直线与椭圆的位置关系(详细)

合集下载

直线与椭圆的位置关系,弦长公式,弦中点问题

直线与椭圆的位置关系,弦长公式,弦中点问题

《直线与椭圆的位置关系,弦长公式,弦中点问题》xx年xx月xx日•直线与椭圆的位置关系•弦长公式•弦中点问题•应用实例目录01直线与椭圆的位置关系直线与椭圆在平面上有三种位置关系:相离、相切和相交。

定义椭圆的离心率e决定了直线与椭圆的位置关系。

e越大,直线与椭圆越远离;e越小,直线与椭圆越接近。

当e=0时,直线与椭圆相切;当0<e<1时,直线与椭圆相离;当e=1时,直线与椭圆相交。

性质定义与性质分类根据直线与椭圆的交点个数,可以分为三类:无交点、一个交点和两个交点。

判定使用代数方法(如解方程)或几何方法(如画图)来判断直线与椭圆的交点个数。

分类与判定方法解决直线与椭圆的问题主要采用代入法、坐标法、参数法等。

技巧根据题目条件选择合适的方法,注意数形结合,转化已知条件为数学方程,通过解方程得到结果。

解题方法与技巧02弦长公式定义与性质弦长公式定义弦长公式是指连接椭圆上两点的线段的长度。

在直角坐标系中,设椭圆上两点$A(x_{1},y_{1}),B(x_{2},y_{2})$,则弦AB的长度为$|AB|=\sqrt{(x_{1}-x_{2})^{2}+(y_{1}-y_{2})^{2}}$。

性质弦长公式具有普遍性,可以用于计算任何连接椭圆上两点的线段的长度。

直线与椭圆的三种位置关系:相交、相切、相离。

判定方法:利用直线方程和椭圆方程联立,消去其中一个变量,得到关于另一个变量的二次方程,通过判断二次方程的根的情况来确定直线与椭圆的位置关系。

分类与判定解题方法利用弦长公式直接计算。

解题技巧对于较复杂的题目,可能需要先化简,再代入数值进行计算。

解题方法与技巧03弦中点问题定义弦中点问题是指关于直线与椭圆交汇点以及中点的问题。

性质弦中点问题涉及直线与椭圆的相交、平行、中点等性质,以及弦长、中点坐标等计算。

定义与性质根据直线与椭圆的位置关系,弦中点问题可分为相交型、平行型和中点型三种类型。

分类判定弦中点问题主要依据直线与椭圆的交点坐标、中点坐标计算公式以及相关的几何性质。

直线与椭圆的位置关系PPt

直线与椭圆的位置关系PPt

4 ∴ x1 x2 , x1 x2 0 3
0 ( 1) 1 2
∵点 F1 到直线 AB 的距离 d
∴ S F1 AB
= 2
1 1 4 4 4 d AB = 2 2= . 答: △F1 AB 的面积等于 2 2 3 3 3
知识点3.中点弦问题
x y 1 例、椭圆 1, 设直线y x 1与椭圆交于 16 4 2 A、B两点,求线段AB的中点坐标。
2 2
直线与椭圆有公共点,
4m 20(m 1) 0
2 2
5 5 解得: m 2 2
所以当
5 5 m 时,直线与椭圆有公共 点 2 2
探究二:直线与椭圆的相交弦长的求法 x2 y2 直线方程为 : y kx m ,椭圆方程为: 2 2 1 a b
l:x y40
把直线 l 平移至 l ', l ' 与椭圆相切, l 此时的切点 P 就是最短距离时的点. 即设:l ': x y m 0
x ym0 由 2 2 x 8 y 8 9 y 2 2my m 2 8 0
P
y
l'
O
x
4m 2 4 9(m 2 8) 0 m 3
0 x x1 x2 16k (1 2k ) 4 2 M 2 2 ( 1 4 k )
1 解得, k . 2
1 所以所求直线方程为 : y 2 ( x 4)即x 2 y 8 0 2
x2 y 2 例2.已知椭圆 1的弦PQ被点M(4, 2)平分,求此弦所 36 9 y 在直线 方程. B
8 3 8 则x1 x2 , x1 x2 5 5 从而有 AB 1 k 2 x1 x2 1 k 2 8 3 2 8 = 2( )-4 5 5 8 = 5

椭圆与直线的位置关系的判定

椭圆与直线的位置关系的判定

1.椭圆与直线的位置关系的判定:1.当m 为何值时,直线y x m =+与椭圆221169x y +=相交?相切?相离? 2、直线y=x+1与椭圆λ=+224y x 只有一个公共点,则λ为( ) A、54 B、45 C、35 D、53 3、不论k 为何值,直线1y kx =+和椭圆22125x y m+=恒有公共点,实数m 的取值范围是 。

中点弦问题:1、已知椭圆的一个焦点坐标是(0,,25),且截直线023=--y x 所得的弦的中点的横坐标为21,求椭圆的标准方程2、直线1+-=x y 交椭圆122=+ny mx 于M、N两点,弦MN的中点为P,若22=op k ,则m ,n 之间的关系为3、如果椭圆193622=+y x 的弦被点(4,2)平分,这条弦所在的直线方程 4、试确定m 的取值范围,使得椭圆22143x y +=上有不同两点关于直线4y x m =+对称 。

弦长问题:1、已知椭圆:1922=+y x ,过左焦点F 作倾斜角为6π的直线交椭圆于A 、B 两点,求弦AB 的长 2.如图,已知椭圆2214520x y +=的焦点分别是1F 、2F ,过中心O 作直线与椭圆相交于A 、B 两点,若要使2ABF ∆的面积是20,求该直线方程.综合问题:1、中心在坐标原点,焦点在x 10x y +-= 相交于M 、N 两点,若以MN 为直径的圆经过坐标原点,求椭圆的方程。

2、设椭圆方程为1422=+y x ,过点)1,0(M 的直线l 交椭圆于点A 、B ,O 是坐标原点,点满足)(21OB OA OP +=,点N 的坐标为)21,21(,当l 绕)1,0(M 点旋转时,求: (1)动点P 的轨迹方程;(2)NP 的最小值与最大值。

直线与椭圆的位置关系讲解(全面)

直线与椭圆的位置关系讲解(全面)
求 △F1 AB 的面积.
分析:先画图熟悉题意, 点 F1 到直线 AB 的距离易知,
要求 S△F1AB ,关键是求弦长 AB. 设 A( x1 , y1 ), B( x2 , y2 ) . 由直线方程和椭圆方程联立方程组
解 例焦:2∵:点已椭,圆知过点x2F2 F21作y、2倾F斜21分的角别两为个 是4焦椭的点圆直坐2x线标2 ,F11y求(21△,10F)的1, AF左2B(1、 的, 0右 面) 积. ∴直线 AB 的方程为 y x 1 设 A( x1, y1 ), B( x2 , y2 )
是否存在一点,它到直线l的距离最小? y 最小距离是多少?
解:设直线m平行于l,
则l可写成:4x 5y k 0
x o
4x 5y k 0
由方程组
x2
y2
消去y,得25x2 8kx k 2 - 225 0
25 9 1
由 0,得64k 2 - 4 2(5 k 2 - 225) 0
平分,求此弦所在直线的方程.

作差
点差法:利用端点在曲线上,坐标满足方程,作差构造 出中点坐标和斜率.
知识点3:中点弦问题
点差法:利用端点在曲线上,坐标满足方程,作 差构造出中点坐标和斜率.
设A(x1, y1), B(x2 , y2 ), AB中点M (x0 , y0 ),
则有:2x0 x1 x2 , 2 y0 y1 y2
1 a2
1 b2
1
a2
b2
a2b2
题型一:直线与椭圆的位置关系
练习1.K为何值时,直线y=kx+2和曲线2x2+3y2=6有 两个公共点?有一个公共点?没有公共点?
当k= 6 时有一个交点 3
当k> 6 或k<- 6 时有两个交点

直线与椭圆的位置关系弦长公式

直线与椭圆的位置关系弦长公式

9b2 10
9
| AB |
2
18b 2 10
4 9b2 9 10
92 5
解得 : b 1,直线AB的方程为y x 1
10 x2 18bx 9b2 9 0,
所以切线方程为 : y x 10
36(10 b2 ),则
所以椭圆上存在一点,
当 0,即 10 b 10时,相交; 即切线y x 10上的切点,
当 0,即b 10时,相切;
它到直线y x 4的距离最小,
当 0,即b 10或b 10时,相离; d | 4 10 | 2 2 5 2
练习: 若斜率为1的直线与椭圆x2 9 y2 9交于
A, B两点,且 | AB | 9 2,求直线l的方程. 5
解 : 设直线为 : y x b,代入椭圆方程并整理得
10 x2 18bx 9b2 9 0,
设A( x1,
y1), B( x2 ,
y2 ቤተ መጻሕፍቲ ባይዱ,则x1
x2
18b 10
,
x1 x2
解 :由已知可得,右焦点C(2 2,0),直线AB为 : y 3 ( x 2 2), 3
代入椭圆方程并整理得 : 4x2 12 2x 15 0,
设A( x1, y1), B( x2 , y2 ),则x1 x2 3
15 2, x1x2 4
2
| AB |
1
3 3
(3 2 )2 4 15 2 4
例1.倾斜角为450的直线何时与椭圆x2 9 y2 9 相交, 相切, 相离 ?
练习: 椭圆x2 9y2 9上是否存在一点,它到直线 l : x y 4 0的距离最小,最小距离是多少?
例1,解 : 设直线为 : y x b,

直线与椭圆的位置关系、弦长公式

直线与椭圆的位置关系、弦长公式

解:
3、弦中点问题
例 :已知椭圆
过点P(2,1)引一弦,使弦在这点被
平分,求此弦所在直线的方程. 解:
韦达定理→斜率
韦达定理法:利用韦达定理及中点坐标公式来构造
3、弦中点问题
例 :已知椭圆
过点P(2,1)引一弦,使弦在这点被
平分,求此弦所在直线的方程.

作差
点差法:利用端点在曲线上,坐标满足方程,作差构造 出中点坐标和斜率.
2.2.2 椭圆的简单几何性质
1-----直线与椭圆的位置关系 2-----弦长公式
高二数学 熊超进
直线与椭圆的位置关系
种类: 相离(没有交点) 相切(一个交点) 相交(二个交点)
相离(没有交点) 相切(一个交点) 相交(二个交点)
1直线与椭圆的位置关系
1.位置关系:相交、相切、相离 2.判别方法(代数法)
例:已知斜率为1的直线L过椭圆 交椭圆于A,B两点,求弦AB之长.
的右焦点,
练习:已知椭C x2 y2 1斜率为1的 直线 l 与椭圆交
3
于 A, B 两点,且 AB 3 2求直线 l 的方程
2
3.若P(x,y)满足 x2 y2 1( y 0) ,求 y 3 的
4
x4
最大值、最小值.
( x1
x2 )2
4 x1
x2
6 5
2
2、弦长公式
设直线与椭圆交于P1(x1,y1),P2(x2,y2)两点,直线P1P2的斜率为k.
弦长公式:
弦长的计算方法: 弦长公式:
|AB|= 1 k 2 ·(x1 x2)2 4x1 x2
=
1
1 k2
·(y1
y2)
4 y1

直线和椭圆位置关系总结大全

1.直线和椭圆位置关系判定方法概述1直线斜率存在时221y kx bmx ny =+⎧⎨+=⎩⇒222()210m k n x kbnx b +++-=当0∆>时直线和椭圆相交当0∆=时直线和椭圆相切当0∆<时直线和椭圆相离2直线斜率不存在时22221x x y ab =⎧⎪⎨+=⎪⎩判断y 有几个解注:01无论直线斜率存在与否,关键是看联立后的方程组有几组解,而不是看""∆。

02直线和椭圆位置关系的判断只有这种“坐标法”,无几何法。

2.直线和椭圆相交时1弦长问题弦长公式22121221111AB k x x k y y a k∆=+-=+=+-注:2121212()4x x x x x x -=+-而12x x +和12x x 可用韦达定理解决,不必求出1x 和2x 的精确值,“设而不求”思想初现。

2三角形面积1过x 轴上一定点H 的直线l 与椭圆22221x y a b +=交于A 、B 两点,求AOB S ∆1212AOB S OH y y ∆=- 02过y 轴上一定点H 的直线l 与椭圆22221x y b a+=交于A 、B 两点,求AOB S ∆1212AOB S OH x x ∆=- 03弦任意,点任意12S ∆=弦长×点线距注:仍然蕴含“设而不求”思想。

3弦的中点问题01中点弦所在直线方程问题02平行弦中点轨迹03共点弦中点轨迹04其他问题类型题一:直线与椭圆位置1.已知直线2+=kx y 和椭圆12322=+y x ,当k 取何值时,此直线与椭圆:(1)相交;(2)相切;(3)相离。

2.已知直线2+=kx y 与椭圆2222=+y x 相交于不同的两点,求k 的取值范围。

3.点P 在椭圆284722=+y x 上,则点P 到直线01623=--y x 的距离的最大值为_____,最小值为________.类型题二:弦长公式1.已知椭圆:1922=+y x ,过左焦点1F 作倾斜角为6 的直线交椭圆于B A ,两点,求弦AB 的长。

直线与椭圆的位置关系

直线与椭圆的位置关系
直线与椭圆的位置关系是数学几何学的一个重要问题。

在这篇
文档中,我们将讨论直线与椭圆的几种可能的位置关系。

直线位于椭圆内部
当一条直线完全位于椭圆内部时,我们可以得到以下几种情况:
1. 直线与椭圆没有交点:这意味着直线与椭圆没有任何交点,
且直线与椭圆的轴是平行的。

2. 直线与椭圆有两个交点:这说明直线与椭圆相交于两个点,
椭圆的两个焦点位于直线上。

直线与椭圆位于同一平面
当直线与椭圆位于同一平面时,我们可以得到以下几种情况:
1. 直线与椭圆相切:这种情况下,直线与椭圆只有一个交点,
并且交点是椭圆的一个焦点。

2. 直线与椭圆相交于两点:这意味着直线与椭圆相交于两个不同的点,并且这两个点分别位于椭圆的两个焦点的同侧。

3. 直线与椭圆相离:这种情况下,直线与椭圆没有任何交点,并且直线与椭圆的轴平行。

直线与椭圆相交于无穷多点
当直线与椭圆相交于无穷多点时,这种情况被称为直线与椭圆重叠。

直线与椭圆重叠意味着直线和椭圆重合,任意一点都同时位于直线和椭圆上。

结论
通过研究直线与椭圆的位置关系,我们可以得出结论:直线与椭圆的位置关系取决于直线与椭圆之间的交点数量和位置。

这个问题在计算机图形学、建筑设计等领域都有广泛的应用。

了解这些位置关系有助于我们更好地理解直线和椭圆之间的几何性质。

总之,直线与椭圆的位置关系是一个有趣且复杂的问题,通过分析直线与椭圆的交点情况,我们可以获得更多关于它们的几何特性的信息。

直线与椭圆的位置关系

直线与椭圆的位置关系例1当m 为何值时,直线l : y=x+m 与椭圆•9x 2+16y 2=144相切、相交、相离?离2、有关弦长问题例2 设直线12y x =-与椭圆2242x y +=相交于 点A B 、,求弦AB 的长注意:直线与二次曲线相交弦长的求法(1)联立方程组(2)消去一个未知数(3)利用弦长公式: 弦长公式:=|||A B AB x x =-但有关圆的弦长一般运用垂径定理!特殊的弦—通径:经过椭圆的焦点且垂直于椭圆长轴的弦 222=b AB a《成才》课后强化训练 (八)133、与弦中点有关的问题例3 椭圆221369x y +=的一条弦被(4,2)A 平分,那么这条弦所在的直线方程是A .20x y -=B .2100x y +-=C .220x y --=D .280x y +-=【答案】D注意:弦中点问题的两种处理方法:(1)联立方程组,消去一个未知数,利用韦达定理;(2)设两端点坐标,代入曲线方程相减可求出弦的斜率----点差法4、椭圆中的最值问题《成才之路》P27 例5已知椭圆2288+=x y ,在椭圆上求一点P ,使P 到直线:40-+=l x y 的距离最小,并求出最小值。

分析:即求与:40-+=l x y 平行的椭圆的切线与:40-+=l x y 间的距离课后作业:=1、如果椭圆2212x y +=的弦被点1122⎛⎫ ⎪⎝⎭,平分,求这弦所在的直线方程。

【答案】2430x y +-=2、(2009汕头)如图,已知椭圆的中心在原点,焦点在x 轴上,长轴长是短轴长的2倍且经过点M (2,1),平行于OM 的直线l 在y 轴上的截距为m (m ≠0),l 交椭圆于A 、B 两个不同点。

(1)求椭圆的方程;(2)求m 的取值范围;(3)求证直线MA 、MB 与x 轴始终围成一个等腰三角形.解:(1)设椭圆方程为)0(12222>>=+b a by a x ……1分 则⎪⎩⎪⎨⎧==⎪⎩⎪⎨⎧=+=2811422222b a b a b a 解得……………3分 ∴椭圆方程为12822=+y x ………4分 (2)∵直线l 平行于OM ,且在y 轴上的截距为m又K OM =21 m x y l +=∴21的方程为:…………………5分 由0422128212222=-++∴⎪⎪⎩⎪⎪⎨⎧=++=m m x x y x m x y ………6分 ∵直线l 与椭圆交于A 、B 两个不同点,分且解得8...........................................................0,22,0)42(4)2(22≠<<->--=∆∴m m m m(3)设直线MA 、MB 的斜率分别为k 1,k 2,只需证明k 1+k 2=0即可…………9分设42,2),,(),,(221212211-=-=+m x x m x x y x B y x A 且……………………10分则21,21222111--=--=x y k x y k 由可得042222=-++m mx x42,222121-=-++m x x m x x ………………………10分 而)2)(2()2)(1()2()1(2121211221221121----+---=--+--=+x x x y x y x y x y k k )2)(2()1(4)2)(2(42)2)(2()1(4))(2()2)(2()2)(121()2)(121(212212*********------+-=----+++=----++--+=x x m m m m x x m x x m x x x x x m x x m x13......................................................0)2)(2(444242212122=+∴=--+-+--=k k x x m m m m 分 故直线MA 、MB 与x 轴始终围成一个等腰三角形.…14分4、综合问题例1已知椭圆()2222:10x y C a b a b +=>>的离心率为3(1)求椭圆C 的方程;(2)设直线l 与椭圆C 交于A B 、两点,坐标原点O 到直线lAOB ∆面积的最大值。

直线与椭圆的位置关系

直线与椭圆的位置关系【重要考点】1. 直线与椭圆的位置关系及判断方法(1)直线和椭圆有三种位置关系:相交、 相切 、 相离 ;(2)直线和椭圆的位置关系的判断:设直线方程:y =kx +m ,椭圆方程:22221x y a b+=(0a b >>),两方程联立消去y 可得:Ax 2+Bx +C =0,其判别式为Δ=B 2-4AC 。

当Δ>0时,直线与椭圆 相交 ; 当Δ=0时,直线与椭圆 相切 ; 当Δ<0时,直线与椭圆 相离 。

2. 向量的运算及其中一些特殊几何关系在直线和椭圆解题中的运用,例如直线AB ⊥AC 可转化为0AB AC ⋅=。

【易错点辨析】解答直线和椭圆相关问题要注意避免出现如下两种错误:(1)对直线l 斜率的存在性不作讨论而直接设为点斜式,出现漏解或思维不全造成步骤缺失;(2)对二次项系数不为零或Δ≥0这个前提忽略而直接使用根与系数的关系。

例题1 在直角坐标系xOy 中,椭圆C :x 24+y 23=1的左、右焦点分别为F 1、F 2,点M(23,263)为C 上的一点,点N 满足MN →=MF 1→+MF 2→,直线l ∥MN ,且与曲线C 交于A 、B 两点,若以AB 为直径的圆经过坐标原点O ,求直线l 的方程。

解析:由MN →=MF 1→+MF 2→知四边形MF 1NF 2是平行四边形,其中心为坐标原点O ,因为l ∥MN ,所以l 与OM 的斜率相同。

故l 的斜率k =26323=6。

设l 的方程为y =6(x -m )。

由⎩⎨⎧3x 2+4y 2=12,y =6(x -m ),消去y 并化简得 9x 2-16mx +8m 2-4=0。

设A (x 1,y 1),B (x 2,y 2),x 1+x 2=16m9,x 1x 2=8m 2-49。

因为OA ⊥OB ,所以x 1x 2+y 1y 2=0。

x 1x 2+y 1y 2=x 1x 2+6(x 1-m )(x 2-m ) =7x 1x 2-6m (x 1+x 2)+6m 2 =7·8m 2-49-6m ·16m9+6m 2=19(14m 2-28)=0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档