九年级数学相似三角形单元测试题及答案
第4章 相似三角形数学九年级上册-单元测试卷-浙教版(含答案)

第4章相似三角形数学九年级上册-单元测试卷-浙教版(含答案)一、单选题(共15题,共计45分)1、如图,在正方形ABCD中,点E在AB边上,且AE∶EB=2∶1,AF⊥DE于G交BC于F,则△AEG的面积与四边形BEGF的面积之比为()A.1∶2B.4∶9C.1∶4D.2∶32、如图,已知矩形中,点是边上的任一点,连接,过作的垂线交延长线于点,交边于点,则图中共有相似三角形()A.6对B.5对C.4对D.3对3、下列命题中,是真命题的为( )A.锐角三角形都相似B.直角三角形都相似C.等腰三角形都相似 D.等边三角形都相似4、如图,矩形ABCD中,由8个面积均为1的小正方形组成的L型模板如图放置,则矩形ABCD的周长为()A.12B.10C.8D.8+45、如图,已知DE∥BC,EF∥AB,则下列比例式错误的是( )A. B. C. D.6、在矩形ABCD中,AB=3,BC=4,M是对角线BD上的动点,过点M作ME⊥BC于点E,连接AM,当△ADM是等腰三角形时,ME的长为()A. B. C. 或 D. 或7、如图,已知△ABC与△BDE都是等边三角形,点D在边AC上(不与A、C重合),DE与AB相交于点F,则图中有()对相似三角形.A.2B.3C.4D.58、如图,已知,那么添加下列一个条件后,仍然无法判定的是()A. B. C. D.9、如图,中,,,点在的延长线上,且连接并延长,过作于点,若,则的面积为()A.1B.2C.D.10、在研究相似问题时,甲、乙同学的观点如下:甲:将边长为3、4、5的三角形按图1的方式向外扩张,得到新三角形,它们的对应边间距为1,则新三角形与原三角形相似.乙:将邻边为3和5的矩形按图2的方式向外扩张,得到新的矩形,它们的对应边间距均为1,则新矩形与原矩形不相似.对于两人的观点,下列说法正确的是()A.两人都对B.两人都不对C.甲对,乙不对D.甲不对,乙对11、如图,△ABC中,点D、E分别是AB、AC的中点,则下列结论:①BC=2DE;②△ADE∽△ABC;③.其中正确的有()A.3个B.2个C.1个D.0个12、如图,△ABC中,CD⊥AB,BE⊥AC,= ,则sinA的值为()A. B. C. D.13、若,则下列式子成立的是()A. B. C. D.14、下列四组图形中不一定相似的是。
第4章 相似三角形 浙教版九年级数学上册单元测试卷(含解析)

第4章相似三角形单元测试卷一.选择题(共10小题,满分30分)1.《九章算术》中记载了一种测量古井水面以上部分深度的办法,如图所示,在井口A处立一垂直于井口的木杆AB,从木杆的顶端B观测井水水岸D,视线BD与井口的直径CA 交于点E,若测得AB=1米,AC=1.6米,AE=0.4米,则水面以上深度CD为( )A.4米B.3米C.3.2米D.3.4米2.设=,则的值为( )A.B.C.D.3.已知△ABC∽△DEF,=,若BC=2,则EF=( )A.4B.6C.8D.164.两个相似多边形的周长之比为1:4,则它们的面积之比为( )A.1:2B.1:4C.1:8D.1:165.如图,AD∥BE∥CF,若AB=2,AC=5,EF=4,则DE的长度是( )A.6B.C.D.6.已知在△ABC中,∠A=78°,AB=4,AC=6,下列阴影部分的三角形与原△ABC不相似的是( )A.B.C.D.7.甲、乙两地相距60千米,在比例尺1:1000000的地图上,图上距离应是( )厘米.A.6000000B.600C.60D.68.大自然是美的设计师,即使是一片小小的树叶,也蕴含着“美学”.如图,的值接近黄金比,则黄金比(参考数据:2.12=4.41,2.22=4.84,2.32=5.29,2.42=5.76)( )A.在0.1到0.3之间B.在0.3到0.5之间C.在0.5到0.7之间D.在0.7到0.9之间9.在△ABC中,∠BAC=90°,AD⊥BC,垂足为D,AD=3,BD=2,则CD的长为( )A.2B.3C.D.10.如图,在△ABC中,∠BAC=90°,AH⊥BC,M是AC中点,CN=2BN,BM交AN于O,BM交AH于I,若S△ABC=48,则下面结论正确的是( )①∠CAH=∠ABC;②S△ABO=12;③AO=3NO;④=2.A.①②③B.②③④C.①②④D.①②③④二.填空题(共10小题,满分30分)11.已知四边形ABCD∽四边形A′B′C′D′,BC=3,CD=2.4,B′C′=2,则C′D ′= .12.如图,△ADE∽△ACB,已知∠A=40°,∠ADE=∠B,则∠C= °.13.如图,在△ABC中,DE∥BC,G为BC上一点,连接AG交DE于点F,已知AF=2,AG=6,EC=5,则AC= .14.已知a=4,c=13,则a,c的比例中项是 .15.如图,四边形ABCD与四边形EFGH位似,其位似中心为点O,且=,则= .16.如图,在第一象限内作与x轴的正半轴成60°的射线OC,在射线OC上截取OA=2,过点A作AB⊥x轴于点B,在坐标轴上取一点P(不与点B重合),使得以P,O,A为顶点的三角形与△AOB相似,则所有符合条件的点P的坐标为 .17.如图,以点O为位似中心,把△ABC放大2倍得到△A'B'C'',①AB∥A'B';②△ABC∽△A'B'C';③AO:AA'=1:2;④点C、O、C'三点在同一直线上.则以上四种说法正确的是 .18.如图,△ABC的顶点在1×3的正方形网格的格点上,在图中画出一个与△ABC相似但不全等的△DEF(△DEF的顶点在格点上),则△DEF的三边长分别是 .19.如图,在△ABC中,∠BAC=90°,AD⊥BC于D,BD=3,CD=12,则AD的长为 .20.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是,著名的“断臂维纳斯”便是如此,这个数我们把它叫做黄金分割数.若介于整数n 和n+1之间,则n的值是 .三.解答题(共7小题,满分90分)21.如图,矩形OABC的顶点A、C分别在x轴和y轴上,点B的坐标为(2,3),双曲线y=﹣(x>0)的图象经过的中点D,且与AB交于点E,连接DE(1)求△BDE的面积(2)若点F是OC边上一点,且△FBC∽△DEB,求点F坐标.22.如图,四边形ABCD∽四边形EFGH,求角α、β的大小和EF的长度x.23.如图,C是线段AB上的一点,AC:CB=2:1.(1)图中以点A,B,C中任意两点为端点的线段共有 条.(2)若AC=4,求AB的长.24.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B(﹣1,4),C(﹣3,2).(1)画出△ABC关于y轴对称的图形△A1B1C1;(2)以原点O为位似中心,位似比为1:2,在y轴的左侧,画出△ABC放大后的图形△A2B2C2,并直接写出C2点坐标.25.如图,AB∥EF∥CD,E为AD与BC的交点,F在BD上,求证:+=.26.小颍想利用标杆和皮尺测量自己小区大门口前遮雨玻璃水平宽度AB,他在楼门前水平地面上选择一条直线CH,AB∥CH,在CH上距离C点8米的D处竖立标杆DE,DE⊥CH,他沿着DH方向走了2米到点N处,发现他的视线从M处通过标杆的顶端E正好落在遮雨玻璃的B点处,继续沿原方向再走2米到点Q处,发现他的视线从P处通过标杆的顶端E正好落在遮雨玻璃的A点处,求遮雨玻璃的水平宽度AB.27.如图,AC、BD交于点E,BC=CD,且BD平分∠ABC.(1)求证:△AEB∽△CED;(2)若BC=9,EC=3,AE=2,求AB的长.参考答案与试题解析一.选择题(共10小题,满分30分)1.解:由题意知:AB∥CD,∴△ABE∽△CDE,∴,∴,∴解得CD=3,∴水面以上深度CD为3米.故选:B.2.解:∵=,∴x=y,∴====.故选:C.3.解:∵△ABC∽△DEF,∴,∵=,BC=2,∴,∴EF=4,故选:A.4.解:相似多边形的周长的比是1:4,周长的比等于相似比,因而相似比是1:4,面积的比是相似比的平方,因而它们的面积比为1:16;故选:D.5.解:∵AD∥BE∥CF,∴=,即=,解得:DE=,故选:D.6.解:A、由有两组角对应相等的两个三角形相似,可证阴影部分的三角形与原△ABC相似,故选项A不符合题意;B、不能证明阴影部分的三角形与原△ABC相似,故选项B符合题意;C、由有两组角对应相等的两个三角形相似,可证阴影部分的三角形与原△ABC相似,故选项C不符合题意;D、由两组对应边的比相等且夹角对应相等的两个三角形相似,故选项D不符合题意;故选:B.7.解:60千米=6000000厘米,6000000×=6(厘米).答:图上距离应是6厘米.故选:D.8.解:∵2.22=4.84,2.32=5.29,2.2<<2.3,∴1.2<﹣1<1.3,∴0.6<<0.65,故选:C.9.解:∠BAC=90°,∴∠BAD+∠CAD=90°,∵AD⊥BC,∴∠C+∠CAD=90°,∴∠C=∠BAD,∵∠BDA=∠ADC=90°,∴△BDA∽△ADC,∴,即,解得,DC=,故选:D.10.解:①∵∠BAC=90°,AH⊥BC,∴∠ABC+∠BAH=∠BAH+∠CAH=90°,∴∠CAH=∠ABC,故①正确;②过点M作ME∥BC,与AO交于点E,∵M是AC中点,∴ME是△ACN的中位线,∴ME=,AE=EN,∵CN=2BN,∴ME=BN,∵ME∥BC,∴∠OBN=∠OME,∵∠BON=∠MOE,∴△OBN≌△OME(AAS),∴ON=OE,∵AE=EN,∴AN=4ON,∴,∵CN=2BN,S△ABC=48,∴,∴,故②正确;③∵AE=EN,OE=ON,∴AO=3NO,故③正确;④过点C作CF⊥BC,与BM的延长线交于点F,∴∠AIM=∠F,∵M是AC的中点,∴AM=CM,∵∠AMI=∠CMF,∴△AMI≌△CMF(AAS),∴AI=CF,∵IH∥CF,当H不是BC的中点时,IH≠,∴IH≠,故④不正确;故选:A.二.填空题(共10小题,满分30分)11.解:∵四边形ABCD∽四边形A′B′C′D′,∴=,即=,∴C′D′=1.6.故答案为:1.6.12.解:∵△ADE∽△ACB,∴∠AED=∠B,∠ADE=∠C,∵∠ADE=∠B,∴∠C=∠B,∴∠B=4∠C,∵∠A=40°,∠A+∠B+∠C=180°,∴∠C=28°,故答案为:28.13.解:∵DE∥BC,∴,即,∴AE=,∴AC=AE+EC=+5=,故答案为:.14.解:设a,c的比例中项为b,根据题意得b2=ac,∵a=4,c=13,∴b=±=±2.故答案为:±2.15.解:∵=,∴=,∵四边形ABCD与四边形EFGH位似,∴EH∥AD,∴△OEH∽△OAD,∴==,故答案为:.16.解:∵∠AOB=60°,∠ABC=90°,∴当P点在x轴上,∠AOP=60°,∠OAP=90°时,△PAO∽△ABO,此时OP=2OA=4,则P(4,0);当P点在y轴上,若∠APO=60°,∠OAP=90°时,△PAO∽△OBA,此时AP=OA=,OP=2AP=,则P(0,);若∠PAO=60°,∠APO=90°时,△APO∽△OBA,此时AP=OA=1,OP=AP=,则P(0,);综上所述,P点坐标为:(4,0)或(0,)或(0,).故答案为:(4,0)或(0,)或(0,).17.解:∵以点O为位似中心,把△ABC放大2倍得到△A'B'C'',∴AB∥A'B,△ABC∽△A'B'C';AO:AA'=2:1;点C、O、C'三点在同一直线上,①①②④正确,故答案为:①②④.18.解:如图所示:△ABC∽△DEF,DE=,ED=2,EF=.故答案为:,2,.19.解:∵∠BAC=90°,AD⊥BC,∴AD2=CD•BD=36,∴AD=6,故答案为:6.20.解:∵2<<3,∴1<﹣1<2,∴<<1∵n<<n+1,n为整数,∴n=0.故答案为:0.三.解答题(共7小题,满分90分)21.解:(1)∵D点为BC的中点,B(2,3),∴D(1,3),把D(1,3)代入y=得k=1×3=3,∴反比例函数解析式为y=,∵AB⊥x,∴E点的横坐标为2,当x=2时,y==,即E(2,),∴△BDE的面积=×(2﹣1)×(3﹣)=;(2)∵△FBC∽△DEB,∴=,即=,解得CF=,∴OF=OC﹣CF=3﹣=,∴点F坐标为(0,).22.解:∵四边形ABCD∽四边形EFGH,∴α=∠C=83°,∠F=∠B=78°,EH:AD=EF:AB,∴x:21=24:18,解得x=28.在四边形EFGH中,β=360°﹣83°﹣78°﹣118°=81°.∴∠G=∠C=67°.故α=83°,β=81°,x=28.23.解:(1)线段有:AC,AB,CB,共3条,故答案为:3;(2)∵AC=4,AC:CB=2:1,∴CB=2,∴AB=AC+CB=4+2=6.24.解;(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作,点C2点坐标为(﹣6,4).25.解:∵AB∥EF,∴=,∵EF∥CD,∴=,∴+=+=1,∴+=.26.解:连接AE,过E作EI⊥AC于点I,延长PM交AC于J,交ED于K,则IE=JK=CD =8,KM=DM=DN=NQ=2,∴JE∥PJ,∠AEJ=∠EPK,∵∠AJE=∠EKP=90°,∴△AEJ∽△EPK,∴,∵AB∥MP,∴,即,∴AB=4,答:遮雨玻璃的水平宽度AB为4m.27.(1)证明:∵BC=CD,∴∠CBD=∠CDB,∵BD平分∠ABC.∴∠CBD=∠ABD,∴∠CDB=∠ABD,又∵∠CED=∠AEB,∴△AEB∽△CED.(2)解:∵BC=CD,BC=9,∴CD=9,∵△AEB∽△CED,∴==,∴AB=DC=6.。
人教九下数学 第27章 相似三角形的判定及有关性质综合测试(含答案)

人教九下数学 第27章 相似三角形的判定及有关性质综合测试(含答案)一、选择题(每小题6分,共48分)1.在△ABC 中,D 、F 是AB 上的点,E 、H 是AC 上的点,直线DE//FH//BC ,且DE 、FH 将△ABC 分成面积相等的三部分,若线段FH=65,则BC 的长为( ) A .15 B .10 C.6215 D .15322.在△ABC 中,DE//BC ,DE 交AB 于D ,交AC 于E ,且S △ADE :S 四边形DBCE=1:2,则梯形的高与三角形的边BC 上的高的比为( )A .1:2B .1:)12(-C .1:)13(-D .)13(-:33.在Rt △ABC 中,∠C=90°,CD 是斜边AB 上的高,AC=5,BC=8,则S △ACD :S △CBD 为( ) A .85B .6425 C .3925 D .8925 4.如图1—5—1,D 、E 、F 是△ABC 的三边中点,设△DEF 的面积为4,△ABC 的周长为9,则△DEF 的周长与△ABC 的面积分别是( )A.29,16 B. 9,4 C. 29,8 D. 49,165.如图1—5—2,在△ABC 中,AD ⊥BC 于D ,下列条件:(1)∠B+∠DAC=90°;(2)∠B=∠DAC ; (3)ABAC AD CD =;(4)AB 2=BD ·BC 。
其中一定能够判定△ABC 是直角三角形的共有( ) A .3个B .2个C .1个D .0个6.如图1—5—3,在正三角形ABC 中,D ,E 分别在AC ,AB 上,且31AC AD =,AE=BE ,则有( )A. △AED ∽△BED B .△AED ∽△CBD C. △AED ∽△ABD D .△BAD ∽△BCD7.如图1—5—4,PQ//RS//AC ,RS=6,PQ=9,SC 31QC =,则AB 等于( ) A. 415B. 436C. 217D. 58.如图1—5—5,平行四边形ABCD 中,O 1、O 2、O 3是BD 的四等分点,连接AO 1,并延长交BC 于E ,连接EO 2,并延长交AD 于F ,则FDAD等于( )A .3:1B .3:1C .3:2 D. 7:39.如果一个三角形的一条高分这个三角形为两个相似三角形,那么这个三角形必是( ) A .等腰三角形 B. 任意三角形C .直角三角形D .直角三角形或等腰三角形10.在△ABC 和△A'B'C'中,AB : AC=A'B':A'C',∠B=∠B',则这两个三角形( ) A .相似,但不全等 B .全等C .一定相似D .无法判断是否相似11.如图1—6—1,正方形ABCD 中,E 是AB 上的任一点,作EF ⊥BD 于F ,则BEEF为( )A .22B .21C .36D .2图1—6—112.如图1—6—2,把△ABC 沿边AB 平移到△A'B'C'的位置,它们的重叠部分(图中阴影部分)的面积是△ABC 的面积的一半,若2AB =,则此三角形移动的距离AA'是( )A .12-B .22C .1D .21 图1—6—213.如图1—6—3,在四边形ABCD 中,∠A=135°,∠B=∠D=90°,BC=32,AD=2,则四边形ABCD 的面积是( )A .24B .34C .4D .6 图1—6—314.如图1—6—4,平行四边形ABCD 中,G 是BC 延长线上一点,AG 与BD 交于点E ,与DC 交于点F ,则图中相似三角形共有( )A .3对B .4对C .5对D .6对15.在直角三角形中,斜边上的高为6cm ,且把斜边分成3:2两段,则斜边上的中线的长为( )A.265cm B .64cm C .65cmD .325cm16.AD 为Rt △ABC 斜边BC 上的高,作DE ⊥AC 于E ,45AC AB =,则EACE=( ) A .2516 B .54C .45D .162517.如图1—6—5,△ABC 中,AB=AC ,∠A=36°,BD 平分∠ABC ,已知AB=m ,BC=n ,求CD 的长。
第4章 相似三角形数学九年级上册-单元测试卷-浙教版(含答案)

第4章相似三角形数学九年级上册-单元测试卷-浙教版(含答案)一、单选题(共15题,共计45分)1、如图,正方形ABCD的边长为2,对角线AC与BC相交于O,E为AB的中点,F为DE 的中点,G为CF的中点, OH⊥DE于H,过A作AI⊥DE于I,交BD于J,交BC于K,连接BI.下列结论:①G到AC的距离等于;②OH=;③BK=AK;④∠BIJ=45°.其中正确的结论是A.①②③B.①②④C.①③④D.①②③④2、如图,在Rt△ABC中,∠C=90°,P是斜边上一定点,过点P作直线与一直角边交于点Q使图中出现两个相似三角形,这样的点Q有 ( )A.1个B.2个C.3个D.4个3、如图,在△ABC中,DE∥BC分别交AB,AC于点D,E,若=,则下列说法不正确的是()A. =B. =C. =D. =4、如图,P为线段AB上一点,AD与BC交于点E,∠CPD=∠A=∠B,BC交PD于点F,AD交PC于点G,则图中相似三角形有( )A.1对B.2对C.3对D.4对5、如图,在△ABC中,点D是AB边上的一点,若∠ACD=∠B,AD=1,AC=2,△ADC的面积为8,则△BCD的面积为( )A.8B.16C.24D.326、如图,△ABC是等腰直角三角形,AC=BC=a,以斜边AB上的点O为圆心的圆分别与AC,BC相切于点E、F,与AB分别相交于点G、H,且EH的延长线与CB的延长线交于点D,则CD的长为()A. B. C. D.7、如图所示,△ABC中,点D、E分别是AC、BC边上的点,且DE∥AB,CD:CA﹦2:3,△ABC的面积是18,则△DEC的面积是()A.8B.9C.12D.158、如图,四边形ABCD∽四边形EFGH,∠A=80°,∠C=90°,∠F=70°,则∠E的度数为()A.70°B.80°C.90°D.120°9、如图,△ABC中,D,E是BC边上的点,BD:DE:EC=3:2:1,M在AC边上,CM:MA =1:2,BM交AD,AE于H,G,则BH:HG:GM等于()A.3:2:1B.5:3:1C.25:12:5D.51:24:1010、与图中的三角形相似的是()A. B. C. D.11、如图,A、B是双曲线上的两点,过A点作AC⊥x轴,交OB于D点,垂足为C.若△ADO的面积为1,D为OB的中点,则k的值为()A. B. C.3 D.412、如图,在矩形中,点在边上,和交于点若,则图中阴影部分的面积为()A. B. C. D.13、如图,矩形ABCD中,E是BC的中点,连接AE,过点E作EF⊥AE交DC于点F,连接AF.设=k,下列结论:(1)△ABE∽△ECF,(2)AE平分∠BAF,(3)当k=1时,△ABE∽△ADF,其中结论正确的是()A.(1)(2)(3)B.(1)(3)C.(1)(2)D.(2)(3)14、如图,正方形ABCD的边长为2,BE=CE,MN=1,线段MN的两端点在CD、AD上滑动,当DM为时,△ABE与以D、M、N为顶点的三角形相似.()A. B. C. 或 D. 或15、△ABC与△DEF的相似比为,则△ABC与△DEF的面积比为()A. B. C. D.二、填空题(共10题,共计30分)16、在某时刻的阳光照耀下,高为4米的旗杆在水平地面上的影长为5米,附近一个建筑物的影长为20米,则该建筑物的高为________米.17、我军侦察员在距敌方AN=120m的地方发现敌方的一座建筑物,但不知其高度,又不能靠近建筑物测量,机灵的侦察员将自己的食指竖直举在右眼前,闭上左眼,并将食指前后移动,使食指恰好将该建筑物遮住,如图所示.若此时眼睛到食指的距离AM约为40cm,食指BC的长约为8cm,则敌方建筑物DE的高度约是________m。
初三数学相似三角形测试题及答案

(完整word版)初三数学相似三角形测试题及答案亲爱的读者:本文内容由我和我的同事精心收集整理后编辑发布到文库,发布之前我们对文中内容进行详细的校对,但难免会有错误的地方,如果有错误的地方请您评论区留言,我们予以纠正,如果本文档对您有帮助,请您下载收藏以便随时调用。
下面是本文详细内容。
最后最您生活愉快 ~O(∩_∩)O ~初三数学相似三角形测试题及答案 1、若b m m a 2,3==,则_____:=b a 。
2、已知653z y x ==,且623+=z y ,则__________,==y x 。
3、在等腰Rt △ABC 中,斜边长为c ,斜边上的中线长为m ,则______:=c m 。
4、反向延长线段AB 至C ,使2AC =AB ,那么BC :AB = 。
5、△ABC ∽△A ′B ′C ′,相似比为3:2,它们周长的差为40厘米,则△A ′B ′C ′的周长为 厘米。
7、如图,△ABC 中,∠ACB =90°,CD ⊥AB 于D ,若∠A =30°,则BD :BC= 。
若BC =6,AB =10,则BD = ,CD = 。
8、如图,梯形ABCD 中,DC ∥AB ,DC =2cm ,AB =3.5cm ,且MN ∥PQ ∥AB , DM =MP =PA ,则MN = ,PQ = 。
9、如图,四边形ADEF 为菱形,且AB =14,BC =12,AC =10,那BE = 。
10、梯形的上底长1.2厘米,下底长1.8厘米,高1厘米,延长两腰后与下底所成的三角形的高为 厘米。
11、下面四组线段中,不能成比例的是( )A 、4,2,6,3====d c b aB 、3,6,2,1====d c b aC 、10,5,6,4====d c b aD 、32,15,5,2====d c b a 12、等边三角形的中线与中位线长的比值是( )CB DAD C NPN QABA 、1:3B 、2:3C 、23:21 D 、1:314、已知直角三角形三边分别为b a b a a 2,,++,()0,0>>b a ,则=b a :( ) A 、1:3 B 、1:4 C 、2:1 D 、3:115、△ABC 中,AB =12,BC =18,CA =24,另一个和它相似的三角形最长的一边是36,则最短的一边是( ) A 、27 B 、12 C 、18 D 、20 16、已知c b a ,,是△ABC 的三条边,对应高分别为cb a h h h ,,,且6:5:4::=c b a ,那么cb a h h h ::等于( )A 、4:5:6 B 、6:5:4 C 、15:12:10 D 、10:12:1517、一个三角形三边长之比为4:5:6,三边中点连线组成的三角形的周长为30cm ,则原三角形最大边长为( ) A 、44厘米 B 、40厘米 C 、36厘米 D 、24厘米18、下列判断正确的是( )A 、不全等的三角形一定不是相似三角形B 、不相似的三角形一定不是全等三角形C 、相似三角形一定不是全等三角形D 、全等三角形不一定是相似三角形 19、如图,△ABC 中,AB =AC ,AD 是高,EF ∥BC ,则图中与△ADC 相似的三角形共有( ) A 、1个 B 、2个 C 、3个 D 、多于3个20、如图,在平行四边形ABCD 中,E 为BC 边上的点,若BE :EC =4:5,AE 交BD 于F ,则BF :FD 等于( ) A 、4:5 B 、3:5 C 、4:9 D 、3:821、已知()3:2:=-y y x ,求y x yx 2352-+的值。
人教版初中数学九年级《 相似三角形》单元测试题

人教版初中数学九年级《相似三角形》单元测试题第二十七章《相似三角形》单元测试题一、精心选择(每小题4分,共32分)1.下列各组图形有可能不相似的是()。
A) 各有一个角是50°的两个等腰三角形B) 各有一个角是100°的两个等腰三角形C) 各有一个角是50°的两个直角三角形D) 两个等腰直角三角形2.如图,D是⊿ABC的边AB上一点,在条件(1)△ACD=∠B,(2)AC=AD·AB,(3)AB边上与点C距离相等的点D有两个,(4)∠B=△ACB中,一定使⊿ABC∽⊿ACD的个数是()。
A) 1 (B) 2 (C) 3 (D) 43.如图,∠ABD=∠ACD,图中相似三角形的对数是()。
A) 2 (B) 3 (C) 4 (D) 54.如图,在矩形ABCD中,点E是AD上任意一点,则有()。
A) △ABE的周长+△CDE的周长=△BCE的周长B) △ABE的面积+△XXX的面积=△BCE的面积C) △ABE∽△DECD) △ABE∽△EBC5.如果两个相似多边形的面积比为9:4,那么这两个相似多边形的相似比为()。
A。
9:4 B。
2:3 C。
3:2 D。
81:166.下列两个三角形不一定相似的是()。
A。
两个等边三角形 B。
两个全等三角形C。
两个直角三角形 D。
两个等腰直角三角形7.若⊿ABC∽⊿A'B'C',∠A=40°,∠B=110°,则∠C' =()。
A。
70° B。
110° C。
30° D。
40°8.如图,在ΔABC中,AB=30,BC=24,CA=27,AE=EF=FB,EG∥FD∥BC,FM∥EN∥AC,则图中阴影部分的三个三角形的周长之和为()。
A。
70 B。
75 C。
81 D。
80二、细心填一填(每小题3分,共24分)9.如图,在△ABC中,△BAC=90°,D是BC中点,AE∥AD交CB延长线于点E,则⊿BAE相似于△()。
最新九年级数学相似三角形单元测试题及答案

精品文档相似单元测试九年级数学),选择题(每小题3分共30分一.( ) ,量得甲,乙两地的距离25cm,则甲,乙的实际距离是1.在比例尺为1:5000的地图上D.1.25km A.1250km B.125kmC. 12.5kmcabba? ( )2.已知 ,则的值为0???423c154 D. C.2 A.B. 524′与⊿′的两边长分别是1A和,3.已知⊿ABC如果⊿的三边长分别为ABC,,2,⊿A′B′C263( )′C′的第三边长应该是 B′C′相似,那么⊿A′B623 A. B.C. D. 22234.在相同时刻,物高与影长成正比。
如果高为1.5米的标杆影长为2.5米,那么影长为30米的旗杆的高为 ( )米 D 15 C 16米 A 20米 B 18米CAD, ∽⊿要使⊿ABCACB=∠ADC=90°,BC=a,AC=b,AB=c,5.如图,∠( ) 只要CD等于222abbab D. A. B. C.cacc而只有长,20cm,50cm,60cm,现要再做一个与其相似的钢筋三角架6.一个钢筋三角架三长分别为作为另两允许有余料)要求以其中的一根为一边,从另一根截下两段(30cm为和50cm的两根钢筋,) ( 边,则不同的截法有D.四种 C.三种 B.两种 A.一种( ) 7、用位似图形的方法,可以将一个图形放大或缩小,位似中心的位置可以选在任意位置C 原图形的边上 D 原图形的外部 B 原图形的内部 A□)的长(3,EF = 4,则CD、如图,ABCD中,EF∥AB,DE∶EA = 2∶81616 D.8 C. 10 A. B.3ba?ca?cb???k=c为非零实数,设已知a、,则k的值为() b、9.cba1-1 . D . C2或-1 A.2 B.ABC、某校计划在一块三角形的空地上修建一个面积最大的正方形水池,使得水池的一边在△10( ) ,则水池的边长应为AD=30mABC的边BC上,△中边BC=60m,高D 40mC 30m B 20m A 10m) 分分,共30二.填空题(每小题3y3x?x,、已知11则._____??4yy AB= .AC∶则的黄金分割点已知点.C是线段AB,且AC>BC,、12 ,则原矩形纸片如果对折后的矩形与原矩形相似把一矩形纸片对折、13., .的长与宽之比为精品文档.精品文档BC),(DEAB,AC上的点ABC中,D,E分别是14、如图,⊿. ABC相似,⊿ADE与⊿当或或时 BC边上的高,并且25°,AD是15、在△ABC中,∠B=2 ____________。
第4章 相似三角形数学九年级上册-单元测试卷-浙教版(含答案)

第4章相似三角形数学九年级上册-单元测试卷-浙教版(含答案)一、单选题(共15题,共计45分)1、如图,已知矩形ABCD中,AB=2,在BC上取一点E,沿AE将△ABE向上折叠,使B点落在AD上的F点处,若四边形EFDC与矩形ABCD相似,则AD=()A. B. +1 C.4 D.22、在比例尺是1:500的图纸上,测得一块长方形的土地长5厘米,宽4厘米,这块地的实际面积是()平方米.A.20平方米B.500平方米C.5000平方米D.500000平方米3、如图,在△ABC中,D、E分别是AB、AC的中点,下列说法中不正确的是()A.DE= BCB.C.△ADE∽△ABCD.S△ADE :S△ABC=1:24、如图,放映幻灯片时,通过光源,把幻灯片上的图形放大到屏幕上.若光源到幻灯片的距离为30cm,光源到屏幕的距离为90cm,且幻灯片中的图形的高度为7cm,则屏幕上图形的高度为()A.21cmB.14cmC.6cmD.24cm5、如图,已知直线a∥b∥c,直线m分别交直线a、b、C于点A,B,C,直线n分别交直线a、b、c于点D,E,F.若AB=3,AD=BC=5,则的值应该( ).A.等于B.小于C.大于D.不能确定6、如图,已知Rt△ABC中,∠ACB=90°, CD⊥AB于D,E是CD上一点(不与C,D重合),过E作FG⊥BC于G,交AB于F,过E作HK⊥AC于H,交AB于K,连结HF,GK.则的值是()A. B. C. D.7、如图,在矩形ABCD中,AB=6,BC=8,若将矩形折叠,使B点与D点重合,则折痕EF的长为( )A. B. C.5 D.68、如图,在一块斜边长30cm的直角三角形木板(Rt△ACB)上截取一个正方形CDEF,点D 在边BC上,点E在斜边AB上,点F在边AC上,若AF:AC=1:3,则这块木板截取正方形CDEF后,剩余部分的面积为( )A.100cm 2B.150cm 2C.170cm 2D.200cm 29、如图,在□ABCD中,E是BC的中点,且∠AEC=∠DCE,下列结论不正确的是( )A.BF= DFB.S△FAD =2S△FBEC.四边形AECD是等腰梯形D.∠AEB=∠ADC10、如图,已知A(﹣2,0),以B(0,1)为圆心,OB长为半径作⊙B,N是⊙B上一个动点,直线AN交y轴于M点,则△AOM面积的最大值是()A.2B.C.4D.11、若x:y=1:3,2y=3z,则的值是()A.﹣5B.﹣C.D.512、已知两个三角形相似,对应中线之比为1:4,那么对应周长之比为()A.1:2B.1:16C.1:4D.无法确定13、下列说法正确的是()A.等腰梯形的对角线互相平分.B.一组对边平行,另一组对边相等的四边形是平行四边形.C.线段的垂直平分线上的点到线段两个端点的距离相等.D.两边对应成比例且有一个角对应相等的两个三角形相似.14、如图,△ABC和△A1B1C1是以点O为位似中心的位似三角形,若C1为OC的中点,△A1B1C1面积是5,则△ABC的面积为()A.10B.20C.25 D.5015、如图中,点为边上一点,点在上,过点作交于点,过点作交于, 下列结论错误的是()A. B. C. D.二、填空题(共10题,共计30分)16、如图,已知点A在反比例函数y= (x>0)的图象上,作Rt△ABC,边BC在x轴上,点D为斜边AC的中点,连结DB并延长交y轴于点E,若△BCE的面积为4,则k=________.17、如图,已知点F是△ABC的重心,连接BF并延长,交AC于点E,连接CF并延长,交AB于点D,过点F作FG∥BC,交AC于点G.设三角形EFG,四边形FBCG的面积分别为S1,S2,则S1:S2=________.18、已知,则的值为________.19、赵爽弦图是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形,如图所示,若这四个全等直角三角形的两条直角边分别平行于x轴和y轴,大正方形的顶点B1、C1、C2、C3、…、C n在直线y=﹣x+ 上,顶点D1、D2、D3、…、D n在x轴上,则第n 个阴影小正方形的面积为________.20、已知矩形纸片的边,(如图),将它折叠后,点落在边的中点处,那么折痕的长为________.21、如图,在△ABC中,AB=6,AC=8,点D是AB的中点,E是AC边上的一点,若以A、D、E为顶点的三角形与△ABC相似,则AE的长为________.22、若,则=________.23、已知反比例函数y= 在第二象限内的图象如图,经过图象上两点A、E分别引y轴与x轴的垂线,交于点C,且与y轴与x轴分别交于点M、B.连接OC交反比例函数图象于点D,且= ,连接OA,OE,如果△AOC的面积是15,则△ADC与△BOE的面积和为________.24、把10cm长的线段进行黄金分割后得两条线段,其中较长的线段的长为________cm.25、如图所示,在正方形ABCD中,G为CD边中点,连接AG并延长交BC边的延长线于E 点,对角线BD交AG于F点.已知FG=2,则线段AE的长度为________.三、解答题(共5题,共计25分)26、已知:,求的值.27、如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm.动点M,N从点C同时出发,均以每秒1cm的速度分别沿CA、CB向终点A,B移动,同时动点P从点B出发,以每秒2cm的速度沿BA向终点A移动,连接PM,PN,设移动时间为t(单位:秒,0<t<2.5).(1)当t为何值时,以A,P,M为顶点的三角形与△ABC相似?(2)是否存在某一时刻t,使四边形APNC的面积S有最小值?若存在,求S的最小值;若不存在,请说明理由.28、图1是由六个全等且边长为2的小正五边形,以及五个全等且顶角为36°、腰长为2的等腰三角形镶嵌而成的一个大正五边形,正五边形和等腰三角形的顶点称为格点,连接格点而成的三角形称为格点三角形.在图2的三个图中,分别画出一个与图中已知△ABC相似但不全等的格点三角形,并注明三角形的顶点字母.29、如图,.求证:AB=AE.30、已知反比例函数y=(m为常数)的图象经过点A(-1,6).(1)求m的值;(2)如图,过点A作直线AC与函数y=的图象交于点B,与x轴交于点C,且AB=2BC,求点C的坐标.参考答案一、单选题(共15题,共计45分)1、B2、B3、D4、A5、C6、B7、A8、A9、B10、B11、A13、C14、B15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、29、30、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学 相似 单元测试(1)
一.选择题(每小题3分,共30分)
1.在比例尺为1:5000的地图上,量得甲,乙两地的距离25,则甲,乙的实际距离是( )
2.已知04
3
2
≠==c b a ,则c
b a +的值为 ( )
A.5
4 B.4
5 C.2 D.2
1
3.已知⊿的三边长分别为2,6,2,⊿A ′B ′C ′的两边长分别是1和3,如
果⊿及⊿A ′B ′C ′相似,则⊿A ′B ′C ′的第三边长应该是 ( )
A.
2
B.
2
2
C.
2
6 D.
3
3 4.在相同时刻,物高及影长成正比。
如果高为1.5米的标杆影长为2.5米,则影长为30米的旗杆的高为 ( )
A 20米
B 18米
C 16米
D 15米 5.如图,∠∠90°,要使⊿∽⊿,
只要等于 ( )
A.c
b 2
B.a
b 2
C.c
ab
D.c
a 2
6.一个钢筋三角架三 长分别为20,50,60,现要再做一个及其相似的钢筋三角架,而只有长为30和50的两根钢筋,要求以其中的一根为一边,从另一根
截下两段(允许有余料)作为另两边,则不同的截法有 ( )
A.一种
B.两种
C.三种
D.四种
7、用位似图形的方法,可以将一个图形放大或缩小,位似中心的位置可以选在( )
A 原图形的外部
B 原图形的内部
C 原图形的边上
D 任意位置
8、如图,□中,∥,∶ = 2∶3, = 4,则的长( ) A . B .8 C .10 D .16
9、如图,一束平行的光线从教室窗户射入教室的平面示意图,测得光线及地面所成的角∠=︒AMC 30,窗户的高在教室地面上的影长23米,窗户的下檐到教室地面的距离1米(点M 、N 、C 在同一直线上),则窗户的高为 ( )
A .3米
B .3米
C .2米
D .1.5米
10、某校计划在一块三角形的空地上修建一个面积最大的正方形水池,使得水池的一边在△的边上,△中边60m ,高30m ,则水池的边长应为( )
A 10m
B 20m
C 30m
D 40m 二.填空题(每小题3分,共30分) 11、已知4
3=y
x ,则._____=-y
y x
12、.已知点C 是线段的黄金分割点,且>,则∶.
13、.把一矩形纸片对折,如果对折后的矩形及原矩形相似,则原矩形纸片的长及宽之比为.
14、如图,⊿中分别是上的点(),
当或或时,⊿及⊿相似.
15、在△中,∠B=25°,是边上的高,并且
2 ·,则∠的度数为。
AD BD DC
16、如图,小伟在打网球时,击球点距离球网的水平距离
是8米,已知网高是0.8米,要使球恰好能打过网,且落在离网4米的位置,则球拍击球的高度h为米.
17、如图,在△中,D、E分别是、的中点,则△及四边形的
面积之比是.
18、大矩形的周长是及它位似的小矩形的2倍,小矩形的面积
是52,大矩形的长为5,则大矩形的宽为.
19、斜拉桥是利用一组组钢索,把桥面重力传递到耸立
在两侧高塔上的桥梁,它不需要建造桥墩,(如图所示),其
中A1B1、A2B2、A3B3、A4B4是斜拉桥上互相平行的钢索,若最
长的钢索A1B1=80m,最短的钢索A4B4=20m,则钢索A2B2=m,
A3B3=m
20、已知△周长为1,连结△三边中点构成第二个三角形,
再连结第二个三角形三边中点构成第三个三角形,以此类推,第
2006个三角形的周长为
三.解答题(60分)
21.(8分)在方格纸中,每个小格的顶点叫做格点,以格点连线为边的三角形叫做格点三角形.请你在如图所示的4×4的方格纸中,画出两个相似但不全等的格点三角形(要求:所画三角形为钝角三角形,标明字母,并说明理由).
22.、(5分)如图,测量小玻璃管口径的量具,的长为10,被分为60等份.如果小玻璃管口正好对着量具上20等份处,且∥,则小玻璃管口径是多大
23、.如图, 等边⊿,点D、E分别在、上,且,及相交于点F.
(1)试说明⊿≌⊿. (2)⊿及⊿相似吗说说你的理由.
(3)2·吗请说明理由. (9分)
24、(8分)如图:学校旗杆附近有一斜坡.小明准备测量学校旗杆的高度,他发现当斜坡正对着太阳时,旗杆的影子恰好落在水平地面和斜坡的坡面上,此时小明测得水平地面上的影长20米,斜坡坡面上的影长8米,太阳光线及水平地面成30°角,斜坡及水平地面成30°的角,求旗杆的高度(精确到1米).
25、(8分)(06苏州)如图,梯形中.∥.且2,
分别是,的中点。
及相交于点M.A
B C
D M
C
(1)求证:△∽△;
(2)若9,求.
26、(10分)(06潍坊)如图,在△的外接圆O中,D是弧的中点,交于点
E,连结.(1)列出图中所有相似三角形;
(2)连结DC,若在弧BAC上任取一点K(点A、B、
C除外),连结CK DK DK
,,交BC于点F,2·是否成立?若
成立,给出证明;若不成立,举例说明.
27、(12分)如图,平面直角坐标系中,直线及x轴,y轴
分别交于A(3,0)(0,3)两点, ,点C为线段上的一动点,
过点C作⊥x轴于点D.
(1)求直线的解析式;
(2)若S梯形43,求点C的坐标;
(3)在第一象限内是否存在点P,使得以为顶点的三角形及△相似.若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.
参考答案
1、D
2、B
3、A
4、B
5、A
6、B
7、D
8、C
9、C 10、B
11、-1/4 12、(5-1)/2 13、214、略15、65°16、2.4
米
17、1:3 18、4 19、60,40 20、1/22005
21、略22、20/3 23、略24、20 25、(1)略(2)3
26、(1)△∽△∽△(2)成立。
证明△∽△
27、(1)直线解析式为:3
3
-
3.
(2)方法一:设点C坐标为(x ,3
3-
3),则=x ,=3
3
-
3.
由题意:3632+-
x =334,解得4,221==x x (舍去)∴C(2,
3
3
)
方法二:∵23321=⨯=
∆OB OA S AOB ,OBCD S 梯形=334,∴6
3
=∆ACD S
由
3,得∠=30°,3.
∴ACD S ∆=21
×=
223CD =63.可得=3
3. ∴ 1,=2.∴C (2,3
3
). (3)当∠=∠时,如图
①若△∽△,则∠=∠30°,33,
∴1P (3,
3).
②若△∽△,则∠=∠30°3
3
1. ∴2P (1,
3).
当∠=∠时
③ 过点P 作⊥于点P(如图),此时△∽△,∠=∠=30° 过点P 作⊥于点M .
方法一: 在△中,=21=
23
,=3=2
3. ∵ 在△P MO 中,∠=30°, 方法二:设P(x ,3
3-
3),得=x ,=3
3
-
3
由∠=∠,得∠=∠. ∴3
3-
3=3x ,解得
x =43.此时,3P (43,
4
33).
④若△∽△(如图),则∠∠=30°,∠=30°. ∴4P (4
3
,
4
3)(由对称性也可得到点4P 的坐标). 当∠=∠时,点P 在x轴上,不符合要求. 综合得,符合条件的点有四个,分别是:
1P (3,3),2P (1,3),3P (
4
3
,
433),4P (43
,
4
3).。