时间序列分析降水量预测模型

合集下载

时间序列模型在降水量预测中的应用研究

时间序列模型在降水量预测中的应用研究

时间序列模型在降水量预测中的应用研究随着气候变化的不断加剧,气象预测和气候变化研究变得日益重要。

其中,降水量预测是气象预测的一个关键领域,对于农业、水资源管理、城市规划等具有重要意义。

时间序列模型作为一种重要的预测方法,其在降水量预测中的应用研究备受关注。

本文旨在就时间序列模型在降水量预测中的应用研究进行探讨,从理论基础、模型选择、数据处理、结果分析等方面展开深入讨论。

一、理论基础时间序列模型是一种利用时间上的观测结果进行预测的统计模型。

其基本思想是将时间序列数据看作自回归过程或移动平均过程,利用历史数据来预测未来的趋势。

常用的时间序列模型包括自回归模型(AR)、移动平均模型(MA)、自回归移动平均模型(ARMA)、差分自回归移动平均模型(ARIMA)等。

这些模型在时间序列分析中得到了广泛应用,尤其在经济、金融等领域取得了良好的效果。

二、模型选择在降水量预测中,选择合适的时间序列模型对于预测结果的准确性至关重要。

一般来说,可以根据观测数据的特点来选择合适的模型。

如果观测数据呈现出明显的趋势和季节性变化,则可以选择ARIMA模型;如果观测数据存在自相关性和移动平均性,则可以选择ARMA模型。

除了以上基本模型外,还可以结合实际情况,采用灰色模型、神经网络模型等进行降水量预测。

在选择模型时,需要进行充分的模型比较和验证,以确保选取的模型能够较好地拟合观测数据,并且具有良好的预测性能。

三、数据处理在进行降水量预测时,需要对观测数据进行充分的处理和分析。

首先需要对观测数据进行平稳性检验,确定是否需要进行差分处理;其次需要对观测数据进行白噪声检验,以验证是否存在自相关性和移动平均性;最后需要对观测数据进行季节性调整,以消除季节性因素的影响。

在数据处理的过程中,需结合实际情况,充分利用专业知识和经验,以确保处理后的数据能够满足时间序列模型的建模要求。

四、结果分析经过以上步骤的处理和分析,得到了时间序列模型的预测结果。

基于ARIMA模型的山东省月降水量时间序列分析

基于ARIMA模型的山东省月降水量时间序列分析
理 的趋势 分析 和 预 测 , 可 有 助 于研 究 某 地 区 的农
降水量 进 行 对 比分 析 . 通过 A R I MA模 型 进 行 建
模, 研究发现单独一个模型对 于降水趋势的拟合 不如 采用 两个 A R I MA模 型进 行拟 合 的效果 好 . 因
此本 文 提 出采 用 A R I MA( 1 , 1 , 1 ) × ( 1 , 1 , 1 ) 模 型和 A R I MA ( 0 , 1 , 1 ) × ( 0 , 1 , 1 ) 2 相结合的方法 ,
孙 苗 , 孔 祥超 , 耿 伟华
( 山东科技 大学 测绘工程与技术学 院, 山东 青岛 2 6 6 5 9 0 )
摘要 : 采用 S A S和 S P S S 软件 , 结合相关 的数学统计方法 和时间序列 分析方法 , 运用 A R I MA模 型进行建模 , 分 析了山东省境 内 2 0 0 0年到 2 0 0 9年的月降水量 的变化趋 势 , 对2 0 1 0年 的月降水量 数据 进行预测 并 与真实值 进行对照. 结果表 明 A R I MA模 型在短期预测中能起到一定作用 , 所 预测结果 均在 9 5 %的置信区间 内. 关键词 : 月降水 量 ; 时间序列分析 ; A R I MA模 型 ; 预测 ; 山东省
中 图分 类 号 : P 3 3 3 文 献 标 志码 : A 文章编号 : 1 6 7 3 — 8 0 2 0 ( 2 0 1 3 ) 0 3 ・ 0 2 4 4 — 0 6
大气降水是人们生活 中重要 的水资源来源 , 降水量是衡量某一地 区降水多少的数据. 但 降水
受 多 种 因素 的影 响 , 呈一 定 的时 空 分 布 特征 ,即 在不 同 的时 间 、 季节 和地 区 , 降水 量具有 明显 的差 异. 在 实 际生 活 中若 利 用技 术手 段 对 降 水 进 行合

时序递阶组合模型在降水量预测中的应用

时序递阶组合模型在降水量预测中的应用
如下 。
设 Ut ()为差分后 得到的新 系列 , 则有
() : 7 X() : ( £ t 1一B)x() £ () 2
收 稿 日期 :07 0 2 20 —1 -3 基金项 目: 国家“ 十一五 斗 支撑计划项 目 2 B D0 一 。 ’技 弄 (m6A 2  ̄6 ∞)
式中 : V为差分算子 ; B为后移算子 , 基本性质为 X():X( — t t
d ) 表 示 后 移 d个 时 间 间 隔 。 ,

作者简介 : 宇平 (9 5 ) 男 , 韩 17一 , 宁夏 彭阳人 , 高级 工程师 , 博 士, 主要研 究方向为水资 源系统工程。
通 讯 作 者 : 卫 宁 (9 2 ) 男 , 士 研 究 生 。 郭 18一 , 硕
究 的 序 列 构造 一个 统 计 量 :
时序递阶组合模型的建立
设水文时 间序 列为 X() 其一 般 由趋 势项 - t 、 t, 厂 ) 周期 项 ( Pt ()和随机项 7 t 组成 , I ) ( 可以用以下组合模型描述 :
X t : t Biblioteka t () ) ()+ 叼 t () () 1
这 2项分离出去 , 余下 的就是 随机项 , 随机项可用 平稳 的时 间
y 一岛 1
序号 ; 表示 系列的时序 ; £ Ⅳ表示系列的长度 。
( 4 )
式 中: =R d 一t 表示系列 U()从大到小排列时所对应的 ; £ 可 以证 明, 服从 自由度 为( N一2 )的 t 布 , 用 t 分 采 检验 法, 在显著性水 平 下检验 ITI>t 2 t 是否 成立 。 , / 如果成立 , 则
( 北水 利 水 电 学 院 , 南 郑 州 40 1 ) 华 河 5 0 1

sarima知识基础

sarima知识基础

sarima知识基础SARIMA(Seasonal Autoregressive Integrated Moving Average)模型是时间序列分析中常用的一种预测模型。

它是ARIMA模型的一种扩展,可以用于处理具有季节性变化的时间序列数据。

在本文中,我们将介绍SARIMA模型的基本原理和应用。

一、SARIMA模型的基本原理SARIMA模型是建立在ARIMA模型的基础上的,它考虑了时间序列数据中存在的季节性变化。

ARIMA模型是一种广泛应用于时间序列预测的统计模型,它包括自回归(AR)、差分(I)和移动平均(MA)三个部分。

AR部分描述了当前观测值与过去观测值之间的关系,MA 部分描述了当前观测值与随机误差项之间的关系,而差分则用于处理非平稳时间序列。

SARIMA模型在ARIMA模型的基础上引入了季节性因素,它包括了季节性自回归(SAR)、季节性差分(SI)和季节性移动平均(SMA)三个部分。

这些季节性部分与ARIMA模型的部分类似,但与季节性相关。

通过引入这些季节性因素,SARIMA模型能够更好地处理具有季节性变化的时间序列数据。

二、SARIMA模型的应用领域SARIMA模型广泛应用于各个领域的时间序列预测任务中。

例如,在经济领域,SARIMA模型可以用于预测季节性销售数据、股票价格等。

在气象领域,SARIMA模型可以用于预测季节性气温、降水量等。

在交通领域,SARIMA模型可以用于预测交通流量、拥堵情况等。

总之,只要存在季节性变化的时间序列数据,SARIMA模型都可以被应用于其中。

三、SARIMA模型的建模过程建立SARIMA模型的过程包括模型的选择、参数估计和模型诊断三个步骤。

1. 模型选择:首先,需要通过观察时间序列数据的自相关图(ACF)和偏自相关图(PACF)来确定ARIMA模型的阶数。

然后,根据季节性变化的周期性确定SARIMA模型的季节阶数。

2. 参数估计:确定了ARIMA和SARIMA的阶数之后,需要通过最大似然估计(MLE)或最小二乘法来估计模型的参数。

统计实验报告时间序列

统计实验报告时间序列

一、实验背景时间序列分析是统计学中的一个重要分支,它主要研究如何对时间序列数据进行建模、预测和分析。

本实验旨在通过实际数据的时间序列分析,了解时间序列的基本特性,掌握时间序列建模的方法,并尝试进行未来趋势的预测。

二、实验目的1. 理解时间序列的基本概念和特征。

2. 掌握时间序列数据的可视化方法。

3. 学习并应用时间序列建模的基本方法,如自回归模型(AR)、移动平均模型(MA)和自回归移动平均模型(ARMA)。

4. 尝试进行时间序列数据的预测。

三、实验数据本实验选用某城市过去一年的月度降雨量数据作为分析对象。

数据包括12个月的降雨量,单位为毫米。

四、实验步骤1. 数据预处理- 读取数据:使用Python的pandas库读取降雨量数据。

- 数据检查:检查数据是否存在缺失值或异常值。

- 数据清洗:如果存在缺失值或异常值,进行相应的处理。

2. 数据可视化- 使用matplotlib库绘制降雨量时间序列图,观察数据的趋势和季节性特征。

3. 时间序列建模- 自回归模型(AR):根据自回归模型的理论,建立AR模型,并通过AIC(赤池信息量准则)和SC(贝叶斯信息量准则)进行模型选择。

- 移动平均模型(MA):建立MA模型,并使用同样的准则进行模型选择。

- 自回归移动平均模型(ARMA):结合AR和MA模型,建立ARMA模型,并选择最佳模型。

4. 模型验证与预测- 使用历史数据进行模型验证,比较不同模型的预测精度。

- 对未来几个月的降雨量进行预测。

五、实验结果与分析1. 数据可视化通过时间序列图可以看出,降雨量存在明显的季节性特征,每年的夏季降雨量较多。

2. 时间序列建模- AR模型:通过AIC和SC准则,选择AR(2)模型作为最佳模型。

- MA模型:同样通过AIC和SC准则,选择MA(3)模型作为最佳模型。

- ARMA模型:结合AR和MA模型,选择ARMA(2,3)模型作为最佳模型。

3. 模型验证与预测- 模型验证:通过比较实际值和预测值,可以看出ARMA(2,3)模型的预测精度较高。

洛宁降水量数据分析报告(3篇)

洛宁降水量数据分析报告(3篇)

第1篇一、前言洛宁位于河南省西部,属于温带季风气候区,降水量对当地农业生产、生态环境和居民生活具有重要意义。

为了更好地了解洛宁的降水量变化规律,为相关决策提供科学依据,本文对洛宁近30年的降水量数据进行统计分析,并对结果进行分析。

二、数据来源与处理1. 数据来源本文所使用的数据来源于洛宁气象局,时间范围为1990年至2019年,共计30年的月降水量数据。

2. 数据处理(1)数据清洗:对数据进行初步清洗,剔除异常值和缺失值。

(2)数据转换:将月降水量数据转换为年降水量数据,以便进行后续分析。

三、数据分析方法1. 描述性统计分析对洛宁近30年的年降水量进行描述性统计分析,包括均值、标准差、最大值、最小值等指标。

2. 时间序列分析采用自回归模型(AR)对洛宁年降水量进行时间序列分析,以揭示其变化规律。

3. 相关性分析通过计算洛宁年降水量与相关因素(如气温、蒸发量等)的相关系数,分析其相互关系。

四、结果与分析1. 描述性统计分析洛宁近30年年降水量均值为845.6毫米,标准差为232.2毫米,最大值为1995年的1195.5毫米,最小值为2012年的342.2毫米。

从描述性统计分析结果可以看出,洛宁年降水量波动较大,存在一定的季节性变化。

2. 时间序列分析通过对洛宁年降水量进行自回归模型分析,得出以下结论:(1)洛宁年降水量具有明显的季节性变化,夏季降水量最多,冬季降水量最少。

(2)洛宁年降水量在1990年至1995年间呈上升趋势,1995年至2005年间呈下降趋势,2005年至2019年间呈波动上升趋势。

3. 相关性分析(1)洛宁年降水量与气温呈正相关关系,相关系数为0.56。

当气温升高时,降水量也随之增加。

(2)洛宁年降水量与蒸发量呈负相关关系,相关系数为-0.47。

当蒸发量增加时,降水量相应减少。

五、结论与建议1. 结论(1)洛宁年降水量具有明显的季节性变化,夏季降水量最多,冬季降水量最少。

(2)洛宁年降水量在1990年至2019年间呈波动上升趋势,但波动较大。

数学建模中的预测方法:时间序列分析模型

数学建模中的预测方法:时间序列分析模型

自相关函数
k 满足 ( B) k 0
它们呈指数或者正弦波衰减,具有拖尾性
3)ARMA( p, q)序列的自相关与偏自相关函数均是拖尾的
(2)模型的识别
自相关函数与偏自相关函数是识别ARMA模型的最主 要工具,B-J方法主要利用相关分析法确定模型的阶数. 若样本自协方差函数 k 在 q 步截尾,则 X t 是MA( q )序列
注:实参数 1 ,2 ,
,q 为移动平均系数,是待估参数
引入滞后算子,并令 (B) 1 1B 2 B2 q Bq 则模型【3】可简写为
X t ( B)ut
【4】
注1:移动平均过程无条件平稳 注2:滞后多项式的根都在单位圆外时,AR过程与MA过程 能相互表出,即过程可逆,
2
N 为样本大小,则定义AIC准则函数
用AIC准则定阶是指在
得 AIC (S )
p, q
最小的点
ˆ,q ˆ) (p
作为
( p, q)
的估计。
2p N 2( p q ) 2 ( p , q ) ˆ ARMA 模型 : AIC ln N
AR( p )模型 :
ˆ2 AIC ln
应用案例:
(1)CUMCM2004-A:奥运临时超市网点设计;
(2)CUMCM2004-B:电力市场的输电阻塞管理;
(3)CUMCM2005-A:长江水质的评价与预测;
(4)CUMCM2006-B:艾滋病疗法的评价与预测; (5)CUMCM2008-B:高校学费标准探讨问题。
3.灰预测GM(1,1):小样本的未来预测 应用案例
k 在
2) kk 的截尾性判断 作如下假设检验:M N
H0 : pk , pk 0, k 1, , M H1 : 存在某个 k ,使kk

时间序列预测模型在天气预报中的应用研究

时间序列预测模型在天气预报中的应用研究

时间序列预测模型在天气预报中的应用研究第一章:引言天气预报是一项重要的公共服务,对人类社会的生产、生活、安全等方面都有着至关重要的影响。

随着现代化技术的快速发展和大量数据的产生,时间序列预测模型在天气预报中得到了广泛的应用。

本文将介绍时间序列预测模型在天气预报中的应用研究,以及相关的技术和方法。

第二章:时间序列分析时间序列分析是一种能够自动发现数据中的规律性和趋势性的方法。

在天气预报中,时间序列分析可以分析一定时期内的气象数据,来预测未来的气象情况。

常见的时间序列预测模型包括ARIMA模型、分解模型等。

2.1 ARIMA模型ARIMA模型是一种基于时间序列的统计模型。

它可以对时间序列进行建模,并对未来的值进行预测。

ARIMA模型一般包括3个部分:自回归模型(AR)、差分模型(I)、移动平均模型(MA)。

ARIMA模型适用于同一时间段内的数据具有相关关系的领域,如气象、经济等领域。

2.2 分解模型分解模型是将时间序列分解成趋势、季节和随机三部分来进行预测的一种方法。

在天气预报中,分解模型可以将数据分解成相应的趋势、季节和随机成分,分别进行预测。

通过分析不同成分预测结果的加权影响,得到最终天气预报结果。

第三章:时间序列预测在天气预报中的应用实例3.1 城市气象预报在城市气象预报中,时间序列预测模型可以对气温、湿度、风力、降水量、大气压力等进行预测。

以气温预测为例,可以利用ARIMA模型对气温进行建模,并对未来数天的气温进行预测。

在实际应用中,气象预报员可以以ARIMA模型的预测结果为依据,提供更为准确的气象预报信息。

3.2 农业气象预报在农业气象预报中,时间序列预测模型可以对作物的生长、成熟、产量等进行预测。

以预测玉米的产量为例,可以将历年的气象数据分解成趋势、季节和随机成分,然后利用分解模型预测未来几年的玉米产量。

在实际应用中,农业预报员可以根据预测结果对农作物进行更为精准的管理和决策。

第四章:时间序列预测在天气预报中的优缺点4.1 优点时间序列预测模型可以利用历史气象数据对未来气象变化进行预测,预测结果更加准确。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程名称: 时间序列分析题目: 降水量预测院系:理学院专业班级:数学与应用数学10-1学号:学生姓名:戴永红指导教师:__潘洁_2013年 12 月 13日1.问题提出能不能通过以前的降水序列为样本预测出2002的降水量?2.选题以国家黄河水利委员会建站的山西省河曲水文站1952年至2002年51年的资料为例,以1952年至2001年50年的降水序列作为样本,建立线性时间序列模型并预测2002年的降水状态与降水量,并与2002年的实际数据比较说明本模型的具体应用及预测效果。

资料数据见表1。

表1 山西省河曲水文站55年降水量时间序列3.原理 3.1模型表示均值为0,具有有理谱密度的平稳时间序列的线性随机模型的三种形式,描述如下:1、()AR p 自回归模型:1122t t t p t p t ωφωφωφωα-------=由2p +个参数刻画;2、()MA q 滑动平均模型:1122t t t t q t q ωαθαθαθα---=----由2q +个参数刻画;3、(,)ARMA p q 混和模型:(,)ARMA p q 混和模型由3p q ++个参数刻画;3.2 自相关函数k ρ和偏相关函数kk φ1、自相关函数k ρ刻画了任意两个时刻之间的关系,0/k k ργγ=2、偏相关函数kk φ刻画了平稳序列任意一个长1k +的片段在中间值11,t t k ωω++-固定的条件下,两端t ω,t k ω+的线性联系密切程度。

3、线性模型k ρ、kk φ的性质表2 三种线性模型下相关函数性质3.3 模型识别通常平稳时间序列t Z ,0,1t =±仅进行有限n 次测量(50)n ≥,得到一个样本函数,且利用平稳序列各态历经性:11nj j Z Z n μ=≈=∑做变换,t t Z ω=,1,t n =,将1,,n Z Z 样本换算成为样本1,,n ωω,然后再确定平稳时间序列{,0,1}t t ω=±的随机线性模型。

3.3.1 样本自相关函数平稳序列21012,,,,,ωωωωω--, ()0t E ω=,对于样本,定义自协方差函数:112211ˆn kk k n k nk j k j j nn ωωωωωωγωω-++-+=+++==∑,0ˆˆˆ/k k ργγ=。

同时为了保证ˆk k γγ=,ˆk k ρρ=一般取50,/4n k n ><。

常取/10k n =。

3.3.2 确定模型类别和阶数在实际应用中,我们常用有一个样本算出的ˆk k ρρ=,ˆkk kkφφ=判别k ρ,kk φ是拖尾还是截尾的。

随机线性模型的三种形式的判别分别如下:1、若k ρ拖尾,kk φ截尾在k p =处,则线性模型为()AR p 模型。

k ρ拖尾可以用的点图判断,只要样本自相关函数的绝对值愈变愈小;当k p >时,平均20个样本偏相关函数中至多有一个使ˆ2/kkφ≥,则认为kk φ截尾在k p =处。

2、若kk φ截尾,k ρ在k p =处截尾,那么线性模型为()MA q 滑动平均模型。

kk φ拖尾可以根据样本偏相关函数的点图判断,只要ˆkkφ愈变愈小。

当k q >时,若平均20个样本自相关函数中至多有一个使ˆ2/k ρ≥ 3、若样本自相关函数和样本偏相关函数都是拖尾的,则线性模型可以看成混和模型。

3.4 模型参数估计1、()AR p 模型参数估计:()AR p 模型有2p +个参数:212,,,,,p p αφφφσ。

利用Yule-Walker 方程,利用Toeplitz 矩阵求逆和作矩阵乘法的方法算样本偏相关函数kk φ。

()AR p 模型的参数值不必作专门的计算,只要在样本偏相关函数计算的记录中取出样本参数值即可。

此时12,,,p φφφ,都已经确定了,经过推理我们可以得到:201pj j j ασγφγ==-∑。

2、()MA q 滑动平均模型参数估计:可得1q +个方程,求212ˆˆˆˆ,,q αθθθσ,即解这个非线性方程组。

3、(,)ARMA p q 混和模型参数估计对于满足一个条件:1111......t t p t p t t p t q a a a ωφωφωθθ-------=---采用先计算12ˆˆˆ,,,p φφφ,在计算212ˆˆˆˆ,,qαθθθσ的方法,具体如下:1)可利用Toeplitz 矩阵和作矩阵乘法的方法求出12ˆˆˆ,,,p φφφ。

2)令'11...t t t p t pωωφωφω--=---混和模型化为:'11...t t t p t q a a a ωθθ--==---这是关于't ω的()MA q 模型,用't ω的样本协方差函数估计212ˆˆˆˆ,,q αθθθσ的值。

4. 步骤采用MATLAB 处理数据。

1、对一个时间序列做n 次测量得到一个样本函数12,,n Z Z Z 。

实验采用表1中的降水量数据,50n =。

图1 山西省河曲水文站55年降水量时间序列2、数据预先处理:做变换t t Z Z ω=-,其中501150j j Z Z ==∑图2 将时间序列变为期望为0的平稳时间序列3、计算样本自协方差函数k γ,样本自方差函数k ρ。

0ˆˆˆ/k k ργγ=,其中0,1,2,3,4,5k =,112211ˆn kk k n k nk j k j j nn ωωωωωωγωω-++-+=+++==∑。

由图-3数据可得:随着k 的增大,k ρ越来越小,具有拖尾性。

图3 计算样本自相关函数接下来计算偏相关函数kk φ(1k ≥)。

利用Yule-Walker 方程,利用Toeplitz矩阵求逆和作矩阵乘法的方法算样本偏相关函数kk φ。

2/0.283=,由图-4得到的数据可得,2k p >=时,只有一个偏相关函数大于0.283。

所以确定阶数为:2p =。

图4计算偏相关函数5、由上综述:确定模型为(2)AR 模型。

下面进行(2)AR 模型参数的估计。

111ˆˆ0.1695φφ==-,222ˆˆ0.0190φφ==-,由图-3的,0ˆ 1.6320e+004γ=,由公式201pj j j ασγφγ==-∑得:2ˆ 1.5855e+004ασ=图5 噪声方差的计算由上可知模型为:120.16950.0190t t t t ωωωα--++=,又知11402.82nj j Z Z n ===∑,12402.820.1695(402.82)0.0190(402.82)t t t t Z Z Z α---+-+-=,2ˆ 1.5855e+004ασ=。

最后确定(2)AR 模型为:120.16950.0190478.75t t t t Z Z Z α--++=+,2ˆ 1.5855e+004ασ= 6、通过确定的模型估计2002年的降水量一步估计公式:1ˆˆˆ(1)(1)0.16950.0190478.75k k k Z Z k Z Z -=+=--+。

其中,2001年的降水量为234.4mm ,2001年的降水量为289.6mm 。

20020.1695*234.40.0190*389.6478.75431.62Z =--+=mm一步预报误差为79.66=mm ,而2002年实际降水量为487.3mm 。

为了提高预报准确度,可以提供更多样本点,进行预报估计。

5.部分程序代码及注释rainfall=[261.6 ……389.6];b=length(rainfall);z=sum(rainfall)/b; ………………………………计算均值 w=rainfall-z; ………………………………由t Z 构造t ω序列sumw=zeros(1,6); sumw1=0; for j=1:50sumw1=sumw1+w(j)^2; ..……………………………..计算0γ endfor k=0:5 for i=1:(b-k)sumw(k+1)=sumw(k+1)+w(i)*w(i+k); …………….......计算k γ end endr=sumw/b; r0=sumw1/b;p=r/r0; ……………………….计算自相关函数k ρkk11=p(2); ………………………计算11φa2=[1,p(2);p(2),1]a22=inv(a2);kk2=a22*p(1,2:3)'; ………………………计算φ22kk22=kk2(2,1);a5=[1,p(2),p(3),p(4),p(5);p(2),1,p(2),p(3),p(4);p(3),p(2),1,p(2),p(3 );p(4),p(3),p(2),1,p(2);p(5),p(4),p(3),p(2),1];a55=inv(a5);kk5=a55*p(1,2:6)';kk55=kk5(5,1); ………………..计算φ55kk=zeros(1,5);kk=[kk11,kk22,kk33,kk44,kk55];D=r0-kk11*r(2)-kk22*r(3) ………………..计算2σα。

相关文档
最新文档