平面向量基础知识及练习

平面向量基础知识及练习
平面向量基础知识及练习

平面向量基础知识

一.向量有关概念:

1.向量的概念:既有大小又有方向的量,注意向量和数量的区别。

2.零向量:长度为0的向量叫零向量,记作:,注意零向量的方向是任意的;

3.单位向量:长度为一个单位长度的向量叫做单位向量(与AB u u u r

共线的单位向量是

||

AB AB ±u u u r

u u u r ); 4.相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性; 5.平行向量(也叫共线向量):方向相同或相反的非零向量、叫做平行向量,记作:

∥,规定零向量和任何向量平行。

提醒:①相等向量一定是共线向量,但共线向量不一定相等;②两个向量平行包含两个向

量共线, 但两条直线平行不包含两条直线重合;③平行向量无传递性!(因为有0r

);④三点

A B C 、、共线? AB AC u u u r u u u r

共线; 6.相反向量:长度相等方向相反的向量叫做相反向量。a 的相反向量是-a 。

二.向量的表示方法:

1.几何表示法:用带箭头的有向线段表示,如AB ,注意起点在前,终点在后; 2.符号表示法:用一个小写的英文字母来表示,如,,等;

3.坐标表示法:在平面内建立直角坐标系,以与x 轴、y 轴方向相同的两个单位向量,为基底,则平面内的任一向量可表示为(),a xi y j x y =+=r r r

,称(),x y 为向量的坐标,

=(),x y 叫做向量的坐标表示。如果向量的起点在原点,那么向量的坐标与向量的终

点坐标相同。

三.平面向量的基本定理:如果e 1和e 2是同一平面内的两个不共线向量,那么对该平面内

的任一向量a ,有且只有一对实数1λ、2λ,使a =1λe 1+2λe 2。

如:若(1,1),a b ==r r (1,1),(1,2)c -=-r ,则c =r

______

四.实数与向量的积:实数λ与向量a 的积是一个向量,记作λa ,它的长度和方向规定如

下:()()1,2a a λλ=r r

当λ>0时,λ的方向与的方向相同,当λ<0时,λ的方向

与的方向相反,当λ=0时,0a λ=r r

,注意:λ≠0。 五.平面向量的数量积:

1.两个向量的夹角:对于非零向量a ,b ,作,OA a OB b ==u u u r r u u u r r

,AOB θ∠=

()0θπ≤≤称为向量a ,b 的夹角,当θ=0时,a ,b 同向,当θ=π时,a ,b 反向,当θ=2

π

时,,垂直。 2.平面向量的数量积:如果两个非零向量,,它们的夹角为θ,我们把数量

||||cos a b θr r

叫做a 与b 的数量积(或内积或点积),记作:a ?b ,即a ?b =cos a b θr r 。规

定:零向量与任一向量的数量积是0,注意数量积是一个实数,不再是一个向量。

如:△ABC 中,3||=?→

?AB ,4||=?→

?AC ,5||=?→

?BC ,则=?BC AB _________

3.在上的投影为||cos b θr

,它是一个实数,但不一定大于0。

如:已知3||=→a ,5||=→b ,且12=?→→b a ,则向量→a 在向量→

b 上的投影为______

4.a ?b 的几何意义:数量积a ?b 等于a 的模||a r

与b 在a 上的投影的积。

5.向量数量积的性质:设两个非零向量a ,b ,其夹角为θ,则: ①0a b a b ⊥??=r r r r ;②当,同向时,?=a b r r ,

特别地,22,a a a a a =?==r r r r r ;当与反向时,?=-a b r r

③非零向量a ,b 夹角θ的计算公式:cos a b

a b θ?=r r

r r ;④||||||a b a b ?≤r r r r 。

六.向量的运算:

1.几何运算:

①向量加法:利用“平行四边形法则”进行,但“平行四边形法则”只适用于不共线

的向量,如此之外,向量加法还可利用“三角形法则”:设,AB a BC b ==u u u r r u u u r r

,那么向量AC u u u r 叫

做a r 与b r

的和,即a b AB BC AC +=+=r r u u u r u u u r u u u r ;

②向量的减法:用“三角形法则”:设,,AB a AC b a b AB AC CA ==-=-=u u u r r u u u r r r r u u u r u u u r u u u r

那么,由减向量的终点指向被减向量的终点。注意:此处减向量与被减向量的起点相同。

如化简:①AB BC CD ++=u u u r u u u r u u u r ___;②AB AD DC --=u u u r u u u r u u u r

____;③

()()AB CD AC BD ---=u u u r u u u r u u u r u u u r _____ 2.坐标运算:设1122(,),(,)a x y b x y ==r r

,则:

①向量的加减法运算:12(a b x x ±=±r r

,12)y y ±。

如:已知1(2,3),(1,4),(sin ,cos )2

A B AB x y =u u u r 且,,(,)22x y ππ

∈-,则x y +=

②实数与向量的积:()()1111,,a x y x y λλλλ==r 。

③若1122(,),(,)A x y B x y ,则()2121,AB x x y y =--u u u r

,即一个向量的坐标等于表示这个向量的有向线段的终点坐标减去起点坐标。

如:设(2,3),(1,5)A B -,且13

AC AB =u u u r u u u r

,3AD AB =u u u r u u u r ,则C 、D 的坐标分别是__________

④平面向量数量积:1212a b x x y y ?=+r r 。⑤向量的模

:222

2||||a a a x y ===+r r r 。

七.向量的运算律:

1.交换律:a b b a +=+r r r r ,()()a a λμλμ=r r

,a b b a ?=?r r r r ;

2.结合律:(

)

(

),a b c a b c a b c a b c ++=++--=-+r r r r r r r r r r r r ,()()()

a b a b a b λλλ?=?=?r r r r r r

3.分配律:()()

,a a a a b a b λμλμλλλ+=++=+r r r r r r r ,()a b c a c b c +?=?+?r r r r r r r

八.向量平行(共线)的充要条件://a b a b λ?=r r r r 2

2()(||||)a b a b ??=r r r

r 1212x y y x ?-=0。

如: 设(,12),(4,5),(10,)PA k PB PC k ===u u u r u u u r u u u r

,则k =_____时,A,B,C 共线

九.向量垂直的充要条件:0||||a b a b a b a b ⊥??=?+=-r r r r r r r r

12120x x y y ?+=.

平面向量单元练习

1.设a 是非零向量,λ是非零实数,下列结论中正确的是 ( ) A .a 与λa 的方向相反 B .|-λa |=|λ|·a C .a 与λ2a 的方向相同 D .|-λa |≥|a | 2、下面给出的关系式中正确的个数是( )

① 00ρρρ=?a ②a b b a ρρρρ?=?③22a a ρρ=④)()(c b a c b a ρ

ρρρρρ?=?⑤b a b a ρρρρ?≤?

A. 0

B. 1

C. 2

D. 3

3、如图,在平行四边形ABCD 中,下列结论中错误的是( ) A.→

--AB =→

--DC B.→--AD +→--AB =→--AC C.→--AB -→--AD =→--BD D.→

--AD +→

--CB =→

4、若(2,4)AB =u u u r ,(1,3)AC =u u u r

, 则BC =u u u r ( )

A .(1,1)

B .(-1,-1)

C .(3,7)

D .(-3,-7)

5、已知向量(1,2)=a ,(2,3)=-b .若向量c 满足()//+c a b ,()⊥+c a b ,则c =( )A .77(,)93 B .77(,)39-- C .77(,)39 D .77(,)93

--6、D 是ABC ?的边AB 上的中点,则向量CD =u u u r

( )

A.12

BC BA -+u u u r

u u u r B. 12

BC BA --u u u r

u u

u r C. 12

BC BA -u u u r

u u

u r D. 12

BC BA +u u u r

u u

u r

7、 设3(,sin )2a α=r ,1(cos ,)3

b α=r ,且//a r b ρ

,则锐角α为( )

A .030

B .060

C .075

D .045

8、已知)2sin ,2(),sin ,1(2

x b x a ==→

,其中),0(π∈x 。若→

→→

→=?b a b a ,则tanx 的值等于( )

A .1

B .-1

C .3

D .

2

2

9、一质点受到平面上的三个力123,,F F F (单位:牛顿)的作用而处于平衡状态.已知1F ,2F 成060角,且1F ,2F 的大小分别为2和4,则3F 的大小为 ( )

A. 6

B. 2

C. 25

D. 7 10、已知O ,N ,P 在ABC ?所在平面内,且,0OA OB OC NA NB NC ==++=,且

PA PB PB PC PC PA ?=?=?,则点O ,N ,P 依次是ABC ?的 ( )

A.重心 外心 垂心

B.重心 外心 内心

C.外心 重心 垂心

D.外心 重心 内心

11、若向量a r ,b r 满足12a b ==r r ,

且a r 与b r 的夹角为3

π

,则a b +=r r . 12、已知2==→

→b a ,()()

22-=-?+,则与的夹角为 . 13、已向量2411()(),,,a =b =.若向量()λ⊥b a +b ,则实数λ的值是 .

14、设向量a r 与b r 的夹角为θ,(33)a =r ,,2(11)b a -=-r r

,,则cos θ= . 15、若有以下命题:

① 两个相等向量的模相等;② 若和都是单位向量,则=;③ 相等的两个向量一定是共线向量;④ //,b c //,则c a //;⑤ 零向量是唯一没有方向的向量;⑥ 两个非零向量的和可以是零。其中正确的命题序号是 。 16、 已知4||=,2||=,且与夹角为120°,求

⑴)()2(+?-; ⑵|2|-; ⑶当k 为何值时,?)()2(→

-⊥+b a k b a

17、已知向量)2,1(),sin 2cos ,(sin =-=→

b a θθθ

(1)若,//→→b a 求θtan 的值;(2)若的值。求θπθ,0,ππ→

→=b a

18、设函数→

→?=b a x f )(,其中,),1,2sin 1(),2cos ,(R x x b x m a ∈+==→

且y=f(x)的图像经过点

)2,4

。(1)求实数m 的值;(2)求函数f (x )的最小正周期;(3)求函数f(x)的最小值及

此时x 值的集合。

A

B

D

平面向量基础知识

b a B A O a -b 平面向量基础知识 1.向量的概念 (1)向量的定义:既有大小又有方向的量叫做向量.向量可用字母a ,b ,c ,…等表示,也可用表示向量的有向线段的起点和终点的字母表示(起点写在前面,终点写在后面,上面划箭头)如AB 表示由起点A 到终点B 方向的向量. (2)向量的模:向量AB 的大小(即向量AB 的长度)叫做向量AB 的模,记作|AB |.又如向量a 的模记作|a |. 注意:向量的模是一个非负实数,是只有大小而没有方向的标量. (3)零向量、单位向量、平行向量、共线向量的概念. ①零向量:长度(模)为0的向量叫做零向量,记作0.零向量的方向可看作任意方向. ②单位向量:长度(模)为1个单位的向量叫做单位向量. ③平行向量:方向相同或相反的非零向量叫做平行向量,向量a 与b 平行可记作:a //b .因为平行向量都可移到同一条直线上,所以平行向量又叫做共线向量.我们规定0与任一向量平行. ④相等向量:长度相等且方向相同的向量叫做相等向量.向量a 与b 相等,记作a =b .相等向量一定共线,反之则不一定成立. 2.向量运算 (1)加法运算 ①定义:求两个向量和的运算叫做向量的加法,如已知向量a ,b , 作AB =a ,BC =b ,则向量AC 叫做a 与b 的和,记作a +b ,即a +b =AB +BC =AC . 这种根据向量加法的定义求向量和的方法,叫做向量加法的 三角形法则. 由图可知,以同一点A 为起点的两个已知向量a ,b 为邻边作 平行四边形ABCD ,则以A 为起点C 为终点的对角线AC 就是a 与b 的和,我们把这种作两个向量和的方法叫做向量加法的平行 四边形法则. ②运算性质: a + b =b +a (交换律); (a +b )+ c =a +(b +c )(结合律); a +0=0+a =a . (2)减法运算 ①相反向量:与向量a 长度相等,方向相反的向量叫做a 的相反向量. 记作a .零向量的相反向量仍是零向量;-(-a )=a ;a +(-a )=0 (即互为相反的两个向量的和是零向量.) ②减法定义:向量a 加上b 的相反向量叫做a 与b 的差,即a b =a +(-b ). 求两个向量的减法可转化为加法进行.若向量是用两个大写字母,则只需把减向量起点字母与终点字母交换顺序,就可将减法变为加法,如AB -BC =AB +CB 如图,已知,在平面内任取一点O ,作OA =a ,OB =b ,则BA =a -b .即a -b 可以表示为从向量b 的终点指向a 的终点的向量.此法则叫做两向量减 法的三角形法则. (3)实数与向量的积: ①定义:λa ,其中λ>0,λa 与a 同向,|λa |=|λ|?|a |; λ<0时,λa 与a 反方向,|λa |=|λ|?|a |;λ=0时,λa =0,当a =0,λa =0. ②运算律: B A C a +b a b B A C a +b a b D a b

平面向量练习题(附答案)

平面向量练习题 一.填空题。 1. BA CD DB AC +++等于________. 2.若向量=(3,2),=(0,-1),则向量2-的坐标是________. 3.平面上有三个点A (1,3),B (2,2),C (7,x ),若∠ABC =90°,则x 的值为________. 4.向量a 、b 满足|a |=1,|b |=2,(a +b )⊥(2a -b ),则向量a 与b 的夹角为________. 5.已知向量a =(1,2),b =(3,1),那么向量2a -21b 的坐标是_________. 6.已知A (-1,2),B (2,4),C (4,-3),D (x ,1),若与CD 共线,则|BD |的值等于________. 7.将点A (2,4)按向量=(-5,-2)平移后,所得到的对应点A ′的坐标是______. 8. 已知a=(1,-2),b=(1,x),若a ⊥b,则x 等于______ 9. 已知向量a,b 的夹角为ο120,且|a|=2,|b|=5,则(2a-b )·a=______ 10. 设a=(2,-3),b=(x,2x),且3a ·b=4,则x 等于_____ 11. 已知y x 且),3,2(),,(),1,6(--===∥,则x+2y 的值为_____ 12. 已知向量a+3b,a-4b 分别与7a-5b,7a-2b 垂直,且|a|≠0,|b|≠0,则a 与b 的夹角为____ 13. 在△ABC 中,O 为中线AM 上的一个动点,若AM=2,则()OA OB OC +u u u r u u u r u u u r 的最小值是 . 14.将圆22 2=+y x 按向量v =(2,1)平移后,与直线0=++λy x 相切,则λ的值为 . 二.解答题。 1.设平面三点A (1,0),B (0,1),C (2,5). (1)试求向量2+的模; (2)试求向量与的夹角;

平面向量基本定理练习试题整理

专题八平面向量的基本定理 (A 卷) (测试时间:120分钟 满分:150分) 第Ⅰ卷(共60分) 一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知点(0,1),(3,2)A B ,向量(4,3)AC =--,则向量BC =( ) A. (7,4)-- B.(7,4) C.(1,4)- D.(1,4) 【答案】A 【解析】∵AB OB OA =-=(3,1),∴BC =AC AB -=(-7,-4),故选A. 2.【2018届湖北省黄石市第三中学(稳派教育)高三阶段性检测】若()1,3MA =-, ()1,7MB =,则 1 2 AB = ( ) A. ()0,5 B. ()1,2 C. ()0,10 D. ()2,4 【答案】B 【解析】 ()()() 111,3,1,7,22MA MB AB MB MA =-=∴=- ()()()11 11,732,41,222 =+-==,故选B. 3.已知向量()2,4a =,()1,1b =-,则2a b -=( ) A.()5,7 B.()5,9 C.()3,7 D.()3,9 【答案】A 【解析】因为2(4,8)a =r ,所以2(4,8)(1,1)a b -=--r r =()5,7,故选A. 4.【2018届重庆市第一中学高三上学期期中】已知直角坐标系中点 ,向量 , ,则点的坐标为( ) A. B. C. D. 【答案】C 【解析】∵向量 , ,

∴,又 ∴ ∴点的坐标为 故选:C. 5.在ABC ?中,D 为AB 边上一点,12AD DB = ,2 3 CD CA CB λ=+,则λ=( ) A .13- B. 1 3 C.1- D.2 【答案】B 【解析】由已知得,13AD AB =,故13C D C A A D C A A B =+=+1()3CA CB CA =+-21 33 CA CB =+, 故1 3 λ= . 6. 已知平面向量(1,2)a =,(2,)a k =-,若a 与b 共线,则|3|a b +=( ) A .3 B .4 C .5 D .5 【答案】C. 【解析】∵a 与b 共线,∴?=-?-?0)2(21k 4-=k ,∴3(1,2)a b +=,|3|5a b +=. 7.已知向量(,),(1,2)a x y b ==-,且(1,3)a b +=,则|2|a b -等于( ) A .1 B .3 C .4 D .5 【答案】D 【解析】 因(1,3)a b +=,(1,2)b =-,故(2,1)a =,所以2(4,3)a b -=-,故2|2|435a b -= +=,故应选D. 8.【2018届湖北省襄阳市四校(襄州一中、枣阳一中、宜城一中、曾都一中)高三上期中联考】点G 为 ABC ?的重心(三边中线的交点) .设,GB a GC b ==,则1 2 AB 等于 ( ) A. 3122a b - B. 1 2 a b + C. 2a b - D. 2a b + 【答案】B 【解析】如图,

平面向量知识点总结(精华)

必修4 平面向量知识点小结 一、向量的基本概念 1.向量的概念:既有大小又有方向的量,注意向量和数量的区别. 向量常用有向线段来表示 . 注意:不能说向量就是有向线段,为什么?提示:向量可以平移. 举例 1 已知A(1,2),B(4,2),则把向量u A u B ur按向量a r( 1,3)平移后得到的向量是. 结果:(3,0) 2.零向量:长度为 0 的向量叫零向量,记作:0r,规定:零向量的方向是任意的; 3.单位向量:长度为一个单位长度的向量叫做单位 向量(与u A uu B r共线uuur 的单位向量是u A u B ur ); | AB| 4.相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性; 5.平行向量(也叫共线向量):方向相同或相反的非零向量 a r、 b r叫做平行向量,记作:a r∥b r, 规定:零向量和任何向量平行 . 注:①相等向量一定是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线,但两条直线平行不包含两条直线重合; ③平行向量无传递性!(因为有r0); ④三点A、B、C 共线u A uu B r、u A u C ur共线. 6.相反向量:长度相等方向相反的向量叫做相反向量 . a r的相反向量记作a r. 举例 2 如下列命题:(1)若|a r | |b r | ,则a r b r. (2)两个向量相 等的充要条件是它们的起点相同,终点相同 . (3)若u A u B ur u D u C u r,则ABCD是平行四边形 . (4)若ABCD是平行四边形,则u A uu B r u D u C uur. (5)若a r b r,b r c r,则a r c r. (6)若a r / /b r,b r / /c r则a r / /c r.其中正确的是. 结果:(4)(5) 二、向量的表示方法

(整理)5平面向量基础知识.

平面向量基础知识 第一课时:向量的概念 向量的定义(两要素) 向量与矢量、数量、标量的区别 作用点、实际意义(单位)、可比性 向量是矢量的抽象、数量是标量的抽象 向量的表示 几何表示 (几何中用点表示位置、用射线表示方向 起点到终点) 用有向线段表示向量使向量具有几何直观性 有向线段(三要素)与向量的区别 (人的身高不随位置改变而改变) 向量只与其起点和终点的相对位置有关,与起点和终点的绝对位置无关 符号表示 有向线段的起点与终点符号(大写)(具体) 小写符号(抽象) 手写必须带箭头 (“帽子”) 用符号表示向量使向量具有代数的属性 坐标表示 用坐标表示向量使向量具有算术的属性 向量的模及其表示 写法与读法 (“外套”) 模特殊的向量 零向量 定义、表示0、方向 单位向量 定义 方向的惟一性 与已知非零向量共线的单位向量常用表示符号e 、i 、j 、k 位置特殊的向量 位置向量 起点为坐标原点的向量 方向关系特殊的向量与表示 平行向量(共线向量 “平行向量”与“共线向量”是等意词) 垂直向量 相等向量 平移变换用之 相反向量 反向变换用之 零向量的规定:零向量与任一向量共线,零向量的相反向量是零向量 判断: 1、若两向量相等,则它们的起点与终点相同 2、AB BA =- 3、若a ∥b ,b ∥c ,则a ∥c 4、若AB CD =,则AB CD 5、若a 与b 不共线,则a ≠0,b ≠0 6、若AB ∥CD ,则A 、B 、C 、D 四点共线 7、若AB ∥AC ,则A 、B 、C 三点共线 8、若AB=CD ,则AB CD = ∥ =

9、若AB=CD ,则||||AB CD = (既戴帽子,又穿外套) 两个向量平行,这两个向量可以在一条直线上,这与平面几何中的“平行”的含义不同;两个向量共线,这两个向量不一定在一条直线上,这与平面几何中的“共线”的含义也不同.而规定零向量与任一向量平行,使几何中的“平行公理”对于向量平行不再成立.(在几何中,“平行”和“共线、重合”绝不相同,而在向量中,“平行”和“共线”绝对一样) 向量的类型:自由向量、滑动向量、固定向量 第二课时:向量的加法 向量加法的定义 向量加法处理方法:三角形法则、平行四边形法则 (当两个向量共线时,平行四边形法则不适用,只适用三角形法则;当两个向量不共线时,平行四边形法则和三角形法则是一致的) 向量加法的特征:尾首相接,首尾相连(与接点的位置无关) 向量的和拆分 封闭折线的和向量 △ABC 中,G 是重心?GA +GB +GC =0 求和向量时需要把向量具体化、几何化 向量加法的运算律:交换律、结合律 向量加法的性质 1、两个向量的和为一个向量 2、若两个向量平行,则它们的和向量与它们也平行 3、若两个向量不平行,则它们的和向量与它们也不平行 4、||a |-|b ||≤|a +b |≤|a |+|b |, 当且仅当a 与b 同向,或其中至少一个是零向量时,后一等号成立;当且仅当a 与b 反向或其中至少一个是零向量时,前一等号成立. 第三课时:向量的减法 向量减法的定义 向量减法是向量加法的逆运算 向量减法处理方法:三角形法则、平行四边形法则 向量减法的特征:首首相聚,被减被指(与起点的位置无关) 向量的差拆分 向量减法是向量加法的逆运算,即减去一个向量等于加上该向量的相反向量 求差向量时需要把向量具体化、几何化 向量减法的性质 1、两个向量的差为一个向量 2、若两个向量平行,则它们的差向量与它们也平行 3、若两个向量不平行,则它们的差向量与它们也不平行 4、||a |-|b ||≤|a -b |≤|a |+|b |, 当且仅当a 与b 反向或其中至少一个是零向量时,后一等号成立;当且仅当a 与b 同向或其中至少一个是零向量时,前一等号成立.

平面向量简单练习题

一、选择题 1.已知三点)143()152()314(--,,、,,、,,λC B A 满足⊥, 则λ的值 ( ) 2.已知)2 , 1(-=,52||=,且//,则=( ) 5.已知1,2,()0a b a b a ==+=r r r r r g ,则向量b r 与a r 的夹角为( ) 6.设向量(0,2),==r r a b ,则,r r a b 的夹角等于( ) 7.若向量()x x a 2,3+=和向量()1,1-=→b 平行,则 =+→ →b a ( ) 8.已知()()0,1,2,3-=-=,向量b a +λ与b a 2-垂直,则实数λ的值为( ). 9.设平面向量(1,2)a =r ,(2,)b y =-r ,若向量,a b r r 共线,则3a b +r r =( ) 10.平面向量a r 与b r 的夹角为60o ,(2,0)a =r ,1b =r ,则2a b +r r = 11.已知向量()1,2=,()1,4+=x ,若//,则实数x 的值为 12.设向量)2,1(=→a ,)1,(x b =→,当向量→→+b a 2与→→-b a 2平行时,则→ →?b a 等于 13.若1,2,,a b c a b c a ===+⊥r r r r r r r 且,则向量a b r u r 与的夹角为( ) 142= ,2||= 且(b a -)⊥a ,则a 与b 的夹角是 ( ) 15.已知向量AB u u u r =(cos120°,sin120°),AC u u u r =(cos30°,sin30°),则△ABC 的 形状为 A .直角三角形 B .钝角三角形 C .锐角三角形 D .等边三角形 17.下列向量中,与(3,2)垂直的向量是( ). A .(3,2)- B .(2,3) C .(4,6)- D .(3,2)- 18.设平面向量(3,5),(2,1),2a b b ==--=r r r r 则a ( ) 19.已知向量)1,1(=a ,),2(n =b ,若b a ⊥,则n 等于 20. 已知向量,a b r r 满足0,1,2,a b a b ?===r r r r 则2a b -=r r ( ) 21.设向量a r =(1.cos θ)与b r =(-1, 2cos θ)垂直,则cos2θ等于 ( ) 23.化简 AC -u u u r BD +u u u r CD -u u u r AB u u u r = 25.如图,正方形ABCD 中,点E ,F 分别是DC ,BC 的中点,那么=EF u u u r ( )

平面向量基础知识复习+练习(含答案)

平面向量 1. 基本概念: 向量的定义、向量的模、零向量、单位向量、相反向量、共线向量、相等向量。 2. 加法与减法的代数运算: (1)A] A2 A2A3 A n i A n A1A n . ⑵若a= ( X i, y i) ,b= ( X2, y2 )则 a b= ( X i x?, y i y ). 向量加法与减法的几何表示:平行四边形法则、三角形法则。 以向量AB = a、AD = b为邻边作平行四边形ABCD ,则两条对角线的向量 AC = a + b, BD=b —a,DB = a —b 且有丨a I —I b I <| a b I <| a I + I b I . 向量加法有如下规律: a + b = b + a (交换律);a+(b+c)=(a+ b)+c (结合律);—F- —F —k —V- a + 0= a a + (—a )=0. 3 .实数与向量的积:实数与向量a的积是一个向量。 (1) I a I = I I?I a I ; (2) 当 >0时,a与a的方向相同;当v 0时,a与a的方向相反;当=0时, —t a = 0. (3) 若a= ( X i, y i),则a= ( X i, y i). 两个向量共线的充要条件: (1) 向量b与非零向量a共线的充要条件是有且仅有一个实数,使得b= a . ―b- —te- (2) 若a= ( X i, y i) ,b= ( X2, y2 )则a // b x』2 x? y i 0 . 平面向量基本定理: 若e i、e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a,有且只有 —*■ 一对实数i, 2,使得a = i e i+ 2 e2.

平面向量基本定理练习题

平面向量基本定理及坐标表示强化训练 姓名__________ 一、选择题 1.下列向量给中,能作为表示它们所在平面内所有向量的基底的是 ( ) A .e 1=(0,0), e 2 =(1,-2) ; B .e 1=(-1,2),e 2 =(5,7); C .e 1=(3,5),e 2 =(6,10); D .e 1=(2,-3) ,e 2 =)4 3,2 1(- 2. 若AB =3a, CD =-5a ,且||||AD BC = ,则四边形ABCD 是 ( ) A .平行四边形 B .菱形 C .等腰梯形 D .不等腰梯形 3. 在△ABC 中,已知D 是AB 边上一点,若AD → =2DB →, CD → =1 3 CA →+λCB → ,则λ 等于() A. 23 B. 13 C. 13- D. 2 3- 4.已知向量a 、b ,且AB =a +2b ,BC = -5a +6b ,CD =7a -2b ,则一定共线的三点是 ( ) A .A 、B 、D B .A 、B 、C C .B 、C 、D D .A 、C 、D 5.如果e 1、 e 2是平面α内两个不共线的向量,那么在下列各说法中错误的有 ( )①λe 1+μe 2(λ, μ∈R)可以表示平面α内的所有向量; ②对于平面α中的任一向量a ,使a =λe 1+μe 2的λ, μ有无数多对; ③若向量λ1e 1+μ1e 2与λ2e 1+μ2e 2共线,则有且只有一个实数k ,使λ2e 1+μ2e 2=k (λ1e 1+μ1e 2); ④若实数λ, μ使λe 1+μe 2=0,则λ=μ=0. A .①② B .②③ C .③④ D .仅② 6.过△ABC 的重心任作一直线分别交AB 、AC 于点D 、E ,若AD =x AB ,AE =y AC ,xy ≠0,则11 x y +的值 为 ( ) A .4 B .3 C .2 D .1 7.若向量a =(1,1),b =(1,-1) ,c =(-2,4) ,则c = ( ) A .-a +3b B .3a -b C .a -3b D .-3a +b 二、填空题 8.作用于原点的两力F 1 =(1,1) ,F 2 =(2,3) ,为使得它们平衡,需加力F 3= ; 9.若A (2,3),B (x , 4),C (3,y ),且AB =2AC ,则x = ,y = ; 10.已知A (2,3),B (1,4)且12 AB =(sin α,cos β), α,β∈(-2π,2π),则α+β= * 11.已知a =(1,2) ,b =(-3,2),若k a +b 与a -3b 平行,则实数k 的值为

平面向量基础练习题

向量练习 一、选择题 1. 如果a ,b 是两个单位向量,则下列结论中正确的是 ( ) (A) a =b (B) 1?a b = (C) 22≠a b (D) =a b 2. 下列说法正确的是( ) A.,a b b c a c ?r r r r r r P P P B. a b b c a c ?=??=r r r r r r C. ()()a b c a b c ??=??r r r r r r D.a b a b =r r r r 3. 在矩形ABCD 中,O 是对角线的交点,若 e e 则213,5=== ( ) A .121(53)2 e e +r r B . 121(53)2e e -r r C .211(35)2e e -r r D .211(53)2e e -r r 4. 已知4||,6||==,则||的取值范围为( ) (A ))8,2((B )]8,2[(C ))10,2((D )]10,2[ 5. 设)3,1(A ,)3,2(--B ,)7,(x C 若∥,则x 的取值范围是( ) (A )0 (B )3 (C )15 (D )18 6. 与向量a=(-5,4)平行的向量是( ) A.(-5k,4k ) B.(-k 5,-k 4) C.(-10,2) D.(5k,4k) 7. 若点P 分AB 所成的比为 43,则A 分BP 所成的比是( ) A.73 B. 37 C.- 37 D.-7 3 8. 设点P 分有向线段21P P 的比是λ,且点P 在有向线段21P P 的延长线上,则λ的取值范围是( )

A.(-∞,-1) B.(-1,0) C.(-∞,0) D.(-∞,-21) 9. 在四边形ABCD 中,若AC AB AD =+u u u r u u u r u u u r ,则四边形ABCD 的形状一定是 ( ) (A) 平行四边形 (B) 菱形 (C) 矩形 (D) 正方形 10. 设四边形ABCD 中,有DC = 21AB ,且|AD |=|BC |,则这个四边形是( ) A.平行四边形 B.矩形 C.等腰梯形 D.菱形 11. 已知平行四边形的3个顶点为A(a,b),B(-b,a),C(0,0),则它的第4个顶点D 的坐标 是( ) A.(2a,b) B.(a-b,a+b) C.(a+b,b-a) D.(a-b,b-a) 12. 如图.点M 是ABC ?的重心,则MC MB MA -+为( ) A .0? B .4ME C .4M D D .4MF 13. 已知ABC ?的顶点)3,2(A 和重心)1,2(-G ,则BC 边上的中点坐标是( ) A .)3,2(- B .)9,2(- C .)5,2(- D .)0,2( 14. 已知点O 、A 、B 不在同一条直线上,点P 为该平面上一点,且32 OA OB OP -=u u u r u u u r u u u r ,则 ( ) (A) 点P 在线段AB 上 (B) 点P 在线段AB 的反向延长线上 (C) 点P 在线段AB 的延长线上 (D) 点P 不在直线AB 上 15. 已知点A (2,3)、B (10,5),直线AB 上一点P 满足|PA|=2|PB|,则P 点坐标是( ) (A )2213,33?? ??? (B )(18,7) (C )2213,33?? ??? 或(18,7) (D )(18,7)或(-6,1)

平面向量基础训练A组

平面向量基础训练A 组 一、选择题 1.化简AC -BD +CD -AB 得( ) A .A B B . C .BC D .0 2.设00,a b 分别是与,a b 向的单位向量,则下列结论中正确的是( ) A . 00a b = B .001a b ?= C .00||||2a b += D .00||2a b += 3.已知下列命题中: (1)若k R ∈,且0kb =,则0k =或0b =, (2)若0a b ?=,则0a =或0b = (3)若不平行的两个非零向量b a ,,满足||||b a =,则0)()(=-?+b a b a (4)若a 与b 平行,则||||a b a b =?其中真命题的个数是( ) A .0 B .1 C .2 D .3 4.下列命题中正确的是( ) A .若a ?b =0,则a =0或b =0 B .若a ?b =0,则a ∥b C .若a ∥b ,则a 在b 上的投影为|a| D .若a ⊥b ,则a ?b =(a ?b)2 5.已知平面向量(3,1)a =,(,3)b x =-,且a b ⊥,则x =( ) A .3- B .1- C .1 D .3 6.已知向量)sin ,(cos θθ=a ,向量)1,3(-=b 则|2|b a -的最大值, 最小值分别是( ) A .0,24 B .24,4 C .16,0 D .4,0 二、填空题 1.若OA =)8,2(,OB =)2,7(-,则 3 1 AB =_________ 2.平面向量,a b 中,若(4,3)a =-=1,且5a b ?=,则向量=____。 3.若3a =,2b =,且与的夹角为0 60,则a b -= 。 4.把平面上一切单位向量归结到共同的始点,那么这些向量的终点 所构成的图形是___________。 5.已知)1,2(=a 与)2,1(=b ,要使b t a +最小,则实数t 的值为___________。

平面向量的基本概念及线性运算知识点

平面向量 一、向量的相关概念 1、向量的概念:既有大小又有方向的量,注意向量和数量的区别。向量常用有向线段来表示,注意不能说向量就是有向线段(向量可以平移)。如已知A (1,2),B (4,2),则把向量AB u u u r 按向量a r =(-1,3)平移后得到的向量是_____(3,0) 2、向量的表示方法:用有向线段来表示向量. 起点在前,终点在后。有向线段的长度表示向量的大小,用_____箭头所指的方向____表示向量的方向.用字母a ,b ,…或用AB ,BC ,…表示 (1) 模:向量的长度叫向量的模,记作|a |或|AB |. (2)零向量:长度为0的向量叫零向量,记作:0,注意零向量的方向是任意的; (3)单位向量:长度为一个单位长度的向量叫做单位向量(与AB u u u r 共线的单位向量是|| AB AB ±u u u r u u u r ); (4)相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性。 (5)平行向量(也叫共线向量):方向相同或相反的非零向量a 、b 叫做平行向量,记作:a ∥b ,规定零向量和任何向量平行。提醒:①相等向量一定是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线, 但两条直线平行不包含两条直线重合;③平行向量无传递性!(因为有0r );④三点A B C 、、共线? AB AC u u u r u u u r 、共线; (6)相反向量:长度相等方向相反的向量叫做相反向量。a 的相反向量是-a 。零向量的相反向量时零向量。 二、向量的线性运算 1.向量的加法: (1)定义:求两个向量和的运算,叫做向量的加法. 如图,已知向量a ,b ,在平面内任取一点A ,作AB =u u u r a ,BC =u u u r b ,则向量AC 叫做a 与b 的和,记作a+b ,即 a+b AB BC AC =+=u u u r u u u r u u u r 。AB BC CD DE AE +++=u u u r u u u r u u u r u u u r u u u r 特殊情况:a b a b a+b b a a+ b (1)平行四边形法则三角形法则 C B D C B A 对于零向量与任一向量a ,有 a 00+=+ a = a (2)法则:____三角形法则_______,_____平行四边形法则______ (3)运算律:____ a +b =b +a ;_______,____(a +b )+c =a +(b +c )._______ 当a 、b 不共线时,

(完整版)平面向量的概念练习(学生版)

1、下列说法正确的是( ) A 、数量可以比较大小,向量也可以比较大小. B 、方向不同的向量不能比较大小,但同向的可以比较大小. C 、向量的大小与方向有关. D 、向量的模可以比较大小. 2、给出下列六个命题: ①两个向量相等,则它们的起点相同,终点相同; ②若||||a b =r r ,则a b =r r ; ③若AB DC =u u u r u u u r ,则四边形ABCD 是平行四边形; ④平行四边形ABCD 中,一定有AB DC =u u u r u u u r ; ⑤若m n =u r r ,n k =r r ,则m k =u r r ; ⑥a b r r P ,b c r r P ,则a c r r P . 其中不正确的命题的个数为( ) A 、2个 B 、3个 C 、4个 D 、5个 3、设O 是正方形ABCD 的中心,则向量,,,AO BO OC OD u u u r u u u r u u u r u u u r 是( ) A 、相等的向量 B 、平行的向量 C 、有相同起点的向量 D 、模相等的向量 4、判断下列各命题的真假: (1)向量AB u u u r 的长度与向量BA u u u r 的长度相等; (2)向量a r 与向量b r 平行,则a r 与b r 的方向相同或相反; (3)两个有共同起点的而且相等的向量,其终点必相同; (4)两个有共同终点的向量,一定是共线向量; (5)向量AB u u u r 和向量CD uuu r 是共线向量,则点A 、B 、C 、D 必在同一条直线上; (6)有向线段就是向量,向量就是有向线段. 其中假命题的个数为( ) A 、2个 B 、3个 C 、4个 D 、5个 5、若a r 为任一非零向量,b r 为模为1的向量,下列各式:①|a r |>|b r | ②a r ∥b r ③|a r |>0 ④|b r |=±1,其中正确的是( ) A 、①④ B 、③ C 、①②③ D 、②③

高中数学必修4平面向量知识点总结与典型例题归纳

平面向量 【基本概念与公式】 【任何时候写向量时都要带箭头】 1.向量:既有大小又有方向的量。记作:AB 或a 。 2.向量的模:向量的大小(或长度),记作:||AB 或||a 。 3.单位向量:长度为1的向量。若e 是单位向量,则||1e =。 4.零向量:长度为0的向量。记作:0。【0方向是任意的,且与任意向量平行】 5.平行向量(共线向量):方向相同或相反的向量。 6.相等向量:长度和方向都相同的向量。 7.相反向量:长度相等,方向相反的向量。AB BA =-。 8.三角形法则: ) AB BC AC +=;AB BC CD DE AE +++=;AB AC CB -=(指向被减数) 9.平行四边形法则: 以,a b 为临边的平行四边形的两条对角线分别为a b +,a b -。 10.共线定理://a b a b λ=?。当0λ>时,a b 与同向;当0λ<时,a b 与反向。 11.基底:任意不共线的两个向量称为一组基底。 12.向量的模:若(,)a x y =,则2||a x y =+,22||a a =,2||()a b a b +=+ 13.数量积与夹角公式:||||cos a b a b θ?=?; cos ||||a b a b θ?= ? 14.平行与垂直:1221//a b a b x y x y λ?=?=;121200a b a b x x y y ⊥??=?+= 题型1.基本概念判断正误: (1)共线向量就是在同一条直线上的向量。 ) (2)若两个向量不相等,则它们的终点不可能是同一点。 (3)与已知向量共线的单位向量是唯一的。 (4)四边形ABCD 是平行四边形的条件是AB CD =。

平面向量基础知识点总结 (1)

平面向量知识点总结 基本知识回顾: 1.向量的概念:既有大小又有方向的量叫向量,有二个要素:大小、方向. 2.向量的表示方法: ①用有向线段表示-----AB u u u r (几何表示法); ②用字母a r 、b r 等表示(字母表示法); ③平面向量的坐标表示(坐标表示法): 分别取与x 轴、y 轴方向相同的两个单位向量i r 、j r 作为基底。任作一个向量a ,由平 面向量基本定理知,有且只有一对实数x 、y ,使得a xi yj r r ,),(y x 叫做向量a 的(直 角)坐标,记作(,)a x y r ,其中x 叫做a 在x 轴上的坐标,y 叫做a 在y 轴上的坐标, 特别地,i r (1,0) ,j r (0,1) ,0(0,0) r 。a r ),(11y x A ,),(22y x B , 则 1212,y y x x ,AB 3.零向量、单位向量: ①长度为0的向量叫零向量,记为0; ②长度为1个单位长度的向量,叫单位向量.| |a 就是单位向量) 4.平行向量: ①方向相同或相反的非零向量叫平行向量; ②我们规定0r 与任一向量平行.向量a r 、b r 、c r 平行,记作a r ∥b r ∥c r .共线向量与平行向量 关系:平行向量就是共线向量. 性质://(0)(a b b a b r u r r r r r 是唯一)||b a b a a b u r r u r r r r 0,与同向方向---0,与反向长度--- 1221//(0)0a b b x y x y r u r r r (其中 1122(,),(,)a x y b x y r u r ) 5.相等向量和垂直向量: ①相等向量:长度相等且方向相同的向量叫相等向量. ②垂直向量——两向量的夹角为2 性质:0a b a b r u r r r g

平面向量基础练习题

平面向量基础练习 1)在四边形ABCD 中,若AC AB AD =+ ,则四边形ABCD 的形状一定是 ( ) (A) 平行四边形 (B) 菱形 (C) 矩形 (D) 正方形 2)如果a ,b 是两个单位向量,则下列结论中正确的是 ( ) (A) a =b (B) 1?a b = (C) 22≠a b (D) =a b 3)AB BC AD +-= ( ) A 、A D B 、CD C 、 D B D 、DC 4)已知正方形ABCD 的边长为 1,A B = a ,BC = b ,AC = c , 则++a b c 等于 ( ) (A) 0 (B) 3 (D) 5)下列各组的两个向量,平行的是 A 、(2,3)a =- ,(4,6)b = B 、(1,2)a =- ,(7,14)b = C 、(2,3) a = , (3,2) b = D 、 (3,2) a =- , (6,4) b =- 6)若平行四边形的3个顶点分别是(4,2),(5,7),(-3,4),则第4个顶点的坐标不 可能是( ) (A)(12,5) (B)(-2,9) (C) (3,7) (D) (-4,-1)7)点),0(m A )0(≠m , 按向量a 平移后的对应点的坐标是 ) 0,(m ,则向量a 是( ) A 、),(m m - B 、),(m m - C 、),(m m -- D 、),(m m 8)已知(6,0)a = ,(5,5)b =- ,则a 与b 的夹角为 A 、045 B 、0 60 C 、0 135 D 、0 120 9)已知)2,3(-M ,)0,1(-N ,则线段MN 的中点P 的坐标是________。 10)已知向量a (1,5)=,b (3,2)=-,则向量a 在b 方向上的投影为 . 11)已知3a = ,4b = ,a 与b 的夹角为4 3π , (3)(2)a b a b -?+ =__________. 12)已知3=a ,4=b ,且向量a ,b 不共线,若向量+a k b 与向量-a k b 互相垂直,则 实数k 的值为 . 平面向量基础练习 1)在四边形ABCD 中,若AC AB AD =+ ,则四边形ABCD 的形状一定是 ( ) (A) 平行四边形 (B) 菱形 (C) 矩形 (D) 正方形 2)如果a ,b 是两个单位向量,则下列结论中正确的是 ( ) (A) a =b (B) 1?a b = (C) 22≠a b (D) =a b 3)AB BC AD +-= ( ) A 、A D B 、CD C 、 D B D 、DC 4)已知正方形ABCD 的边长为 1,A B = a ,BC = b ,AC = c , 则++a b c 等于 ( ) (A) 0 (B) 3 (D) 5)下列各组的两个向量,平行的是 A 、(2,3)a =- ,(4,6)b = B 、(1,2)a =- ,(7,14)b = C 、(2,3) a = , (3,2) b = D 、 (3,2) a =- , (6,4) b =- 6)若平行四边形的3个顶点分别是(4,2),(5,7),(-3,4),则第4个顶点的坐标不 可能是( ) (A)(12,5) (B)(-2,9) (C) (3,7) (D) (-4,-1)7)点),0(m A )0(≠m , 按向量a 平移后的对应点的坐标是 ) 0,(m ,则向量a 是( ) A 、),(m m - B 、),(m m - C 、),(m m -- D 、),(m m 8)已知(6,0)a = ,(5,5)b =- ,则a 与b 的夹角为 A 、045 B 、0 60 C 、0 135 D 、0 120 9)已知)2,3(-M ,)0,1(-N ,则线段MN 的中点P 的坐标是________。 10)已知向量a (1,5)=,b (3,2)=-,则向量a 在b 方向上的投影为 . 11)已知3a = ,4b = ,a 与b 的夹角为4 3π , (3)(2)a b a b -?+ =__________. 12)已知3=a ,4=b ,且向量a ,b 不共线,若向量+a k b 与向量-a k b 互相垂直,则 实数k 的值为 .

平面向量基础练习题

平面向量基础练习 1)两列火车从同一站台沿相反方向开去,走了相同的路程,设两列火车的位移向量分别为a 和b ,那么下列命题中错误的一个是 A 、a 与b 为平行向量 B 、a 与b 为模相等的向量 C 、a 与b 为共线向量 D 、a 与b 为相等的向量 2)在四边形A B C D 中,若AC AB AD =+ ,则四边形A B C D 的形状一 定是 ( ) (A) 平行四边形 (B) 菱形 (C) 矩形 (D) 正方形 3)如果a ,b 是两个单位向量,则下列结论中正确的是 ( ) (A) a =b (B) 1?a b = (C) 22 ≠a b (D) =a b 4)AB BC AD +-= A 、AD B 、CD C 、DB D 、D C 5)已知正方形A B C D 的边长为 1,AB = a ,BC = b , AC = c , 则++a b c 等于 ( ) (A) 0 (B) 3 (D) 6)下列各组的两个向量,平行的是 A 、(2,3)a =- ,(4,6)b = B 、(1,2)a =- ,(7,14) b = C 、 (2,3) a = , (3,2) b = D 、 (3,2) a =- , (6,4) b =- 7)若平行四边形的3个顶点分别是(4,2),(5,7),(-3,4), 则第4个顶点的坐标不可能是( ) (A)(12,5) (B)(-2,9) (C) (3,7) (D) (-4,-1)

8)点),0(m A )0(≠m ,按向量a 平移后的对应点的坐标是)0,(m ,则 向量a 是 A 、),(m m - B 、),(m m - C 、),(m m -- D 、),(m m 9)已知(6,0)a = ,(5,5)b =- ,则a 与b 的夹角为 A 、0 45 B 、0 60 C 、0 135 D 、0 120 10)已知)2,3(-M ,)0,1(-N ,则线段MN 的中点P 的坐标是________。 11)设O 是平行四边形ABCD 的两条对角线的交点,下列向量组:(1)AD 与AB ;(2)DA 与BC ;(3)C A 与D C ;(4)O D 与OB ,其中可作为这个平行四边形所在平面表示它的所有向量的基底的向量组可以是________________。 12)已知向量a (1,5)=,b (3,2) =-,则向量a 在b 方向上的投影 为 . 13)已知)8,7(A ,)5,3(B ,则向量AB 方向上的单位向量坐标是 ________。 14)已知 3 a = , 4 b = , a 与 b 的夹角为 4 3π, (3)(2)a b a b -?+ =__________. 15)已知3=a ,4=b ,且向量a ,b 不共线,若向量+ a k b 与向量- a k b 互相垂直,则实数k 的值为 .

平面向量练习题集答案

平面向量练习题集答案 典例精析 题型一向量的有关概念 【例1】下列命题: ①向量AB的长度与BA的长度相等; ②向量a与向量b平行,则a与b的方向相同或相反; ③两个有共同起点的单位向量,其终点必相同; ④向量AB与向量CD是共线向量,则A、B、C、D必在同一直线上. 其中真命题的序号是. 【解析】①对;零向量与任一向量是平行向量,但零向量的方向任意,故②错;③显然错;AB与CD 是共线向量,则A、B、C、D可在同一直线上,也可共面但不在同一直线上,故④错.故是真命题的只有①. 【点拨】正确理解向量的有关概念是解决本题的关键,注意到特殊情况,否定某个命题只要举出一个反例即可. 【变式训练1】下列各式: a?; ①|a|=a ②(a?b) ?c=a?(b?c); ③OA-OB=BA; ④在任意四边形ABCD中,M为AD的中点,N为BC的中点,则AB+DC=2MN; ⑤a=(cos α,sin α),b=(cos β,sin β),且a与b不共线,则(a+b)⊥(a-b). 其中正确的个数为() A.1 B.2 C.3 D.4 a?正确;(a?b) ?c≠a?(b?c);OA-OB=BA正确;如下图所示,【解析】选D.| a|=a MN=MD+DC+CN且MN=MA+AB+BN, 两式相加可得2MN=AB+DC,即命题④正确; 因为a,b不共线,且|a|=|b|=1,所以a+b,a-b为菱形的两条对角线, 即得(a+b)⊥(a-b). 所以命题①③④⑤正确.

题型二 与向量线性运算有关的问题 【例2】如图,ABCD 是平行四边形,AC 、BD 交于点O ,点M 在线段DO 上,且DM =DO 31,点N 在线段OC 上,且ON =OC 31,设AB =a , AD =b ,试用a 、b 表示AM ,AN ,MN . 【解析】在?ABCD 中,AC ,BD 交于点O , 所以DO =12DB =12(AB -AD )=12(a -b ), AO =OC =12AC =12(AB +AD )=1 2(a +b ). 又DM =13DO , ON =13 OC , 所以AM =AD +DM =b +13 DO =b +13×12(a -b )=16a +56b , AN =AO +ON =OC +1 3OC =43OC =43×12(a +b )=23 (a +b ). 所以MN =AN -AM =23(a +b )-(16a +56b )=12a -16 b . 【点拨】向量的线性运算的一个重要作用就是可以将平面内任一向量由平面内两个不共线的向量表示,即平面向量基本定理的应用,在运用向量解决问题时,经常需要进行这样的变形. 【变式训练2】O 是平面α上一点,A 、B 、C 是平面α上不共线的三点,平面α内的动点P 满足OP = OA +λ(AB +AC ),若λ=12 时,则PA ?(PB +PC )的值为 . 【解析】由已知得OP -OA =λ(AB +AC ), 即AP =λ(AB +AC ),当λ=12时,得AP =12 (AB +AC ), 所以2AP =AB +AC ,即AP -AB =AC -AP , 所以BP =PC , 所以PB +PC =PB +BP =0, 所以PA ? (PB +PC )=PA ?0=0,故填0.

相关文档
最新文档