.5秒时所在位置的坐标是( ,); (2)设点D运动的时间为t秒,试用含t的代数式表示△OCD的面积S,并指出t为何值 时,S最大; (3)点E在线段AB上以同样速度由点A向点B运动,如题28(b)图,若点E与点D同时 出发,问在运动5秒钟内,以点D,A,E为顶点的三角形何时与△OCD相似(只考虑以点A.O为对应顶点的情况): 题28(a)图题28(b)图 (10江苏南京)21.(7分)如图,四边形ABCD的对角线AC、BD相较于点O,△ABC≌△BAD。求证:(1)OA=OB;(2)AB∥CD. (10江苏南京)28.(8分)如图,正方形ABCD的边长是2,M是AD的中点,点E从点A

初二数学几何解题技巧

初二数学几何解题技巧 【知识梳理】 1、几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。几何证明有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。 2、掌握分析、证明几何问题的常用方法: (1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决; (2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止; (3)两头凑法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。 3、掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。

【专题一】证明线段相等或角相等 两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。很多其它问题最后都可化归为此类问题来证。证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的性质、等腰三角形的判定与性质等也经常用到。 【专题二】证明直线平行或垂直 在两条直线的位置关系中,平行与垂直是两种特殊的位置。证两直线平行,可用同位角、内错角或同旁内角的关系来证,也可通过边对应成比例、三角形中位线定理证明。证两条直线垂直,可转化为证一个角等于90°,或利用两个锐角互余,或等腰三角形“三线合一”来证。 【专题三】证明线段和的问题 (一)在较长线段上截取一线段等一较短线段,证明其余部分等于另一较短线段。(截长法) (二)延长一较短线段,使延长部分等于另一较短线段,则两较短线段成为一条线段,证明该线段等于较长线段。(补短法)

初中数学几何证明经典题(含答案)

初中几何证明题 经典题(一) 1、已知:如图,O是半圆的圆心,C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO. 求证:CD=GF.(初二) .如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH=∠OEG, 即△GHF∽△OGE,可得EO GF = GO GH = CO CD ,又CO=EO,所以CD=GF得证。 2、已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=150. 求证:△PBC是正三角形.(初二) .如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH=∠OEG, 即△GHF∽△OGE,可得EO GF = GO GH = CO CD ,又CO=EO,所以CD=GF得证。 .如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH=∠OEG, 即△GHF∽△OGE,可得EO GF = GO GH = CO CD ,又CO=EO,所以CD=GF得证。 A P C D B A F G C E B O D

3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、 CC 1、DD 1的中点. 求证:四边形A 2B 2C 2D 2是正方形.(初二) 4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F . 经典题(二) 1、已知:△ABC 中,H 为垂心(各边高线的交点),O (1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二) D 2 C 2 B 2 A 2 D 1 C 1 B 1 C B D A A 1 B

初中数学代数几何解题技巧

如何用好题目中的条件暗示 有一类题目,我们在解前面几小题时,其解题思路和方法往往对解后面问题起着很好的暗示作用,现以一次函数中出现的两道题目为例予以说明,供同学们在学习过程中参考。 【例1】直线与x轴、y轴分别交于B、A两点,如图1。 图1 (1)求B、A两点的坐标; (2)把△AOB以直线AB为轴翻折,点O落在平面上的点C处,以BC为一边作等边△BCD。求D点的坐标。 解析:(1)容易求得,A(0,1)。 (2)如图2, 图2 ∵,A(0,1), ∴OB=,OA=1。 ∴在Rt△AOB中,容易求得∠OBA=30° ∵把△AOB以直线AB为轴翻折, ∴∠OBC=2∠OBA=60°,BO=BC。 ∴△OBC是等边三角形 以BC为一边作等边△BCD,则D的落点有两种情形,可分别求得D的坐标为(0,0),。 反思:在求得第(1)小题中B、A两点的坐标分别为B(,0),A(0,1),实质上暗示着Rt△AOB中,OA=1,OB=,即暗示着∠OBA=30°,为解第(2)小题做了很好的铺垫。

【例2】直线与x轴、y轴分别交于A、B,以线段AB为直角边在第一象限内作等腰Rt△ABC,∠BAC=90°,且点P(1,a)为坐标系中的一个动点,如图3。 图3 (1)求三解形ABC的面积。 (2)证明不论a取任何实数,三角形BOP的面积是一个常数; (3)要使得△ABC和△ABP的面积相等,求实数a的值。 解析:(1)容易求得:A(,0),B(0,1), ∴。 (2)如图4,连接OP、BP,过点P作PD垂直于y轴,垂足为D,则三角形BOP的面积为,故不论a取任何实数,三角形BOP的面积是一个常数。 图4 (3)如图4,①当点P在第四象限时由第(2)小题中的结果:,和第(3)小题的条件可得: ∴, ∵,

八年级数学《几何证明初步》练习题

八年级数学《几何证明初步》练习题 一、选择题 1.下列命题中,真命题是( ) A .互补的两个角若相等,则两角都是直角 B .直线是平角 C .不相交的两条直线叫平行线 D .和为180°的两个角叫做互补角 2.如图2,AB ∥CD,AF 分别交AB 、CD 于A 、C 并且C E 平分∠DCF,∠1=800 ,则 等于( ) A .40° B .50° C .60° D .70° 2 3 3.如图3, ,那么 等于( ) A .180° B .360° C .540° D .720° 4.下列结论中不正确的是( ) A .如果一条直线与两条平行线中的一条平行,那么这条直线与另一条也平行 B .如果一条直线与两条平行线中的一条垂直,那么这条直线与另一条也垂直 C .如果一条直线与两条平行线中的一条相交,那么这条直线与另一条也相交 D .以上结论中只有一个不正确 5、在△ABC 中,AC=BC >AB,点P 为△ABC 所在平面内一点,且点P 与△ABC 的任意两个顶点构 成△PAB, △PBC,△PAC 均为等腰三角形,则满足上述条件的所有点P 的个数为( ) A.3个 B.4个 C.6个 D.7个 6、△ABC 中,∠C=900,AC=BC,AD 是∠BAC 的平分线,DE ⊥AB,垂足为点E,若AB=10 则△DBE 周长为( ) A .10 B.8 C.12 D.9 7.如图点D 在A B 上,点E 在A C 上并且∠B=∠C,那么补充下列一个 件后,仍无法判断△ABE ≌△AC D 的是( ) A.AD=AE B.∠AEB=∠ADC C. BE=CD D. AB=AC 8. 下列推理正确的是( ) A.如果a >b,b >c,则a >c B.因为∠AOB =∠BOC,所以∠AOB 与∠BOC 是对顶角 D.因为两角的和是1800,所以两角互为邻补角 D. 若a >b,则ac >bc E B D C A

高考中常见的立体几何题型和解题方法

高考中常见的立体几何题型和解题方法 黔江中学高三数学教师:付 超 高考立体几何试题一般共有2——3道(选择、填空题1——2道, 解答题1道), 共计总分18——23分左右,考查的知识点在20个以内. 选择填空题考核立几中的 逻辑推理型问题, 而解答题着重考查立几中的计算型问题, 当然, 二者均应以正 确的空间想象为前提. 随着新的课程改革的进一步实施,立体几何考题正朝着“多 一点思考,少一点计算”的方向发展.从历年的考题变化看, 以简单几何体为载体 的线面位置关系的论证,角与距离的探求是常考常新的热门话题. 一、知识整合 1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过 程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与 距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行 与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能, 通过对问题的分析与概括,掌握立体几何中解决问题的规律——充分利用线线平 行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能 力和空间想象能力. 2. 判定两个平面平行的方法: (1)根据定义——证明两平面没有公共点; (2)判定定理——证明一个平面内的两条相交直线都平行于另一个平面; (3)证明两平面同垂直于一条直线。 3.两个平面平行的主要性质: ⑴由定义知:“两平行平面没有公共点”。 ⑵由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平 面。 ⑶两个平面平行的性质定理:“如果两个平行平面同时和第三个平面相交, 那 么它们的交线平行”。 ⑷一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。 ⑸夹在两个平行平面间的平行线段相等。 ⑹经过平面外一点只有一个平面和已知平面平行。 以上性质⑵、⑷、⑸、⑹在课文中虽未直接列为“性质定理”,但在解题过 程中均可直接作为性质定理引用。 4.空间角和距离是空间图形中最基本的数量关系,空间角主要研究射影以 及与射影有关的定理、空间两直线所成的角、直线和平面所成的角、以及二面角 和二面角的平面角等.解这类问题的基本思路是把空间问题转化为平面问题去解 决. 空间角,是对由点、直线、平面所组成的空间图形中各种元素间的位置关系 进行定量分析的一个重要概念,由它们的定义,可得其取值范围,如两异面直线 所成的角θ∈(0,2π],直线与平面所成的角θ∈0,2π?????? ,二面角的大小,可用它们的平面角来度量,其平面角θ∈[0,π].对于空间角的计算,总是通过一定 的手段将其转化为一个平面内的角,并把 它置于一个平面图形,而且是一个三

初二上几何证明题100题专题训练

C A B C D E P 图 ⑴八年级上册几何题专题训练100题 1、 已知:在⊿ABC 中,∠A=900 ,AB=AC ,在BC 上任取一点P ,作PQ ∥AB 交AC 于Q ,作PR ∥CA 交BA 于R ,D 是BC 的中点,求证:⊿RDQ 是等腰直角三角形。 C B 2、 已知:在⊿ABC 中,∠A=900 ,AB=AC ,D 是AC 的中点,AE ⊥BD ,AE 延长线交BC 于F ,求证:∠ADB=∠FDC 。 3、 已知:在⊿ABC 中BD 、CE 是高,在BD 、CE 或其延长线上分别截取BM=AC 、CN=AB ,求证:MA ⊥NA 。 4、已知:如图(1),在△ABC 中,BP 、CP 分别平分∠ABC 和∠ACB ,DE 过点P 交AB 于D ,交AC 于E ,且DE ∥BC .求证:DE -DB=EC .

5、在Rt△ABC中,AB=AC,∠BAC=90°,O为BC的中点。 (1)写出点O到△ABC的三个顶点A、B、C的距离的大小关系(不要求证明); (2)如果点M、N分别在线段AB、AC上移动,在移动中保持AN=BM,请判断△OMN的形状,并证明你的结论。 6、如图,△ABC为等边三角形,延长BC到D,延长BA到E,AE=BD, 连结EC、ED,求证:CE=DE 7、如图,等腰三角形ABC中,AB=AC,∠A=90°,BD平分∠ABC,DE⊥BC且BC=10,求△DCE的周长。 8. 如图,已知△EAB≌△DCE,AB,EC分别是两个三角形的最长边,∠A=∠C=35°,∠CDE=100°,∠DEB=10°,求∠AEC的度数. A B C O M N

初中数学所有几何证明定理

初中数学所有几何证明定理 证明题的思路 很多几何证明题的思路往往是填加辅助线,分析已知、求证与图形,探索证明。对于证明题,有三种思考方式: (1)正向思维。对于一般简单的题目,我们正向思考,轻而易举可以做出,这里 就不详细讲述了。 (2)逆向思维。顾名思义,就是从相反的方向思考问题。在初中数学中,逆向思 维是非常重要的思维方式,在证明题中体现的更加明显。 同学们认真读完一道题的题干后,不知道从何入手,建议你从结论出发。 例如: 可以有这样的思考过程:要证明某两条边相等,那么结合图形可以看出,只要 证出某两个三角形相等即可;要证三角形全等,结合所给的条件,看还缺少什 么条件需要证明,证明这个条件又需要怎样做辅助线,这样思考下去……这样 我们就找到了解题的思路,然后把过程正着写出来就可以了。 (3)正逆结合。对于从结论很难分析出思路的题目,可以结合结论和已知条件认 真的分析。 初中数学中,一般所给的已知条件都是解题过程中要用到的,所以可以从已知 条件中寻找思路,比如给我们三角形某边中点,我们就要想到是否要连出中位线,或者是否要用到中点倍长法。给我们梯形,我们就要想到是否要做高,或 平移腰,或平移对角线,或补形等等。正逆结合,战无不胜。 证明题要用到哪些原理?

要掌握初中数学几何证明题技巧,熟练运用和记忆如下原理是关键。 下面归类一下,多做练习,熟能生巧,遇到几何证明题能想到采用哪一类型原理来解决问题。 一、证明两线段相等 1.两全等三角形中对应边相等。 2.同一三角形中等角对等边。 3.等腰三角形顶角的平分线或底边的高平分底边。 4.平行四边形的对边或对角线被交点分成的两段相等。 5.直角三角形斜边的中点到三顶点距离相等。 6.线段垂直平分线上任意一点到线段两段距离相等。 7.角平分线上任一点到角的两边距离相等。 8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。 9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。 10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。 11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。 12.两圆的内(外)公切线的长相等。 13.等于同一线段的两条线段相等。 二、证明两个角相等 1.两全等三角形的对应角相等。 2.同一三角形中等边对等角。 3.等腰三角形中,底边上的中线(或高)平分顶角。

上海初二数学几何证明练习之全等三角形

上海初中数学几何证明练习之全等三角形 一、填空题(每小题2分,共20分) 1.如图,△ABC ≌△DEB ,AB =DE ,∠E =∠ABC ,则∠C 的对应角为 ,BD 的对应边为 . 2.如图,AD =AE ,∠1=∠2,BD =CE ,则有△ABD ≌△ ,理由是 ,△ABE ≌ (第1题) (第 2题) (第4题) 3.已知△ABC ≌△DEF ,BC =EF =6cm ,△ABC 的面积为18平方厘米,则EF 边上的高是 cm. 4.如图,AD 、A′D′分别是锐角△ABC 和△A′B′C′中BC 与B′C′边上的高,且AB = A′B′,AD = A′D′,若使△ABC ≌△A′B′C′,请你补充条件 (只需填写一个你认为适当的条件) 5. 若两个图形全等,则其中一个图形可通过平移、 或 与另一个三角形 完全重合. 6. 如图,有两个长度相同的滑梯(即BC =EF ),左边滑梯的高度AC 与右边滑梯水平方向 的长度DF 相等,则∠ABC +∠DFE =___________度 (第6题) (第7题) (第8题) 7.已知:如图,正方形ABCD 的边长为8,M 在DC 上,且DM =2,N 是AC 上的一动点, 则DN +MN 的最小值为__________. 8.如图,在△ABC 中,∠B =90o ,D 是斜边AC 的垂直平分线与BC 的交点,连结AD ,若 ∠DAC :∠DAB =2:5,则∠DAC =___________. 9.等腰直角三角形ABC 中,∠BAC =90o ,BD 平分∠ABC 交AC 于点D ,若AB +AD =8cm , M N D C B A E D C B A

初中数学几何证明题解题方法--

初中数学几何证明题解题方法--

————————————————————————————————作者:————————————————————————————————日期:

浅谈初中数学几何证明题解题方法 内容摘要:几何证明题的一般结构由已知条件和求证目标组成。做几何证明题的一般步骤:审题,寻找证明的思路,书写证明过程 关键词:几何证明 条件 结论 .执因索果 执果索因 辅助线 初中学生正处于自觉形象思维向逻辑思维的过度阶段,几何证明,是学生逻辑思维的起步。这种思维方式学生刚接触,会遇到一些困难。许多学生在几何证明这里“跌倒了”,丧失了信心,以至于几何越学越糟。为此,我根据自己几年的数学教学实践,就初中数学中几何证明题的一般结构,解题思路进行初步探讨。 学好几何证明,起步要稳,要求学生在学习几何时要扎扎实实,一步一个脚印,在掌握好几何基础知识的同时,还要培养学生的逻辑思维能力。 一、几何证明题的一般结构 初中几何证明题的一般结构由已知条件和求证目标两部分(即前提和结论)组成。已知条件是几何证明的前提,指题目中用文字和符号直接给出的明确条件,也包括所给图形中暗含的条件。求证指题目要求的经过推理最终得出的结论。已知条件是题目既定成立的、毋庸置疑而且必然正确的。求证是几何证明题的最终目标,就是根据题目给出的已知条件,利用数学中的公理、定理、性质,用合理的推理形式推导出的最后结果,而且只能出现在证明过程的最后。 例如:如图,在△ABC 和△DCB 中,AB = DC ,AC = DB ,AC 与DB 交于点M . 求证:△ABC ≌△DCB ; 已知条件:文字给出的有:△ABC 和△DCB ,AB = DC ,AC = DB ,AC 与DB 交于点M 图形给出的有:BC=CB,∠BMA 与∠CMD 是对顶角等等 求证目标是:△ABC ≌△DCB 注意,已知条件除了上面列出的,就没有其它的了,不可随意出现AM=DM ,BN=CN 等等 二、做几何证明题的一般步骤 (一)、审题 审题就是读题,这一步是解决几何证明题的关键,非常重要。许多学生读几何证明题时讲快,常常忽略了题目中蕴含的重要信息。和读其它类型的题有所不同,读几何证明题要求 B A M N

八年级上册几何证明题专项练习

八年级上册几何证明题专项练习1.如图,△、△均为等腰直角三角形,∠∠90°,点E在上.求证:△≌△. 2.如图,⊥于点D,⊥于点E,.求证:. 3.如图,已知点B,E,C,F在一条直线上,,,∠∠D. (1)求证:∥; (2)若13,5,求的长. 4.如图:点C是的中点,∠∠,,求证:∠∠D. 5.如图,点D是上一点,交于点E,,∥ 求证:.

6.如图,⊥,⊥,垂足分别为E,D,.求证:. 7.如图,点A,B,C,D在同一条直线上,∥,,.求证:. 8.如图,在△中,,∠90°,D是的中点,⊥,点E,F分别在,上,求证:. 9.如图,点A、C、D、B四点共线,且,∠∠B,∠∠,求证:. 10.如图,已知∠∠,∠∠. 求证:.

11.如图,点B、E、C、F在同一条直线上,,,,求证:∥. 12.如图,∥,E是上一点,交于点F,.求证:. 13.已知△和△位置如图所示,,,∠1=∠2. (1)求证:; (2)求证:∠∠N. 14.如图,∠90°,,⊥,⊥,垂足分别为D,E. 求证:△≌△. 15.如图,四边形中,E点在上,∠∠90°,且,. 求证:△≌△.

16.如图,在△中,,∠90°,D为延长线上一点,点E在边上,且,连结、、. ①求证:△≌△; ②若∠30°,求∠的度数. 17.如图,在四边形中,∥,E为的中点,连接、,⊥,延长交的延长线于点F.求证:(1); (2). 18.如图,在△中,、分别垂直平分和,交于M、N两点,与相交于点F. (1)若△的周长为15,求的长; (2)若∠70°,求∠的度数. 19.已知△中,是∠的平分线,的垂直平分线交的延长线于F. 求证:∠∠.

最新初中数学几何题解题技巧

最新初中数学几何题解题技巧 初中数学几何题解题技巧一.添辅助线有二种情况 1按定义添辅助线: 如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。 2按基本图形添辅助线: 每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此"添线"应该叫做"补图"!这样可防止乱添线,添辅助线也有规律可循。举例如下: (1)平行线是个基本图形: 当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线

(2)等腰三角形是个简单的基本图形: 当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。 (3)等腰三角形中的重要线段是个重要的基本图形: 出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。 (4)直角三角形斜边上中线基本图形 出现直角三角形斜边上的中点往往添斜边上的中线。出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。 (5)三角形中位线基本图形 几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整

时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。 (6)全等三角形: 全等三角形有轴对称形,中心对称形,旋转形与平移形等;如果出现两条相等线段或两个档相等角关于某一直线成轴对称就可以添加轴对称形全等三角形:或添对称轴,或将三角形沿对称轴翻转。当几何问题中出现一组或两组相等线段位于一组对顶角两边且成一直线时可添加中心对称形全等三角形加以证明,添加方法是将四个端点两两连结或过二端点添平行线 (7)相似三角形: 相似三角形有平行线型(带平行线的相似三角形),相交线型,旋转型;当出现相比线段重叠在一直线上时(中点可看成比为1)可添加平行线得平行线型相似三角形。若平行线过端点添则可以分点或另一端点的线段为平行方向,这类题目中往往有多种浅线方法。 (8)特殊角直角三角形

相关文档
最新文档