酸性环境选材 NACE MR0175学习
腐蚀和酸性环境选材ISO_15156-2009

SOHIC(stress-oriented hydrogen-induced cracking)应
力导向性氢致开裂 SCC(stress corrosion cracking) 应力腐蚀开裂 HSC(hydrogen stress cracking)氢应力开裂 SZC(soft-zone cracking)软区开裂 SWC(Step-wise cracking)阶梯裂纹 CRA( Corrosion-resistant alloy)耐蚀合金 HRC(Rockwell hardness)洛氏硬度 HBW (Brinell hardness) 布氏硬度 HV (Vickers hardness) HZC(Heat-affected zone) 热影响区 SOUR SERVICE: exposure to oilfield environments that contain sufficient H2S to cause cracking of materials by the mechanisms addressed by this part of ISO 15156
三 标准术语
SSC(sulfide stress-cracking) 硫化物应力开裂 cracking of metal involving anodic processes of localized
corrosion and tensile stress (residual and/or applied) in the presence of water and H2S (在有水和硫化氢存在的情况下,与腐蚀和拉应力有关的一 种金属开裂)
四 标准适用范围
石油天然气生产以及脱硫装置中处于硫化氢环境中设备的
NACE 标准名称

57 NACE RP 0490 缺陷尺寸为 250 ~ 760 微米( 10 ~ 30 密耳)的管道外部熔融粘接环氧涂层的缺陷探测
58 NACE RP 0491 油田非金属焊接系统选用清单
59 NACE RP 0492 海底管道镯形阳极的冶金参数和检测要求
48 NACE RP 0388 钢铁水槽内表面外加电流阴极保护
49 NACE RP 0390 在役的钢筋混凝土结构腐蚀控制系统的维修要点
50 NACE RP 0391 室温下处理、贮存浓 H 2 SO 4 (90% ~ 100%) 的材料
51 NACE RP 0392 开路循环冷却水系统低 PH 运行后的恢复和再钝化
91 NACE TM 0286 传热表面的冷却水试验装置
92 NACE TM 0294 大气暴露钢筋混凝土可镶嵌阳极的测试
93 NACE TM 0296 酸性液体介质中弹性材料的评价
94 NACE TM 0374 防止硫酸钙和碳酸钙沉积的防垢能力测试的实验室筛选试验
95 NACE TM 0384 干膜厚度小于 250 微米( 10 密耳)管内涂层的缺陷检测
68 NACE RP 0692 钢铁铁路槽车外表面涂层系统的应用
69 NACE RP 0775 油田生产中腐蚀挂片的准备和安装以及试验数据的分析
70 NACE RP 0792 计算机周期性数据调查的标准格式
71 NACE RP 0892 浸没的水泥设备表面的衬里
72 NACE TM 0169 金属的实验室腐蚀试验
86 NACE TM 0194 油田系统细菌生长的现场监测
87 NACE TM 0196 聚合物材料耐蚀性能的周期评价
腐蚀类型及其试验方法

酸性环境的定义权威的酸性环境定义来自美国腐蚀工程师协会标准NACE MR0175“油田设备抗硫化物应力开裂金属材料要求标准”。
我国原石油部标准SYJ 12—85“天然气地面设施抗硫化物应力开裂金属材料要求”中,也沿用了NACE MR0175对酸性环境的定义。
一般来说,在含有水和硫化氢的天然气中,当气体中的硫化氢分压等于或大于0.000 35 MPa,称为天然气系统的酸性环境。
该酸性环境的定义是针对金属材料发生硫化物应力开裂(SSC)这种腐蚀形态来划分的。
在酸性环境的成分中,主要强调的是水、系统总压及H2S分压,而在这种溶液中,同时存在氢致开裂(HIC),电化学腐蚀(均匀腐蚀和局部腐蚀)等形态腐蚀的可能性。
应在压力容器设计中予以注意。
但在上述的酸性环境定义中,并未考虑到其他环境条件对SSC的作用,如pH值。
在欧洲联盟16号腐蚀公报“油气生产含H2S环境中碳钢和低合金钢材料要求指南”中,将pH值作为酸性环境划分的一个重要参数,见图1。
这已得到各国腐蚀界的重视和认同。
图1新的酸性环境划分图1.非酸性环境;2.过渡区;3.酸性环境酸性环境中的主要腐蚀类型及实例酸性环境中的腐蚀主要分为以下三类:1)硫化物应力开裂(SSC)。
金属材料在拉应力或残余应力和酸性环境腐蚀的联合作用下,易发生低应力且无任何预兆的突发性断裂,称作硫化物应力开裂(SSC),这是酸性环境(又称为湿硫化氢环境)中破坏性和危害性最大的一种腐蚀。
2)氢致开裂(HIC)。
酸性环境中的钢材常因腐蚀产生原子态氢, 由于H2S介质的存在,阻滞了氢原子结合生成H2分子,促进了原子氢向钢材中的扩散,在夹杂物或其他微观组织结构的不连续区域聚集成氢分子,并产生很高的压力,形成HIC(又称为阶梯形裂纹SWC)。
HIC常见于延性较好的低、中强度的管线用钢和容器用钢。
其特点:一是它可以在甚至没有拉伸应力附加的情况下发生(而SSC在一定的应力水平下才发生),也不是象SSC那样具有突发性;二是HIC表现为阶梯裂纹。
Nace Mr0175 2003

StandardMaterial RequirementsMetals for Sulfide Stress Crackingand Stress Corrosion Cracking Resistancein Sour Oilfield EnvironmentsThis NACE International standard represents a consensus of those individual members who have reviewed this document, its scope, and provisions. Its acceptance does not in any respect preclude anyone, whether he has adopted the standard or not, from manufacturing, marketing, purchasing, or using products, processes, or procedures not in conformance with this standard. Nothing contained in this NACE International standard is to be construed as granting any right, by implication or otherwise, to manufacture, sell, or use in connection with any method, apparatus, or product covered by Letters Patent, or as indemnifying or protecting anyone against liability for infringement of Letters Patent. This standard represents minimum requirements and should in no way be interpreted as a restriction on the use of better procedures or materials. Neither is this standard intended to apply in all cases relating to the subject. Unpredictable circumstances may negate the usefulness of this standard in specific instances. NACE International assumes no responsibility for the interpretation or use of this standard by other parties and accepts responsibility for only those official NACE International interpretations issued by NACE International in accordance with its governing procedures and policies which preclude the issuance of interpretations by individual volunteers.Users of this NACE International standard are responsible for reviewing appropriate health, safety, environmental, and regulatory documents and for determining their applicability in relation to this standard prior to its use. This NACE International standard may not necessarily address all potential health and safety problems or environmental hazards associated with the use of materials, equipment, and/or operations detailed or referred to within this standard. Users of this NACE International standard are also responsible for establishing appropriate health, safety, and environmental protection practices, in consultation with appropriate regulatory authorities if necessary, to achieve compliance with any existing applicable regulatory requirements prior to the use of this standard.CAUTIONARY NOTICE: NACE International standards are subject to periodic review, and may be revised or withdrawn at any time without prior notice. NACE International requires that action be taken to reaffirm, revise, or withdraw this standard no later than five years from the date of initial publication. The user is cautioned to obtain the latest edition. Purchasers of NACE International standards may receive current information on all standards and other NACE International publications by contacting the NACE International Membership Services Department, 1440 South Creek Dr., Houston, Texas 77084-4906 (telephone +1 [281]228-6200).Revised 2003-01-17 Approved March 1975 NACE International 1440 South Creek Dr. Houston, Texas 77084-4906+1 (281)228-6200ISBN 1-57590-021-1 © 2003, NACE InternationalNACE Standard MR0175-2003Item No. 21302MR0175-2003 ________________________________________________________________________ForewordThis NACE standard materials requirement is one step in a series of committee studies, reports,symposia, and standards that have been sponsored by former Group Committee T-1 (CorrosionControl in Petroleum Production) relating to the general problems of sulfide stress cracking (SSC)and stress corrosion cracking (SCC) of metals. Much of this work has been directed toward theoil- and gas-production industry. This standard is a materials requirement for metals used in oiland gas service exposed to sour gas, to be used by oil and gas companies, manufacturers,engineers, and purchasing agents. Many of the guidelines and specific requirements in thisstandard are based on field experience with the materials listed, as used in specific components,and may be applicable to other components and equipment in the oil-production industry or toother industries, as determined by the user. Users of this standard must be cautious inextrapolating the content of this standard for use beyond its scope.The materials, heat treatments, and metal-property requirements given in this standard representthe best judgment of Task Group 081 (formerly T-1F-1) and its administrative Specific TechnologyGroup (STG) 32 on Oil and Gas Production—Metallurgy (formerly Unit Committee T-1F onMetallurgy of Oilfield Equipment).This NACE standard updates and supersedes all previous editions of MR0175. The original 1975edition of the standard superseded NACE Publication 1F166 (1973 Revision) titled “SulfideCracking-Resistant Metallic Materials for Valves for Production and Pipeline Service,” and NACEPublication 1B163 titled “Recommendation of Materials for Sour Service” (which included TentativeSpecifications 150 on valves, 51 on severe weight loss, 60 on tubular goods, and 50 on nominalweight loss).This standard will be revised as necessary to reflect changes in technology. (See Sections 13, 14,and 15.)Whenever possible, the recommended materials are defined by reference to accepted genericdescriptors (such as UNS(1) numbers) and/or accepted standards, such as AISI,(2) API,(3) ASTM,(4)or DIN(5) standards.In NACE standards, the terms shall, must, should, and may are used in accordance with thedefinitions of these terms in the NACE Publications Style Manual, 4th ed., Paragraph 7.4.1.9. Shalland must are used to state mandatory requirements. Should is used to state something consideredgood and is recommended but is not mandatory. May is used to state something consideredoptional.This NACE International standard represents a consensus of those individual members who havereviewed this document, its scope, and provisions. Its acceptance does not in any respect precludeanyone, whether he has adopted the standard or not, from manufacturing, marketing, purchasing, orusing products, processes, or procedures not in conformance with this standard. Nothing containedin this NACE International standard is to be construed as granting any right, by implication orotherwise, to manufacture, sell, or use in connection with any method, apparatus, or product coveredby Letters Patent, or as indemnifying or protecting anyone against liability for infringement of LettersPatent. This standard represents minimum requirements and should in no way be interpreted as arestriction on the use of better procedures or materials.(1) Metals and Alloys in the Unified Numbering System (latest revision), a joint publication of ASTM International (ASTM) and the Society of Automotive Engineers Inc. (SAE), 400 Commonwealth Drive, Warrendale, PA 15096.(2) American Iron and Steel Institute (AISI), 1101 17th St. NW, Suite 1300, Washington, DC 20036.(3) American Petroleum Institute (API), 1220 L St. NW, Washington, DC 20005.(4) ASTM International (ASTM), 100 Barr Harbor Dr., West Conshohocken, PA 19428-2959.(5) Deutsches Institut für Normung (DIN), Burggrafenstrasse 6, D-10787 Berlin, Germany. --` , ` ` ` , ` ` ` , , ` , , ` ` , , , ` , , ` , , , , , ` -` -` , , ` , , ` , ` , , ` ---MR0175-2003________________________________________________________________________NACE InternationalStandardMaterial RequirementsMetals for Sulfide Stress Crackingand Stress Corrosion Cracking Resistancein Sour Oilfield EnvironmentsContents1. General (1)2. Definitions (5)3. Carbon and Low-Alloy Steels and Cast Irons (8)4. Corrosion-Resistant Alloys (CRAs)—All Other Alloys Not Defined as Carbon and Low-Alloy Steels and Cast Irons in Section 3 (9)5. Fabrication (14)6. Bolting (15)7. Platings and Coatings (16)8. Special Components (16)9. Wellheads, Christmas Trees, Valves, Chokes, and Level Controllers (17)10. Downhole Casing, Downhole Tubing, and Downhole Equipment (19)11. Wells, Flow Lines, Gathering Lines, Facilities, and Field Processing Plants (22)12. Drilling and Well-Servicing Equipment (24)13. Adding New Materials for MR0175 Section 3: Carbon and Low-Alloy Steels and CastIrons (25)14. Adding New Materials for MR0175 Section 4: Corrosion-Resistant Alloys (CRAs)—AllOther Alloys Not Defined as Carbon and Low-Alloy Steelsand Cast Irons in Section 3 (26)15. Proposing Changes and Making Additions for MR0175 Sections 5 Through 11:Fabrication, Welding, and Specific Equipment (27)16. Materials for Application-Specific Cases Without Proposing Adding New Materials toMR0175 (27)References (28)Appendix A—Sample Calculations of the Partial Pressure of H2S (30)Appendix B—Sample Test Data Tables (33)Appendix C—Ballot Submittal Data (34)Appendix D—Acceptable Materials (41)FIGURE 1: Road Map for MR0175 (4)FIGURE A-1: Sour Gas Systems (see Paragraph 1.4) (31)FIGURE A-2: Sour Multiphase Systems (see Paragraph 1.4) (32)________________________________________________________________________MR0175-2003 ________________________________________________________________________Section 1: General1.1 ScopeThis standard presents metallic material requirements to provide resistance to sulfide stress cracking (SSC) and/or stress corrosion cracking (SCC) for petroleum production, drilling, gathering and flow line equipment, and field processing facilities to be used in hydrogen sulfide (H2S)-bearing hydrocarbon service.This standard is applicable to the materials and/or equipment specified by the materials standards institutions listed in Table 1 (or by equivalent standards or specifications of other agencies).This standard does not include and is not intended to include design specifications. Other forms of corrosion and other modes of failure, although outside the scope of this standard, should also be considered in design and operation of equipment. Severely corrosive conditions may lead to failures by mechanisms other than SSC and/or SCC and should be mitigated by corrosion inhibition or materials selection, which are outside the scope of this standard. For example, some lower-strength steels used for pipelines and vessels may be subjected to failure by hydrogen-induced cracking (blistering and stepwise cracking) as a result of hydrogen damage associated with general corrosion in the presence of H2S.1,2TABLE 1Sources of Material Standards1. Aerospace Material Specifications (AMS): Society of Automotive Engineers Inc. (SAE), 400 Commonwealth Drive, Warrendale, PA 15096.2. American Iron and Steel Institute (AISI), 1101 17th St. NW, Suite 1300, Washington, DC 20036.3. American National Standards Institute (ANSI), 11 West 42nd St., New York, NY 10036.4. American Petroleum Institute (API), 1220 L St. NW, Washington, DC 20005.5. ASME International (ASME), Three Park Ave., New York, NY 10016-5990.6. ASTM International (ASTM), 100 Barr Harbor Dr., West Conshohocken, PA 19428-2959.7. American Welding Society (AWS), P.O. Box 251040, Miami, FL 33126.8. British Standards Institution (BSI), British Standards House, 389 Chiswick High Rd., London W4 4AL, United Kingdom.9. CSA International, 178 Rexdale Blvd., Etobicoke, Ontario, Canada M9W 1R3.10. Deutsches Institut für Normung (DIN), Burggrafenstrasse 6, D-10787, Berlin, Germany.1.2 ProcurementIt is the responsibility of the user to determine the operating conditions and to specify when this standard applies.(6) A variety of candidate materials may be selected from this standard for any given component. The manufacturer is responsible for meeting metallurgical requirements. It is the user’s responsibility to ensure that a material will be satisfactory in the intended environment. The user may select specific materials for use on the basis of operating conditions that include pressure, temperature, corrosiveness, fluid properties, etc. For example, when bolting components are selected, the pressure rating of flanges could be affected. The following could be specifiedat the user’s option: (1) materials from this standard usedby the manufacturer, and (2) materials from this standard proposed by the manufacturer and approved by the user. Itis always the responsibility of the equipment user to convey the environmental conditions to the equipment supplier, particularly if the equipment will be used in sour service. 1.3 ApplicabilityThis standard applies to all components of equipment exposed to sour environments, where failure by SSC or SCC would (1) prevent the equipment from being restored to an operating condition while continuing to contain pressure, (2) compromise the integrity of the pressure-containment system, and/or (3) prevent the basic function of the equipment from occurring. Materials selection for items such as atmospheric and low-pressure systems, water-handling facilities, sucker rods, and subsurface pumps are covered in greater detail in other NACE International and API documents and are outside the scope of this standard. 1.4 MR0175 ApplicationSulfide stress cracking (SSC) is affected by the following factors:(1) metallurgical condition and strength, which are affected by chemical composition, heat treatment, cold work, and microstructure;___________________________ (6) See Section 2 for the definition of user. --`,```,```,,`,,``,,,`,,`,,,,,`-`-`,,`,,`,`,,`---MR0175-2003(2) hydrogen ion concentration (activity) (pH) of the water phase;(3) H2S partial pressure, which is a function of the H2S concentration and total absolute pressure;(4) total tensile stress (applied plus residual);(5) temperature;(6) exposure duration;(7) galvanic effects;(8) chloride or other halide ion concentration;(9) oxidants; and(10) non-production fluids (including those used for acid stimulation and for packer fluids).Stress corrosion cracking (SCC) in sour service is affected by the following factors:(1) metallurgical condition and strength, which are affected by chemical composition, cold work, heat treatment, and microstructure;(2) hydrogen ion concentration (activity) (pH) of the water phase;(3) H2S partial pressure, which is a function of the H2S concentration and total absolute pressure;(4) total tensile stress (applied plus residual);(5) temperature;(6) exposure duration;(7) galvanic effects;(8) chloride or other halide ion concentration;(9) oxidants; and(10) non-production fluids (including those used for acid stimulation and for packer fluids).The user shall determine whether or not the environmental conditions are such that MR0175 applies. Please see Appendix A for sample calculations.1.4.1 MR0175 shall apply to conditions containingwater as a liquid and H2S exceeding the limits defined in Paragraph 1.4.1.1. Highly susceptible materials may fail in less severe environments.1.4.1.1 All gas, gas condensate, and sour crudeoil (except as noted in Paragraph 1.4.2)When the partial pressure of H2S in a wet (wateras a liquid) gas phase of a gas, gas condensate,or crude oil system is equal to or exceeds 0.0003MPa abs (0.05 psia).1.4.2 MR0175 need not apply (the user shalldetermine) when the following conditions exist:1.4.2.1 Low-pressure gasWhen the total pressure is less than 0.45 MPa abs(65 psia).1.4.2.2 Low-pressure oil and gas multiphasesystemsWhen the total pressure is less than 1.83 MPa abs(265 psia), the maximum gas:oil ratio is 142SCM:bbl (5,000 SCF:bbl), the H2S content is lessthan 15 mol%, and the H2S partial pressure is lessthan 0.07 MPa abs (10 psia).1.4.2.3 Salt water wells and salt water handlingfacilities. These are covered by NACE StandardRP0475.31.4.2.4 Refineries and chemical plants.1.4.2.5 Parts loaded in compression.1.5 Control of SSC and/or SCC1.5.1 SSC and/or SCC may be controlled by any or allof the following measures:(1) using the materials and processes described inthis standard;(2) controlling the environment;(3) isolating the components from the sourenvironment; or(4) using appropriate anodic or cathodicpolarization.Metals susceptible to SSC and/or SCC have beenused successfully by controlling drilling or workoverfluid properties, during drilling and workover operations,respectively.1.6 Materials Included in MR01751.6.1 Metallic materials have been included in thisstandard as acceptable materials based on theirresistance to SSC and/or SCC either in actual fieldapplications, in SSC and SCC laboratory tests, or both.Many alloys included in the first edition of MR0175 hadproved to be satisfactory in sour service even thoughthey might have cracked in standard SSC and/or SCClaboratory tests, such as those addressed in NACEStandard TM0177.4--`,```,```,,`,,``,,,`,,`,,,,,`-`-`,,`,,`,`,,`---MR0175-20031.6.2 Materials included in this standard are resistantto, but not necessarily immune to, SSC and/or SCC instated conditions. Improper design, manufacturing, installation, selection, or handling can cause resistantmaterials to become susceptible to SSC and/or SCC.1.7 Hardness Requirements1.7.1 Because hardness testing is nondestructive, it isused by manufacturers as a quality control method andby users as a field inspection method. Accurate hardness testing requires strict compliance with the methods described in appropriate ASTM standards.1.7.2 Hardness tests sufficient to establish the actualhardness of the material or component being examinedshall be made. Individual hardness readings exceeding the value permitted by this standard are considered acceptable if the average of several readings taken within close proximity does not exceedthe value permitted by this standard and no individualreading is greater than 2 Rockwell C hardness (HRC)units above the acceptable value. The number and location of test areas are outside the scope of this standard.1.7.3 The HRC scale is referred to throughout thisstandard. Rockwell C hardness values measured in accordance with ASTM E 185 shall be the primary basis for acceptance. Brinell hardness (HBW), Vickers(HV) 5-kg or 10-kg, or other hardness testing methodsmay be used. When applicable, conversion of hard-ness values obtained by these other test methods to HRC values shall be made in accordance with ASTM E140.6 (7) Empirical conversion data are acceptable whenapproved by the purchaser. Acceptance criteria usingmicrohardness testing, as defined by ASTM E 384,7are considered outside the scope of this standard.1.8 How to Use MR0175 (a Road Map)1.8.1 See Figure 1. A user of materials in sour servicemust first determine whether MR0175 is applicable forthe intended application. Section 1 of MR0175 may beused for guidance. Refer to Section 2 for definitions ofterms used in MR0175.1.8.2 If the user chooses to use MR0175 for materialsselection in sour service, the process involves determining whether the desired materials are within the scope of the standard, the metallurgical requirements for the materials, and the environmentalrestrictions, if any, for the material. 1.8.3 The following process should be used for finding acceptable materials and their requirements in MR0175:1.8.3.1 For carbon steels, low-alloy steels, andcast irons, first review Section 3. This sectioncontains the most general requirements forwidespread applications of these alloys.1.8.3.1.1 If questions about these alloys arenot adequately answered in Section 3 or if thealloy in question is not within the scope ofSection 3, review requirements for specifictypes of equipment in Sections 6, 8, 9, 10, 11,and 12.1.8.3.1.2 For specific requirements duringfabrication, including welding, review Section5.1.8.3.1.3For plating and coatings applications of these alloys, see Section 7.1.8.3.2 The process is the same for selectingcorrosion-resistant alloys (CRAs) except that thegeneral requirements are first found in Section 4.Section 4 contains specific alloys and groups ofalloys (categories); these are discussed inParagraph 1.8.3.3.1.8.3.2.1 See Appendix C for previouslysubmitted ballot data. This appendix givesinformation on data submitted for ballot foracceptance into MR0175.1.8.3.3 Individual Alloys Versus Alloy CategoriesSection 4 lists CRAs as individual alloys or in alloycategories. Alloy (CRA) categories permit abroad-based description of similar alloys. A CRAcategory in Section 4 defines a group of alloys interms of broad-based but essential chemicalcompositions, manufacturing processes, andfinished conditions. The entire chemicalcomposition range of an alloy shall meet all therequirements of the given CRA category in orderto be included within the category.1.8.3.3.1 All applicable environmentalrestrictions are defined for all of the alloys inthe category. These environmental restrict-tions may include the maximum acceptablepartial pressures of H2S, minimum acceptablewater pH, maximum acceptable chlorides inthe water, temperature, and whether thepresence of elemental sulfur is acceptable.__________________________________________(7) The hardness correlation tabulated in ASTM E 140 does not apply to martensitic stainless steels and precipitation-hardened stainless steels. When hardness is measured by Brinell testing, the permissible limit for UNS J91540 (CA6NM) and UNS S42000 is 255 HBW maximum, which has been empirically determined to be equivalent to 23 HRC for these alloys. For materials not listed in ASTM E 140, empirical data are acceptable in determining hardness conversion. --` , ` ` ` , ` ` ` , , ` , , ` ` , , , ` , , ` , , , , , ` -` -` , , ` , , ` , ` , , ` ---MR0175-2003When environmental restrictions are listed in tables, interpolation between H2S partial pressures, temperatures, etc., is permitted.1.8.3.3.2 Some categories may include alloy-specific requirements. These are metallurgical requirements typically restricting chemistry and hardness.1.8.3.3.3 Examples of CRA individual alloy and CRA category use:Individual CRA Alloy Example: UNS J93254 (CK3MCuN) is listed in Paragraph 4.3.2 as an individual alloy. All requirements for this alloy are located solely in Paragraph 4.3.2.CRA Category Example: The ferritic stainless steels in Paragraph 4.7.1 are listed as an alloy category. Any ferritic stainless steel may be used within the environmental restrictionsof this paragraph. Individual alloys do not have to be listed.CRA Category with Specific Alloy Require-ments Example: The martensitic stainless steels are more loosely grouped in Paragraph 4.8 as a category with alloy-specific requirements. Environmental restricttions are the same for all of the martensitic stainless steels, but there are metallurgicalrequirements for each of the alloys within thecategory.1.8.4 If the material in question is outside the scope of MR0175, the following options may be used:1.8.4.1 See Sections 13, 14, and 15 for proposalsfor balloting changes and additions to all sections of MR0175. See Appendix B for sample test data tables and the definition of available Test Levels I through VII.1.8.4.2 See Section 16 for guidance through aprocess for choosing materials for application-specific cases without proposing to add new materials to MR0175.1.8.5 Four appendixes are included in this standard.1.8.5.1 Appendix A provides sample calculationsof the partial pressure of H2S.1.8.5.2 Appendix B provides sample test datatables.1.8.5.3 Appendix C provides ballot submittal datain tabular form.1.8.5.4 Appendix D provides lists of acceptablematerials for various applications.FIGURE 1 Road Map for MR0175 --` , ` ` ` , ` ` ` , , ` , , ` ` , , , ` , , ` , , , , , ` -` -` , , ` , , ` , ` , , ` ---MR0175-20031.9 Materials are added to MR0175 either as an individual alloy or as alloy categories. Ballot items shall conform to the standard’s method. If a ballot proposes an addition of an individual alloy or modification to the requirements for that alloy, the ballot must address only that individual alloy. Conversely, if a ballot proposes an addition or modification of requirements for alloys in a category, the ballot must address the category of alloys.1.10 The Effect of Changing Requirements in MR0175 on Existing EquipmentWhen new restrictions are placed on materials in this standard or when materials are deleted from this standard, materials in use at the time of the change that complied with this standard prior to the standard revision and that have not experienced SSC and SCC failures in their local environment are in compliance with this standard. However, when these materials are removed from their local environment, the replacement materials must be listed in this standard at the time of replacement in order to be in compliance with this standard.1.10.1 Successful use of materials outside thelimitations of MR0175 may be perpetuated by qualification in accordance with Section 16.1.10.2 The user may replace materials in kind forexisting wells or for new wells within a given field if the design basis for the equipment has not changed. The user shall verify that the environmental conditions of the field have not changed to dictate the need for new materials substitutions, and the replacement materials are the same.________________________________________________________________________Section 2: DefinitionsAge Hardening: Hardening (strengthening) by aging, usually after rapid cooling or cold working.Aging: A change in metallurgical properties that generally occurs slowly at room temperature (natural aging) and more rapidly at higher temperature (artificial aging).Annealing: Heating a metal to a suitable temperature, holding at that temperature for a suitable period of time, and then cooling at a suitable rate, for such purposes as reducing hardness, improving machinability, or obtaining desired properties.Austenite: The face-centered cubic crystalline phase of ferrous or nonferrous alloys.Austenitic Steel: A steel whose microstructure at room temperature consists predominantly of austenite.Austenitizing: Forming austenite by heating a ferrous metal to a temperature in the transformation range (partial austenitizing) or above the transformation range (complete austenitizing).Blowout Preventers: Mechanical devices capable of containing pressure, used for control of well fluids and drilling fluids during drilling operations.Brazing: Joining metals by flowing a thin layer (of capillary thickness) of a lower-melting-point nonferrous filler metal in the space between them.Brinell Hardness: A hardness value obtained by use of a 10-mm diameter hardened steel (or carbide) ball and normally a load of 3,000 kg, in accordance with ASTM E 10.8Burnishing: Smoothing surfaces with frictional contact between the material and some other hard pieces of material, such as hardened steel balls.Carbon Steel: An alloy of carbon and iron containing up to2% carbon and up to 1.65% manganese and residual quantities of other elements, except those intentionally added in specific quantities for deoxidation (usually siliconand/or aluminum). Carbon steels used in the petroleum industry usually contain less than 0.8% carbon.Case Hardening: Hardening a ferrous alloy so that the outer portion, or case, is made substantially harder than the inner portion, or core. Typical processes are carburizing, cyaniding, carbonitriding, nitriding, induction hardening, and flame hardening.Cast Component (Casting): A piece of metal that is formed at or near its finished shape by the solidification of molten metal in a mold.Cast Iron: An iron-carbon alloy containing approximately 2to 4% carbon. Cast irons may be classified as:(1) gray cast iron—cast iron that gives a gray fracture as a result of the presence of flake graphite;(2) white cast iron—cast iron that gives a white fracture asa result of the presence of cementite (Fe3C);(3) malleable cast iron—white cast iron that is thermally treated to convert most or all of the cementite to graphite (temper carbon);(4) ductile (nodular) cast iron—cast iron that has been treated while molten with an element (usually magnesium or cerium) that spheroidizes the graphite; or--`,```,```,,`,,``,,,`,,`,,,,,`-`-`,,`,,`,`,,`---。
NACE MR 0175-2000 材料要求标准 油田设备用抗硫化物应力开裂的金属材料

8
专用部件------------------------------------------------------------35 8.1 8.2 8.3 8.4 8.5 总则-------------------------------------------------------------35 轴承-------------------------------------------------------------35 弹簧-------------------------------------------------------------36 仪表和控制器件----------------------------------------------36 密封环----------------------------------------------------------37
-2-
目
次
1
总则 -----------------------------------------------------------------1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 1.10 范围 ------------------------------------------------------------1 适用性 ---------------------------------------------------------1 MR0175 的应用 ----------------------------------------------2 控制硫化物应力开裂 (SSC)--------------------------------5 可采用的材料 ------------------------------------------------5 新材料或工艺的增补程序 ---------------------------------6 硬度要求 ------------------------------------------------------7 材料的使用 ---------------------------------------------------8 选材 ------------------------------------------------------------8 材料替换 -----------------------------------------------------8
硫化氢环境材质选择标准讲解讲课文档

不含气的液体 系统
第19页,共46页。
第20页,共46页。
PH值确定推荐方法
第21页,共46页。
附录A 抗SSC使用要求和建议
A.2 要点:
原材料
▪ 22HRC(按ASTM E 140:HBW237 & HV248)
▪ Ni含量小于1%,非易切削钢(加入硫硒等元素增强切削性能)
▪ 供货状态按其中之一:热轧(仅限于碳钢);退火;正火;正火加
②无成功使用经验的材料,需要通过实验来评定,如有此情况 ,应要求业主指定适合的试验方法
第15页,共46页。
六 ISO 15156-2:2009
▪ 含硫化氢环境中影响碳钢和低合金钢性能的因素
1. 化学成分、制造方法、成形方式、强度、硬度和局部变化的程度、
冷加工量、热处理条件、材料微观结构的均一性、晶粒大小和材 料纯净度
氢原子在钢基体中的扩散 氢原子在陷阱处的富集,内部压力增加,从而导致裂纹萌生和扩展
第7页,共46页。
▪ SSC:在有水和H2S存在的情况下,与腐蚀和拉应力(外应力
或残余应力)有关的一种金属开裂,与金属表面、拉应力方 向垂直。是氢应力开裂(HSC)的一种,它与在金属表面的因酸
性腐蚀所产生的原子氢引起的金属脆性有关。在硫化物存在时 ,会促进氢的吸收。原子氢能扩散进金属,降低金属的韧性, 增加裂纹敏感性,高强度金属和较硬的焊缝区更易发生。
▪ HSC(hydrogen stress cracking)氢应力开裂
▪ SZC(soft-zone cracking)软区开裂
Байду номын сангаас▪ SWC(Step-wise cracking)阶梯裂纹
▪ CRA( Corrosion-resistant alloy)耐蚀合金
硫化氢环境材质选择Mr0175-ISO15156标准讲解

交错小裂纹,导致了像梯子一样的,将已有的HIC裂纹连 接起来
硫化氢环境材质选择Mr0175-ISO15156标准讲解
二 ISO 15156标准概况及组成
▪ ISO15156-2009(First edition)——原ISO 15156/NACE MR0175-2003 升版
▪ HIC(hydrogen-induced cracking)氢致开裂 ➢ planar cracking that occurs in carbon and low alloy
steels when atomic hydrogen diffuses into the steel and then combines to form molecular hydrogen at trap sites (为氢原子扩散进钢铁中并在陷阱处结合而成氢分子时所引 起的在碳钢和低合金钢中的平面裂纹) 硫化氢环境材质选择Mr0175-ISO15156标准讲解
Corrosion Engineer‘s Reference Book (3rd Edition)等
▪ 对于规范中涉及到油气井、钻井、完井、井口、Байду номын сангаас油树、
矿场设备和矿场处理装置的内容做了删减
▪ 对有些内容仅罗列了关键的点,在设计以及标准使用过程
中仍需要参阅标准
▪ 对于有些项目业主会提出不同于该标准的要求,需要参考
具体的规格书,通常大石油公司都有自己的酸性环境选材 规范,其内容可能会存在些许差异,但其原则都是一样的
硫化氢环境材质选择Mr0175-ISO15156标准讲解
一 CRACKING AND CORROSION
腐蚀挂片NACE标准规范

湛江中海石油检测公司NACE规范NACE标准RP0775-91标准推荐操作主题:腐蚀挂片的准备与安装及油田作业测试数据的分析本NACE国际标准代表了不同成员在复核评定本文件及其范围和条款的共同意见。
对本标准的接受或认可从任何方面来说都不会阻碍任何人(不管他是否采取本标准)进行生产、销售、采购或使用与本标准不相符合的产品、程序或步骤。
本标准里的任何内容都不会授权(无论是暗示或其他)进行生产、销售或与其他方法,装置或有专利保护的产品一起使用,或作为违反专利责任的补偿和保护。
本标准表达了最低限度的要求并且绝不能够被认为是限制其他更好的方法与材料。
本标准亦不企图涵盖本主题的一切。
一些不可预测的情况可能会在某些特定的案例中否定本标准的用处。
NACE对其他团体或个人对本标准的解释及适用并不负任何责任。
NACE只承担由NACE官方正式作出解释道责任,并且此解释不能由个人作出。
NACE国际标准的使用者有责任复核适当地健康、安全、环境和其他有关规定,然后再使用之前决定其与本标准相符合。
本标准没有亦不需涵盖所有使用本标准内的物料、设备或操作而产生的健康、安全和环境问题。
本标准的使用者也有业务建立适当的健康、安全和环境保护措施,在有必要时可以同有关当局咨询明确本标准的使用能符合已存在的有关条例和法规。
注意事项:NACE国际标准需定期复查,并且在未事先通知道情况下有可能修改撤销。
本标准每五年要进行一次再确认、修改和撤销。
使用者应保持取得最新版本。
购买者可以通过联系NACE会员服务部(地址:德克萨斯,休斯顿,218340邮箱,电话:1-281-6200)获得所有本标准的最新信息。
1975年通过(批准)1987年(修订)1991年(修订)腐蚀工程国家协会(NACE)腐蚀工程国家协会,1991版前言本标准建议并鼓励使用统一并且得到认证的方法来监测油田作业的失重腐蚀现象。
本标准对准备、分析和安装金属腐蚀挂片的步骤进行了概述。
解释腐蚀挂片的因素也包括在内。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ISO 15156-2009 SECOND EDITION (ISO 15156/NACE MR0175) 标准学习
2012年5月
说明
涂蓝色为个人不太确定或理解的内容 涂绿色为关键点 素材摘自NACE MR 0175,尤利格腐蚀手册, NACE
Corrosion Engineer‘s Reference Book (3rd Edition)等 对于规范中涉及到油气井、钻井、完井、井口、采油树、 矿场设备和矿场处理装置的内容做了删减 对有些内容仅罗列了关键的点,在设计以及标准使用过程 中仍需要参阅标准 对于有些项目业主会提出不同于该标准的要求,需要参考 具体的规格书,通常大石油公司都有自己的酸性环境选材 规范,其内容可能会存在些许差异,但其原则都是一样的
CORROSION:腐蚀,通常所说的腐蚀更倾向于全面腐蚀、
点蚀等,会产生化学或电化学反应,引起质量损失,可以 通过增加腐蚀裕量来解决
钢暴露于湿H2S环境开裂现象 (摘自尤利格腐蚀手册)
在酸性环境服役的焊接件同时出现的几种氢损伤
HB:开始形成的氢原子在钢中扩散并在氢陷阱处致氢鼓泡
的发生
SSC选材 ① 按经验选材——附录A2,相对保守笼统的做法 选项一: P H2S<0.0003MPa(0.05psi)一般无详细考虑,但对高
敏感性钢材可能会开裂(应考虑在不正常使用条件或停车 时暴露于未缓冲的低PH值凝析水相等) 对P H2S≥0.0003MPa(0.05psi)按附录A.2选择,不用 进一步SSC试验 选项二:按分区选择,在A.2的基础上有例外SSC 1区按 A.2 A.3 A.4选择,SSC 2区按A.2 A.3 选择, SSC 3按 A.2区选择 A3 A4是针对A2的一些补充,放宽了限制 ② 按试验选材——附录B 实验室试验评定,按分区来制定推 荐的试验方法,详见B.3 试验方法 NACE TM 0177 Method A/C/D(未应用Method B 试验时间至少720h)或EFC Publication 16
一 CRACKING AND CORROSION
CRACKING:开裂,只要有裂纹源,裂纹会扩展,扩展
速率有时会很快,不能通过增加腐蚀裕量来解决消除,在 含硫化氢的酸性环境中,通常开裂起着主导因素。该环境 中H2S对腐蚀起着主导作用,水是引起腐蚀的必要条件, CO2存在会促进腐蚀,究其本质也是应力腐蚀,即使在无 外加应力情况下也是因氢压引起,详见对HB的分析,见下 图(f).
HIC:是氢鼓泡的一种形式,由平行于钢表面的层状裂纹在
厚度方向上相连接,由个体缺陷连接引起的损伤能导致沿 壁厚方向的迅速穿透。有文献报道在沙特的酸性气体管线 中,失效发生于启用的数周之内,影响长度约10km。无需 外部应力即可发生。 HIC发生三个步骤: 氢原子在钢表面的形成和从表面的进入 氢原子在钢基体中的扩散 氢原子在陷阱处的富集,内部压力增加,从而导致裂纹萌 生和扩展
HIC(hydrogen-induced cracking)氢致开裂 planar cracking that occurs in carbon and low alloy
steels when atomic hydrogen diffuses into the steel and then combines to form molecular hydrogen at trap sites (为氢原子扩散进钢铁中并在陷阱处结合而成氢分子时所引 起的在碳钢和低合金钢中的平面裂纹)
(按标准描述为 直接或做外部防护后仍暴露于酸性环境的紧固件 ,但 通常有业主对外部法兰也要求用,有争议,建议考虑按暴露于酸性环 境选) Bolting that can be exposed directly to a sour environment, or that is buried, insulated, equipped with flange protectors or otherwise denied direct atmospheric exposure, shall conform to the general requirements of A.2.1. Designers and users should be aware that it can be necessary to lower equipment pressure ratings when using SSC-resistant bolting and fasteners. The use of SSC-resistant bolting and fasteners with API flanges shall be in accordance with ISO 10423.
可用的材料: 压力容器板P-No.1\ P-No.2(ASME SEC.IX) ,但轧板在 含有微量(0区)H2S环境可能对HIC/SWC敏感 API 5L A\B\X-42~X-65,ASTM A53,A106 Gr.A\B\C,A333 Gr.1\6,A 524 Gr.1\2,A 381 class 1, Y35 to Y65 紧固件:A 193 B7M,A320 L7M,A 194 2HM,A 194 7M
SOHIC(stress-oriented hydrogen-induced cracking)应
力导向性氢致开裂 SCC(stress corrosion cracking) 应力腐蚀开裂 HSC(hydrogen stress cracking)氢应力开裂 SZC(soft-zone cracking)软区开裂 SWC(Step-wise cracking)阶梯裂纹 CRA( Corrosion-resistant alloy)耐蚀合金 HRC(Rockwell hardness)洛氏硬度 HBW (Brinell hardness) 布氏硬度 HV (Vickers hardness) HZC(Heat-affected zone) 热影响区 SOUR SERVICE: exposure to oilfield environments that contain sufficient H2S to cause cracking of materials by the mechanisms addressed by this part of ISO 15156
SSC 分区划分
H2S 分压计算
PH值确定推荐方法
附录A 抗SSC使用要求和建议
A.2 要点: 原材料 22HRC(按ASTM E 140:HBW237 & HV248) Ni含量小于1%,非易切削钢(加入硫硒等元素增强切削 性能) 供货状态按其中之一:热轧(仅限于碳钢);退火;正 火;正火加回火;正火、奥氏体化、淬火加回火;奥氏 体化、淬火加回火 允许例外 对A105 如硬度不大于187 HBW可不受上述供货状态限 制 A105标准对300#等条件以下的热处理状态不是强制 性的 对300#以上的要求是正火 同上对A 234 WPB/WPC不大于197 HBW除了上述限制 是可接受的
四 标准适用范围
石油天然气生产以及脱硫装置中处于硫化氢环境中设备的
金属材料评定和选择的一般原则、要求和推荐方法 由硫化氢引起的开裂机理包括:SSC SCC HIC SOHIC SZC等 适用于按常规弹性准则设计和制造的设备选材,对于按塑 性设计(比如基于应变和极限状态设计)的情况不适合 不适用于炼油或下游的加工设备,如考虑需要看到标准 NACE MR 0103-2010
六 ISO 15156-2:2009
含硫化氢环境中影响碳钢和低合金钢性能的因素 1. 化学成分、制造方法、成形方式、强度、硬度和局部变化 2. 3. 4. 5. 6. 7. 8.
的程度、冷加工量、热处理条件、材料微观结构的均一性、 晶粒大小和材料纯净度 H2S分压或在水中的当量浓度 水相中氯离子浓度 水相的PH值 硫或其他氧化剂的存在 暴露在非生产流体中(exposure to non-production fluids) 暴露温度和暴露时间 总的拉伸应力(施加的拉应力和外部应力)
五 标准使用注意点
标准是石油天然气生产以及脱硫装置中处于H2S环境中设
备金属材料的评定和选择的一般原则、要求及推荐做法 选择预期合适的使用环境是设备使用者的责任,即业主应 首先评估材料所接触的环境,指定需要预防的种类,如抗 HIC \SSC\SOHIC等,设备制造者根据其指定的种类做出 响应,按标准要求建造设备 对于业主通常提出的“设备需满足NACE MR 0175”要求 ,要向业主明确具体需要满足那种防护,如业主也不清楚 则需要我们根据经验和物料组分来判断 是一经验标准,因此本标准对选材分为两类: ①有成功使用经验的材料,在产品制造过程中采取一些措施 即可满足要求 ②无成功使用经验的材料,需要通过实验来评定,如有此情 况,应要求业主指定适合的试验方法
SOHIC:大约与主应力(残余的或外加的)方向垂直的一些
交错小裂纹,导致了像梯子一样的,将已有的HIC裂纹连 接起来
二 ISO 15156标准概况及组成
ISO15156-2009(First edition)——原ISO 15156/NACE MR0175-2003 升版 在原NACE MR0175基础上结合EFC 16/EFC 17形成 标准由以下三部分组成: Petroleum and natural gas industries—Materials for use in H2S-containing Environments in oil and gas production— Part 1:General principles for selection of crackingresistant materials Part 2:Cracking-resistant carbon and low-alloy steels, and the use of cast irons Part 3:Cracking-resistant CRAs corrosion resistant alloys) and other alloys