电磁感应电磁场PPT课件
合集下载
电磁场理论课件-6.1 法拉第电磁感应定律

第六章 时变电磁场
静态场:场的大小不随时间发生改变(静电场、恒定 电场、恒定磁场)
特性:电场和磁场相互独立,互不影响。
时变场:场的大小随时间发生改变。
特性:电场和磁场相互激励,从而形成不可分隔的统 一的整体,称为电磁场。
本章主要内容:
电磁场的基本方程——麦克斯韦方程组
电磁场的边界条件
电磁场的能流和能流定律
d dt
上式对磁场中的任意回路都成立。
1.磁通变化的三种方式:
a)闭合回路与恒定磁场之间存在相对运动,即磁场与时 间无关,磁通量随时间变化,这时回路中的感应电 动势称为动生电动势。
i
t
B dS
S
07:24:37
4
6.1 法拉第电磁感应定律
b) 闭合回路是静止的,但与之交链的磁场是随时间变化
生电场(对电荷有作用力是电场的本质,因此它与静电场
在这一点上无本质差别)。
07电:26:4磁6 感应现象的实质:变化磁场激发电场
5
6.1 法拉第电磁感应定律
三、总电场的方程
设空间还存在静止电荷产生的静电场Ec,则总电场为
E Ein Ec
沿任意闭合路径的积分
(静电场Ec沿任意闭 合路径的积分为零)
的,这时回路中产生的感应电动势称为感生电动势。
i
S
B t
dS
c)既存在时变磁场又存在回路的相对运动,则总的感应
电动势为:
i
t
B dS
S
2.物理机制
动生可以认为电荷受到磁场的洛伦兹力,因此产生电
动势;感生情况回路不动,应该是受到电场力的作用。因
为无外电动势,该电场不是由静止电荷产生,因此称为感
in t
静态场:场的大小不随时间发生改变(静电场、恒定 电场、恒定磁场)
特性:电场和磁场相互独立,互不影响。
时变场:场的大小随时间发生改变。
特性:电场和磁场相互激励,从而形成不可分隔的统 一的整体,称为电磁场。
本章主要内容:
电磁场的基本方程——麦克斯韦方程组
电磁场的边界条件
电磁场的能流和能流定律
d dt
上式对磁场中的任意回路都成立。
1.磁通变化的三种方式:
a)闭合回路与恒定磁场之间存在相对运动,即磁场与时 间无关,磁通量随时间变化,这时回路中的感应电 动势称为动生电动势。
i
t
B dS
S
07:24:37
4
6.1 法拉第电磁感应定律
b) 闭合回路是静止的,但与之交链的磁场是随时间变化
生电场(对电荷有作用力是电场的本质,因此它与静电场
在这一点上无本质差别)。
07电:26:4磁6 感应现象的实质:变化磁场激发电场
5
6.1 法拉第电磁感应定律
三、总电场的方程
设空间还存在静止电荷产生的静电场Ec,则总电场为
E Ein Ec
沿任意闭合路径的积分
(静电场Ec沿任意闭 合路径的积分为零)
的,这时回路中产生的感应电动势称为感生电动势。
i
S
B t
dS
c)既存在时变磁场又存在回路的相对运动,则总的感应
电动势为:
i
t
B dS
S
2.物理机制
动生可以认为电荷受到磁场的洛伦兹力,因此产生电
动势;感生情况回路不动,应该是受到电场力的作用。因
为无外电动势,该电场不是由静止电荷产生,因此称为感
in t
电磁学全套ppt课件

电流产生条件
导体两端存在电压差,形成电场, 使自由电子定向移动形成电流。
电流方向规定
正电荷定向移动的方向为电流方向, 负电荷定向移动方向与电流方向相 反。
电流强度定义
单位时间内通过导体横截面的电荷 量,用I表示,单位为安培(A)。
欧姆定律与非线性元件特性
01
02
03
欧姆定律内容
在同一电路中,通过导体 的电流跟导体两端的电压 成正比,跟导体的电阻成 反比。
3
静电屏蔽原理及应用 空腔导体内部电场为零、静电屏蔽现象及应用举 例
电容器原理及应用举例
电容器基本概念 平行板电容器、电介质对电容器影响
电容器储能与电场能量 电容器储能公式、电场能量密度公式
电容器充放电过程分析
RC电路暂态过程、充放电时间常数 计算
电容器应用举例
电子电路中隔直通交作用、传感器中 应用等
静电现象在生活生产中应用
静电喷涂
利用静电吸附原理进行 喷涂,提高涂层质量和
效率
静电除尘
利用静电作用使尘埃带 电后被吸附到电极上,
达到除尘目的
静电复印
利用静电潜像形成可见 图像的过程,实现文件
快速复制
静电纺丝
利用静电场力作用使高 分子溶液或熔体拉伸成
纤维的过程
03
恒定电流与电路基础知识
电流产生条件及方向规定
规格,并遵循相应的国家标准和规范。
家庭用电安全注意事项
安全用电原则
在使用家庭电器时,应遵循安全 用电原则,如不乱拉乱接电线、
不使用破损电器等。
安全防护措施
为确保家庭用电安全,应采取相 应的安全防护措施,如安装漏电
保护器、使用防火材料等。
安全检查与维护
导体两端存在电压差,形成电场, 使自由电子定向移动形成电流。
电流方向规定
正电荷定向移动的方向为电流方向, 负电荷定向移动方向与电流方向相 反。
电流强度定义
单位时间内通过导体横截面的电荷 量,用I表示,单位为安培(A)。
欧姆定律与非线性元件特性
01
02
03
欧姆定律内容
在同一电路中,通过导体 的电流跟导体两端的电压 成正比,跟导体的电阻成 反比。
3
静电屏蔽原理及应用 空腔导体内部电场为零、静电屏蔽现象及应用举 例
电容器原理及应用举例
电容器基本概念 平行板电容器、电介质对电容器影响
电容器储能与电场能量 电容器储能公式、电场能量密度公式
电容器充放电过程分析
RC电路暂态过程、充放电时间常数 计算
电容器应用举例
电子电路中隔直通交作用、传感器中 应用等
静电现象在生活生产中应用
静电喷涂
利用静电吸附原理进行 喷涂,提高涂层质量和
效率
静电除尘
利用静电作用使尘埃带 电后被吸附到电极上,
达到除尘目的
静电复印
利用静电潜像形成可见 图像的过程,实现文件
快速复制
静电纺丝
利用静电场力作用使高 分子溶液或熔体拉伸成
纤维的过程
03
恒定电流与电路基础知识
电流产生条件及方向规定
规格,并遵循相应的国家标准和规范。
家庭用电安全注意事项
安全用电原则
在使用家庭电器时,应遵循安全 用电原则,如不乱拉乱接电线、
不使用破损电器等。
安全防护措施
为确保家庭用电安全,应采取相 应的安全防护措施,如安装漏电
保护器、使用防火材料等。
安全检查与维护
《电磁学》PPT课件

磁场
由运动电荷(电流)产生的特 殊物理场,描述磁极间的相互
作用。
电场性质
对放入其中的电荷有力的作用, 且力的方向与电荷的电性有关。
磁场性质
对放入其中的磁体或通电导线 有力的作用,且力的方向与电
流方向及磁场方向有关。
库仑定律与高斯定理
库仑定律
描述真空中两个静止点电荷之间的相 互作用力,与电荷量的乘积成正比, 与距离的平方成反比。
超导材料在电磁领域应用前景
01
超导材料的基本特 性
零电阻、完全抗磁性Fra bibliotek02超导材料在电磁领 域的应用
超导磁体、超导电缆、超导电机 等
03
超导材料应用前景 展望
高温超导材料、超导电子学器件 等
太赫兹技术发展现状和挑战
太赫兹技术的概念和特点
介于微波和红外之间的电磁波
太赫兹技术发展现状
太赫兹源、太赫兹探测器、太赫兹波谱仪等
05
电磁波传播与辐射理论
麦克斯韦方程组内容解读
麦克斯韦方程组的四个基本方程
01
高斯定律、高斯磁定律、麦克斯韦-安培定律、法拉第感应定律。
方程组的物理意义
02
揭示了电荷、电流与电场、磁场之间的内在联系,描述了电磁
场的产生、传播和变化规律。
方程组在电磁学中的地位
03
是电磁学的基石,为电磁波理论、电磁辐射和天线设计等领域
实例分析
通过具体磁路实例,如电磁铁、变压器等,分析磁路的结构、工作原理和性能特点。
铁磁材料特性及应用领域
铁磁材料特性
具有高磁导率、低矫顽力、高饱和磁感应 强度等特点,易于实现磁化和退磁。
VS
应用领域
广泛应用于电机、变压器、继电器、扬声 器等电气设备中,以及磁记录、磁放大等 领域。
中国矿业大学(北京)《大学物理》课件 第12章 电磁感应与电磁场

R2
1 2
B(
R12
R22 )
B
. .i b
边缘的电势高 于转轴的电势。
27
大学物理 第三次修订本
第12章 电磁感应与电磁场
例4 金属杆以速度 v→ 平行于长直导线移动。 求: 杆中的感应电流多大?
哪端电势高?
解: 建立如图的坐标系, 取积 分元 dx , 由安培环路定理知
v→ dx
在dx 处的磁感应强度为
判定 Ek的方向
B B 0
B
t
Ev
Ev
B 0
t
注意是Ev与
B
/
BS 0nIS
30
大学物理 第三次修订本
第12章 电磁感应与电磁场
若螺线管内的电流发生变化
l 中产生感生电动势
i
dΦ dt
0nS
dI dt
dI
G I dt
dI I
dt
B
S
l
若闭合线圈 l 的电阻为R, 感应电流
I i
R
31
大学物理 第三次修订本
第12章 电磁感应与电磁场
问题:
线圈 l 中的自由电荷是在什么力的驱动下运动? 不是电场力:
一、动生电动势
平动衡生EF时电kim动FFOmO(势PmPe(eE的v)kv非FvedB静lBB)电 edEl场k 来源×××××i:FF洛em×××××L伦P(+O-v-+兹- ×××××力Bv)×××××dBl
L
设杆长为L, 则 i 0 vBdl vBL
i方向?
22
大学物理 第三次修订本
第12章 电磁感应与电磁场
第12章 电磁感应与电磁场
建于波多黎各的直径达305 m的射电望远镜
1 2
B(
R12
R22 )
B
. .i b
边缘的电势高 于转轴的电势。
27
大学物理 第三次修订本
第12章 电磁感应与电磁场
例4 金属杆以速度 v→ 平行于长直导线移动。 求: 杆中的感应电流多大?
哪端电势高?
解: 建立如图的坐标系, 取积 分元 dx , 由安培环路定理知
v→ dx
在dx 处的磁感应强度为
判定 Ek的方向
B B 0
B
t
Ev
Ev
B 0
t
注意是Ev与
B
/
BS 0nIS
30
大学物理 第三次修订本
第12章 电磁感应与电磁场
若螺线管内的电流发生变化
l 中产生感生电动势
i
dΦ dt
0nS
dI dt
dI
G I dt
dI I
dt
B
S
l
若闭合线圈 l 的电阻为R, 感应电流
I i
R
31
大学物理 第三次修订本
第12章 电磁感应与电磁场
问题:
线圈 l 中的自由电荷是在什么力的驱动下运动? 不是电场力:
一、动生电动势
平动衡生EF时电kim动FFOmO(势PmPe(eE的v)kv非FvedB静lBB)电 edEl场k 来源×××××i:FF洛em×××××L伦P(+O-v-+兹- ×××××力Bv)×××××dBl
L
设杆长为L, 则 i 0 vBdl vBL
i方向?
22
大学物理 第三次修订本
第12章 电磁感应与电磁场
第12章 电磁感应与电磁场
建于波多黎各的直径达305 m的射电望远镜
法拉第电磁感应定律课件

DATE
ANALYSIS
SUMMAR Y
01
法拉第电磁感应定律的 概述
定律的发现与提
发现者
迈克尔·法拉第(Michael Faraday)
时间
19世纪30年代
背景
法拉第在研究磁场变化时观察到电动势的产生
法拉第电磁感应定律的内容
当磁场穿过一个闭合 导体回路时,会在导 体回路中产生电动势
电动势的大小与磁通 量变化的速率成正比
确性。
通过分析实验数据,可以得出磁 场变化率与感应电动势大小之间 的关系,进一步理解法拉第电磁
感应定律的原理。
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
03
法拉第电磁感应定律的 应用
在发电机中的应用
法拉第电磁感应定律在发电机中起着核心作用,它决定了发电机的工作原理和性 能。
发电机利用法拉第电磁感应定律将机械能转换为电能。当导线在磁场中旋转时, 导线中会产生电动势,从而产生电流。发电机的效率、电压和电流的大小都与法 拉第电磁感应定律密切相关。
在变压器中的应用
变压器利用法拉第电磁感应定律来改变电压和电流的大小, 实现电能的传输和分配。
变压器由初级和次级线圈组成,当交流电通过初级线圈时, 会在铁芯中产生磁场,这个磁场会感应到次级线圈中,从而 改变次级线圈的电压和电流大小。变压器的设计、效率和性 能都与法拉第电磁感应定律紧密相关。
详细描述
电动机在旋转磁场的作用下,通过转子线圈产生感应电流,利用这个 电流与定子磁场相互作用产生转矩,从而驱动电动机旋转。
公式
E=n*dΦ/dt
解释
E为感应电动势,n为线圈匝数,dΦ/dt为磁通量变化率。
《法拉第电磁感应定律》共29张ppt精选全文

电学方面1821年法拉第完成了第一项重大的电发明,即第一台电动机,通俗来解释就是通过使用电流将物体运动。虽然在现代技术看来,这个装置十分简陋,但它却开创电动机的发展史。1831年法拉第在实验中发现了电磁感应,也就是当一块磁铁穿过一个闭合线路时 ,线路内就会有感应电流产生。这也成为了法拉第一生最伟大的贡献之一。同年法拉第发明了圆盘发电机,这是法拉第第二项重大的电发明。
在电磁感应现象中产生的电动势叫做感应电动势 。 产生感应电 动势的那部分导体就相当于电源。
感应电动势的大小跟哪些因素有关呢?
在实验中,速度越快、磁场越强、匝数越多, 产生的感应电动势就越ห้องสมุดไป่ตู้。
是不是感应电动势的大小可能与磁通量变化的快慢有关呢?
在法拉第、纽曼、韦伯等人工作的基础上,人们认识到:电路中感应电动势的大小,跟穿过这一电路的磁通量 的变化率成正比,这就是法拉第电磁感应定律 。
现代科学研究中常要用到高 速电子,电子感应加速器就是利用感生电场 使电子加速的设备。 它的基本原理如图所示,上、下为电磁铁的两个磁极,磁极之 间有一个环形真空室,电子在真空室中做圆 周运动。 电磁铁线圈电流的大小、方向可以变 化,产生的感生电场使电子加速。 上图为侧视 图,下图为真空室的俯视图,如果从上向下 看,电子沿逆时针方向运动。 当电磁铁线圈电流的方向与图示方向一 致时,电流的大小应该怎样变化才能使电子 加速?
导线切割磁感线时的感应电动势
=
∆Φ = Φ 2- Φ 是磁通量的变化量
是磁通量的变化率
n 是线圈的匝数 单匝时(n=1):
为有效长度
为与磁感线方向的夹角
为导线和磁场间的相对速度
与= 的对比
感生电动势
感生电场
变化的磁场周围所产生的电场
在电磁感应现象中产生的电动势叫做感应电动势 。 产生感应电 动势的那部分导体就相当于电源。
感应电动势的大小跟哪些因素有关呢?
在实验中,速度越快、磁场越强、匝数越多, 产生的感应电动势就越ห้องสมุดไป่ตู้。
是不是感应电动势的大小可能与磁通量变化的快慢有关呢?
在法拉第、纽曼、韦伯等人工作的基础上,人们认识到:电路中感应电动势的大小,跟穿过这一电路的磁通量 的变化率成正比,这就是法拉第电磁感应定律 。
现代科学研究中常要用到高 速电子,电子感应加速器就是利用感生电场 使电子加速的设备。 它的基本原理如图所示,上、下为电磁铁的两个磁极,磁极之 间有一个环形真空室,电子在真空室中做圆 周运动。 电磁铁线圈电流的大小、方向可以变 化,产生的感生电场使电子加速。 上图为侧视 图,下图为真空室的俯视图,如果从上向下 看,电子沿逆时针方向运动。 当电磁铁线圈电流的方向与图示方向一 致时,电流的大小应该怎样变化才能使电子 加速?
导线切割磁感线时的感应电动势
=
∆Φ = Φ 2- Φ 是磁通量的变化量
是磁通量的变化率
n 是线圈的匝数 单匝时(n=1):
为有效长度
为与磁感线方向的夹角
为导线和磁场间的相对速度
与= 的对比
感生电动势
感生电场
变化的磁场周围所产生的电场
电磁感应电磁场PPT文档39页

谢谢!
51、 天 下 之 事 常成 于困约 ,而败 于奢靡 。——陆 游 52、 生 命 不 等 于是呼 吸,生 命是活 动。——卢 梭
53、 54、 唯 书 籍 不 朽。——乔 特
55、 为 中 华 之 崛起而 读书。 ——周 恩来
电磁感应电磁场
11、获得的成功越大,就越令人高兴 。野心 是使人 勤奋的 原因, 节制使 人枯萎 。 12、不问收获,只问耕耘。如同种树 ,先有 根茎, 再有枝 叶,尔 后花实 ,好好 劳动, 不要想 太多, 那样只 会使人 胆孝懒 惰,因 为不实 践,甚 至不接 触社会 ,难道 你是野 人。(名 言网) 13、不怕,不悔(虽然只有四个字,但 常看常 新。 14、我在心里默默地为每一个人祝福 。我爱 自己, 我用清 洁与节 制来珍 惜我的 身体, 我用智 慧和知 识充实 我的头 脑。 15、这世上的一切都借希望而完成。 农夫不 会播下 一粒玉 米,如 果他不 曾希望 它长成 种籽; 单身汉 不会娶 妻,如 果他不 曾希望 有小孩 ;商人 或手艺 人不会 工作, 如果他 不曾希 望因此 而有收 益。-- 马钉路 德。
电场与磁场 电磁感应PPT课件

表示;一个叫北极,用N表示。
第30页/共91页
一、磁场 磁感应线 磁感应强度
吸引。
磁体之间会产生相互作用的磁力:同名磁极相互排斥,异名磁极相互
磁体在自己周围的空间里产生磁场,磁场对处在它里面的磁体有力的作用。 磁体之间的相互作用力叫磁场力。
第31页/共91页
一、磁场 磁感应线 磁感应强度
通过实验我们发现,同一块磁体放在磁场的不同位置,所受的作用力大小不 同,说明磁场有强有弱。
磁体在其周围空间的不同位置产生的磁场强弱不同。如条形磁铁两极附近磁 场较强,中间较弱;蹄形磁铁两极之间磁场较强,外部离磁极越远磁场越弱。
第32页/共91页
一、磁场 磁感应线 磁感应强度
• 实验:把小磁针放在条形磁铁的周围,可以看 到,不同位置的小磁针,北极所指的方向是不同 的,这说明磁场是有方向的。 • 物理学规定,在磁场中的任一点,小磁针北极 受力的方向,亦即小磁针静止时北极所指的方向, 就是那一点的磁场方向。 • 例如,地球本身就是一个大的磁体,地球周围 的空间产生的磁场叫做地磁场。地球的南端是地 磁场的北极N,地球的北端是地磁场的南极S,
上式表明,在匀强电场中,场强在数值上等于沿场强方向每单位距离上的电 势差,场强的单位还可以用V/m表示。
第27页/共91页
三、匀强电场中电势差和电场强度的关 系
【例题5-2】 如图5-9所示,两块平行的金属板A、B相距3.0cm,用60V的 直流电源使两板分别带电,问:两板之间的匀强电场的电场强度为多大?方向如何?
第33页/共91页
一、磁场 磁感应线 磁感应强度
2.磁感应线
为了形象的描绘磁场,在磁场中也引入了 假想的曲线——磁感应线,即在磁场中画出一 系列曲线,曲线上任意一点的切线方向就是该点 的磁场方向,如图5-10所示。
第30页/共91页
一、磁场 磁感应线 磁感应强度
吸引。
磁体之间会产生相互作用的磁力:同名磁极相互排斥,异名磁极相互
磁体在自己周围的空间里产生磁场,磁场对处在它里面的磁体有力的作用。 磁体之间的相互作用力叫磁场力。
第31页/共91页
一、磁场 磁感应线 磁感应强度
通过实验我们发现,同一块磁体放在磁场的不同位置,所受的作用力大小不 同,说明磁场有强有弱。
磁体在其周围空间的不同位置产生的磁场强弱不同。如条形磁铁两极附近磁 场较强,中间较弱;蹄形磁铁两极之间磁场较强,外部离磁极越远磁场越弱。
第32页/共91页
一、磁场 磁感应线 磁感应强度
• 实验:把小磁针放在条形磁铁的周围,可以看 到,不同位置的小磁针,北极所指的方向是不同 的,这说明磁场是有方向的。 • 物理学规定,在磁场中的任一点,小磁针北极 受力的方向,亦即小磁针静止时北极所指的方向, 就是那一点的磁场方向。 • 例如,地球本身就是一个大的磁体,地球周围 的空间产生的磁场叫做地磁场。地球的南端是地 磁场的北极N,地球的北端是地磁场的南极S,
上式表明,在匀强电场中,场强在数值上等于沿场强方向每单位距离上的电 势差,场强的单位还可以用V/m表示。
第27页/共91页
三、匀强电场中电势差和电场强度的关 系
【例题5-2】 如图5-9所示,两块平行的金属板A、B相距3.0cm,用60V的 直流电源使两板分别带电,问:两板之间的匀强电场的电场强度为多大?方向如何?
第33页/共91页
一、磁场 磁感应线 磁感应强度
2.磁感应线
为了形象的描绘磁场,在磁场中也引入了 假想的曲线——磁感应线,即在磁场中画出一 系列曲线,曲线上任意一点的切线方向就是该点 的磁场方向,如图5-10所示。