病毒中和抗体检测
中和抗体实验原理和步骤

中和抗体实验原理和步骤嘿,咱来唠唠中和抗体实验的原理和步骤。
先讲讲原理吧。
中和抗体实验呢,就像是一场病毒和抗体的小战斗。
病毒想要入侵细胞,就像小怪兽想闯进城堡一样。
但是抗体可不同意,中和抗体就像城堡的卫士,它的作用就是阻止病毒进入细胞。
当有病毒和含有抗体的血清或者其他样本混合的时候,如果抗体是中和抗体,那它就能和病毒结合,让病毒失去感染细胞的能力。
这就好比抗体给病毒戴上了个紧箍咒,让病毒没办法施展它的坏招数。
那这个实验的步骤是啥呢?咱先得准备好东西。
就像做饭得先准备食材一样,实验也得有材料。
你得有病毒样本,这病毒样本就像小怪兽的样本,要知道它是啥样的小怪兽,才能对付它。
还得有细胞,这细胞就是城堡啦,是病毒想要入侵的地方。
当然,最重要的是要有可能含有中和抗体的样本,比如血清,这血清里的抗体可能就是能打败病毒的卫士。
把这些都准备好后,就开始实验啦。
先把病毒和可能含有中和抗体的样本放在一起,就像把小怪兽和卫士放在一个小战场上。
让它们充分混合,就像让它们好好打一架,看看卫士能不能把小怪兽给制住。
这个混合的时间和温度啥的都挺重要的,就像打架也得在合适的环境里,太冷或者太热都不行,时间太短可能还没分出胜负呢。
然后呢,把这个混合后的东西加到细胞里。
这就像把战场上的小怪兽和卫士一起放到城堡周围,看看小怪兽还能不能闯进城堡。
如果细胞没有被病毒感染,那就说明抗体很可能是中和抗体,就像城堡没有被小怪兽攻破,说明卫士很厉害。
咱来举个例子哈。
我有个朋友在实验室里研究一种新的病毒。
他们想看看有没有中和抗体来对付这个病毒。
他们就收集了一些康复患者的血清,当作可能含有中和抗体的样本。
然后按照这些步骤,把病毒和血清混合,再加入到细胞里。
经过一段时间的观察,他们发现有些血清真的能让细胞不被病毒感染。
这就像找到了能打败小怪兽的卫士一样,可把他们高兴坏了。
通过这个实验,他们就能更好地了解这种病毒和抗体的关系,为以后的研究或者治疗啥的提供帮助呢。
禽流感病毒中和实验

禽流感病毒中和实验及其他方法(一)实验材料1、中和反应实验材料(1)病毒:)的滴定。
一般为鸡胚尿囊病毒液,进行中和实验前,需要进行病毒滴度(TCID50(2)血清样品包括待检血清和阳性以及阴性对照血清。
人血清实验前需要56℃ 30分钟灭活,动物血清需RDE处理。
-20℃储存,避免多次反复冻融。
(3)MDCK细胞和细胞培养试剂1)MDCK细胞(狗肾上皮细胞)2)MDCK细胞培养液:DMEM+5%牛血清+抗生素,过滤除菌500毫升 DMEM(修饰的Eagles培养基)5.5毫升 100×抗生素(100单位/毫升青霉素+100微克/毫升链霉素)5.5毫升 100×L-Glutamine(2毫摩尔)25.5毫升 56℃、30分钟加热灭活的牛血清3)胰酶 / EDTA(4)其它1)平底96孔微量培养板2)病毒稀释液:DMEM+1%牛血清白蛋白+抗生素,即配即用。
429毫升 DMEM66毫升 7.5%牛血清白蛋白(BSA)5毫升 100×抗生素3)TPCK-胰酶(使用浓度为2微克/毫升)4)固定液:80%的丙酮,即配即用,4℃保存400毫升丙酮100毫升 PBS,PH 7.22、ELISA实验材料(1)抗体1:鼠抗流感病毒甲型核蛋白克隆抗体(2)抗体2:辣根过氧化物酶标记的羊抗鼠IgG(3)洗涤液:PBS+0.05%TWEEN-204升 PBS,PH 7.22毫升 TWEEN-20(4)封闭液:PBS+1%牛血清白蛋白+0.05%TWEEN-20867毫升PBS,PH 7.2132毫升牛血清白蛋白1毫升TWEEN-20(5)底物和底物溶液:常用的辣根过氧化物酶(HRP)所用底物为磷苯二胺(OPD)底物溶液为PH5.0磷酸盐-柠檬酸缓冲液(0.05M)底物和底物溶液:10毫克OPD20毫升柠檬酸缓冲液(含0.015%双氧水)即配即用磷酸盐-柠檬酸缓冲液,PH5.058.8克柠檬酸三钠1升蒸馏水用盐酸调节PH为5.0加0.015%双氧水,(临用前加入)* 如果使用磷酸盐-柠檬酸缓冲液胶囊(Sigma)1个胶囊加入100毫升蒸馏水,临用前配制(6)终止反应液:1N硫酸(28毫升浓硫酸+1升蒸馏水)3、其他细胞培养和酶联免役吸附实验的常用设备和仪器(参照英文讲义)备注:A.以上实验材料购自Gibco,,Hyclone,Dynatech,Kirkegaard&Perry和Sigma 公司,材料编号(CAT#)参照英文讲义。
病毒中和试验-病毒蚀斑技术-分子生物学技术

单层法主要步骤:
(1)先将敏感细胞在培养瓶或平皿内培养成单层
(2)倾弃或吸弃营养液加入Earle氏洗液冲洗单层细胞
或者加入不含血清的维持液(pH7.4-7.6)的0.5%乳白蛋白水
解物Earle氏液,37℃浸泡1 h后倾弃,洗去脱落的死亡细胞,
并可将细胞间隙中残留的血清充分洗出,以减少血清对某些
基因组DNA探针、cDNA探针、RNA
探针和人工合成的寡核苷酸探针
① 按标记物划分
放射性标记和非放射性标记(生物素
和地高辛)
➢ DNA探针(DNA probe) 技术
基本原理
✓ DNA探针是带有标记物的已知序列的DNA片段
✓ DNA探针技术的基本原理是碱基配对
✓ 在变性而成为单链的被检DNA中加入变性的探
1. 病毒中和试验
2. 病毒蚀斑技术
3. 分子生物学技术
1. 病毒中和试验
1.1 中和试验概念、方法和应用
概念:
病毒或毒素与相应的抗体结合后,失去
对易感动物的致病力,谓之中和试验
以测定病毒感染力为基础,以病毒受免
疫血清中和后的残存感染力为依据在,
来判定免疫血清中和病毒的能力
方法:
① 固定血清-稀释病毒法(病毒中和试验)
1先将敏感细胞在培养瓶或平皿内培养成单层2倾弃或吸弃营养液加入earle氏洗液冲洗单层细胞或者加入不含血清的维持液ph7476的05乳白蛋白水解物earle氏液37浸泡1h后倾弃洗去脱落的死亡细胞并可将细胞间隙中残留的血清充分洗出以减少血清对某些病毒可能有的非特异性抑制作用3接种病毒以不含血清的维持液将病毒作连续的10倍稀释选择适当稀释度的病毒悬液接种培养瓶或孔内的单层细胞接种量约为原营养液的110120每个稀释度至少接种3瓶或孔置37感作12小时使病毒充分吸附4中性红营养琼脂覆盖平放3060min待其凝固置37培养黑纸或黑布盖住中性红是光动力活性染料遇光时产生对病毒呈现毒性作用的物质分子生物学技术31核酸探针技术32单克抗体隆技术33核酸扩增34核酸电泳35免疫印迹技术311核酸探针种类31核酸探针技术按来源及性质划分基因组dna探针cdna探针rna探针和人工合成的寡核苷酸探针按标记物划分放射性标记和非放射性标记生物素和地高辛dna探针dnaprobe技术基本原理在变性而成为单链的被检dna中加入变性的探针随着温度的降低探针便可与被检dna中的互补序列形成双链这一过程称杂交通过捕捉探针标记物释放出的信号便可知被检dna中有无与探针序列相同的dna每一种病原体都具有独特的dna片段通过分离和标记这些片段就可制备出探针用于疾病的诊断等研究dna探针的标记物及标记用于dna探针标记的有效射性同位素和非放射性标记物常用的放射性同位素有32非放射性标记法可将生物素地高辛连接在dntp上然后象放射性标记一样掺入到核酸链中制备标记探针dna杂交固相杂交技术目前较为常用先将待测核酸结合到一定的固相支持物上再与液相中的标记探针进行杂交固相支持物常用硝酸纤维素膜nitrocellulosefiltermembrane简称nc膜或尼龙膜nylonmembrane通过印迹技术将核酸片段转移到固相支持物上ii
血清-病毒中和试验的标准操作规程

血清-病毒中和试验的标准操作规程(编号:034)
1、目的及使用范围
该SOP以PRRSV为例,测定血清中的病毒中和抗体滴度。
2、主要仪器及试剂
CO2细胞培养箱、普通光学显微镜、超净工作台(生物安全级别)、电动吸引器、移液器、水浴锅、DMEM培养基、胎牛血清、96孔细胞培养板
3、相关器皿的预处理
玻璃制品要高压灭菌
4、操作步骤
4.1按常规细胞培养方法培养Marc-145细胞
4.2胰酶消化Marc-145细胞,均分与96孔板中,100μL/孔,并保证细胞数为(2~8)×105/孔;CO2细胞培养箱培养16~24h;
4.3抗血清56℃水浴锅灭活30min,与含100 TCID50 PRRSV的DMEM(2%FBS)2倍倍比稀释,混匀后,37℃孵育1h;
4.4弃除96孔板中细胞培养基,加入血清-病毒混合物100μL/孔,置于CO2细胞培养箱中,吸附1h;
4.5弃除上清,用无菌PBS洗2次,吸干各孔中的残留液后,加入含2%FBS的DMEM,置于CO2细胞培养箱培养3~5d;
4.6第4天,于光学显微镜下观察细胞病变CPE,记录病变孔数目;
4.7计算中和抗体滴度,按照运用Reed-Muench法计算。
5、问题向导
5.1细胞病变不明显
根据细胞状态或病毒种类的不同,细胞病变时间会相应发生改变,一般而言,第3天就会出现CPE,第4天就可以计算其中和抗体滴度。
5.2 Reed-Muench法计算中和抗体滴度范例,见表1。
68。
中和抗体检测应用于新型冠状病毒mRNA_疫苗效力分析

国家药监局重点实验室专栏[重点实验室简介]国家药品监督管理局生物制品质量研究与评价重点实验室是国家药监局2019年首批认定的重点实验室ꎬ依托单位为中国食品药品检定研究院生物制品检定所ꎮ生物制品检定所主要开展应用基础研究ꎬ方向包括:治疗类生物技术产品㊁预防类菌苗/疫苗及其创新性产品和一些重要的体内外诊断试剂(血液筛查)的质量控制和质量评价研究ꎻ建立符合国际规范的质量检定用标准物质㊁生产与检定用菌种库和细胞库等ꎮ通过提供疫苗及生物技术产品等国家标准物质㊁建立标准的检验技术㊁研究与制定完善的药品质量标准ꎬ生物制品检定所在我国药品质量控制㊁创新性药品研究与产业化发展中起到不可或缺的技术支撑作用ꎮ生物制品质量研究与评价重点实验室具备完善的生物制品检验检测体系ꎬ检测技术范围与检测能力在国内相同领域是唯一的也是最全面的ꎬ共获得的CNAS实验室资质认定的项目222项ꎮ2013年生物制品检定所被评估认定成为WHO生物制品标准化和评价合作中心ꎬ2017年通过WHO生物制品标准化和评价合作中心再认定ꎮ通过广泛的国际药交流(WHO㊁英国NIBSC㊁美国药学会㊁美国FDA和人用药物注册技术要求国际协调会议ICH等)ꎬ重点实验室不仅引进国外先进的药品质量监管理念和技术ꎬ还将我国的一些优势技术运用于国际标准品和国际药品质量标准的建立中ꎬ在相关领域的国际标准制定中发挥重要作用ꎮ实验室主任:徐苗ꎬ女ꎬ医学博士ꎬ研究员ꎬ博士生导师ꎬ中国食品药品检定研究院生物制品检定所所长ꎮ主要从事疫苗等生物制品质量控制与评价的研究和管理工作ꎮ先后主持国家级课题4项ꎬ参与省部级以上课题6项ꎬ以第一或通信作者在«Naturalprotocols»«EmergingMicrobes&Infections»等杂志上发表论文80余篇ꎬ编写专著5部ꎬ获授权专利6项ꎬ其中3项已经完成转化ꎬ先后获得中华预防医学会科学技术一等奖㊁中国防痨协会科学技术奖一等奖㊁中国药学会科学技术奖二等奖㊁北京市科学技术二等奖等多个奖项ꎮ获国家市场监管总局抗击新冠疫情先进个人㊁中国药学会以岭生物青年生物奖等ꎮ㊀基金项目:国家重点研发计划(No.2021YFC2302404)作者简介:吴小红ꎬ女ꎬ硕士ꎬ副研究员ꎬ研究方向:新型冠状病毒mRNA疫苗及狂犬病疫苗质量控制ꎬE-mail:wuxiaohong@nifdc.org.cn通信作者:刘欣玉ꎬ男ꎬ博士ꎬ研究员ꎬ研究方向:疫苗质量控制ꎬTel:010-53851780ꎬE-mail:liuxinyu@nifdc.org.cn中和抗体检测应用于新型冠状病毒mRNA疫苗效力分析吴小红ꎬ赵丹华ꎬ所玥ꎬ彭沁华ꎬ王红玉ꎬ刘欣玉ꎬ李玉华(中国食品药品检定研究院虫媒病毒疫苗室ꎬ国家药品监督管理局生物制品质量研究与评价重点实验室ꎬ北京102629)摘要:目的㊀通过对新型冠状病毒(2019novelcoronavirusꎬ2019-nCoV)mRNA疫苗(新冠mRNA疫苗)免疫小鼠后产生的中和抗体进行检测ꎬ探索中和抗体检测法应用于mRNA疫苗体内效力评价的可行性ꎮ方法㊀采用6~8周BALB/c小鼠进行后肢肌肉免疫ꎬ检测不同免疫剂量和不同免疫程序的中和抗体滴度ꎮ并对8家企业生产的新冠mRNA疫苗免疫的小鼠血清进行中和抗体和IgG抗体检测ꎮ结果㊀2㊁5㊁10μg不同剂量mRNA疫苗按照不同免疫程序免疫小鼠后中和抗体检测结果显示ꎬ抗体阳转率均为100%ꎬ中和抗体反应有明显的剂量-效应关系ꎮ2针间隔14d加强免疫组抗体滴度显著高于间隔7d加强免疫组及1针组(F=57.13ꎬP<0.001)ꎮ2μg剂量间隔7d加强免疫和间隔14d加强免疫产生的中和抗体几何平均滴度(geometricmeantiterꎬGMT)分别为218和468ꎬ差异有统计学意义(t=3.40ꎬP=0.003)ꎻ5μg剂量间隔7d加强免疫和间隔14d加强免疫产生的中和抗体GMT分别为499和1436ꎬ差异有统计学意义(t=3.62ꎬP=0.002)ꎻ10μg剂量间隔7d加强免疫和间隔14d加强免疫产生的中和抗体GMT分别为608和1909ꎬ差异有统计学意义(t=3.23ꎬP=0.005)ꎮ国内8家企业生产的新冠mRNA疫苗免疫小鼠后均可产生高滴度的IgG抗体(104.5~107.5)和中和抗体(102.6~104.8)ꎬ效力测定结果均符合企业质量标准ꎮ各企业生产的mRNA疫苗的中和抗体滴度结果差异有统计学意义(F=70.03ꎬP<0.001)ꎮ结论㊀小鼠免疫后中和抗体检测可用于mRNA疫苗的体内效力评价ꎮ关键词:新型冠状病毒ꎻmRNA疫苗ꎻ中和抗体ꎻIgG抗体ꎻ效力中图分类号:R917㊀文献标志码:A㊀文章编号:2095-5375(2023)11-0896-006doi:10.13506/j.cnki.jpr.2023.11.009StudyonthepotencyofmRNACOVID-19vaccineinvivousingneutralizingantibodyassayWUXiaohongꎬZHAODanhuaꎬSUOYueꎬPENGQinhuaꎬWANGHongyuꎬLIUXinyuꎬLIYuhua(NMPAKeyLaboratoryforQualityControlandEvaluationofBiologicalProductsꎬDivisionofArbovirusVaccineꎬNationalInstitutesforFoodandDrugControlꎬBeijing102629ꎬChina)Abstract:Objective㊀ToevaluatethepotencyofmRNACOVID-19vaccineinvivobyneutralizingantibodyassayaf ̄termiceimmunizationꎬandestablishamethodforevaluatingtheefficacyofthevaccine.Methods㊀BALB/cmiceat6~8weekswereimmunizedwithmRNACOVID-19vaccineandtheneutralizingantibodytitersofdifferentimmunedosageanddifferentvaccinationschedulesweredetected.Thevariantvaccinesproducedbydifferentmanufactureswereimmunizedatintervalsof7dor14dꎬandserumsampleswascollectedat7daftertheseconddoseofimmunization.2019novelcoronavir ̄us(2019-nCoV)neutralizingantibodytiterandIgGantibodytiterweredetectedbypseudovirusneutralizationtestanden ̄zymelinkedimmunosorbentassayseparately.Results㊀Theresultsofneutralizingantibodyatdifferentimmunedosageof2ꎬ5ꎬ10μgmRNAvaccineshowedthattheseropositiverateofantibodyinmicewas100%andtheneutralizingantibodyreac ̄tionhadanobviousdose-effectcorrelation.Theneutralizationantibodytiterofthe14-dayintervalgroupwassignificantlyhigherthanthatofthe7-dayintervalgroupandonedosegroup(F=57.13ꎬP<0.001).Thegeometricmeantiters(GMT)ofneutralizingantibodyinducedby2μgdosageintervalof7-dayand14-daywere218and468ꎬrespectivelyꎬwithsignifi ̄cantdifference(t=3.40ꎬP=0.003)ꎻTheGMTofneutralizingantibodyinducedby5μgdosageintervalof7-dayand14-daywere499and1436ꎬrespectivelyꎬwithsignificantdifference(t=3.62ꎬP=0.002)ꎻTheGMTofneutralizingantibodiesinducedby10μgdosageintervalof7-dayand14-daywere608and1909respectivelyꎬwithsignificantdifference(t=3.23ꎬP=0.005).HighlevelsofIgGantibody(104.5~107.5)andneutralizingantibody(102.6~104.8)couldbedetectedafterimmunizingmicewiththeCOVID-19mRNAvaccineꎬpotencyofthevaccineswereallmetwiththerequirementswithgoodlotconsistenceꎬthereweresignificantdifferenceintheantibodytitersamongthevariousvaccineproducedbydifferentman ̄ufacturers(F=70.03ꎬP<0.001).Conclusion㊀TheneutralizingantibodytestofthemiceafterimmunizationcanbeusedtoevaluatethepotencyofCOID-19mRNAvaccineinvivo.Keywords:2019novelcoronavirusꎻmRNAvaccineꎻNeutralizingantibodyꎻIgGantibodyꎻPotency㊀㊀新型冠状病毒感染(coronavirusdisease2019ꎬCOVID-19)的流行对人类健康造成了严重影响ꎮ疫苗接种已被证实对严重疾病㊁降低住院率和死亡率非常有效[1-2]ꎮ其中mRNA疫苗由于具有能够同时诱导体液免疫和细胞免疫㊁研发和生产周期短㊁容易实现量产等优势ꎬ成为国际上主要采用的COVID-19疫苗研发技术ꎮ随着新型冠状病毒(2019-nCoV)变异株的不断出现ꎬ单价变异株疫苗及多价变异株疫苗可作为加强免疫以及异源序贯免疫来应对病毒变异造成的感染威胁[3]ꎮ新冠mRNA疫苗的效力评价目前尚无国际标准ꎬ欧洲及世界卫生组织(WHO)专家多推荐体外活性研究作为该疫苗效力评价的主要方法[4-6]ꎮ鉴于mRNA疫苗为创新技术疫苗ꎬ缺乏系统的疫苗质量研究经验ꎬ我国现阶段采用体内和体外双效力指标进行评价[7]ꎬ体内效力的评价可利用动物免疫后检测中和抗体和/或总抗体的方法来进行[8]ꎮ本研究对新冠mRNA疫苗不同免疫剂量和不同免疫程序诱导的中和抗体反应进行初步研究ꎬ并对新冠变异株mRNA疫苗及二价mRNA疫苗免疫小鼠后的抗体阳性率和抗体水平进行体内效力分析ꎬ从而评价mRNA疫苗的质量ꎮ1㊀材料与方法1.1㊀实验动物㊀SPF级BALB/c小鼠ꎬ6~8周龄ꎬ体重18~22gꎬ雌雄不限ꎬ由中国食品药品检定研究院动物所提供ꎬ实验动物生产许可证号:SCXK(京)2022-0002ꎬ使用许可证号:SYXK(京)2022-0014ꎬ动物实验伦理批准文号:中检动(福)第2022(B)008号ꎮ1.2㊀主要试剂及仪器㊀10ˑPBS㊁TMB㊁终止液购自索莱宝公司ꎻHRP标记的羊抗小鼠IgG购自美国Jackson公司ꎻBSA购自美国Sigma公司ꎻDMEM㊁胎牛血清㊁胰酶㊁HEPES㊁双抗均购自美国Gibco公司ꎻ荧光素酶检测试剂购自美国普洛麦格Promega公司ꎻPromegaGloMax96微孔板化学发光检测仪(Glomaxnavigator)购自美国普洛麦格Promega公司ꎻ酶标仪(InfiniteM200)购自美国蒂肯公司ꎮ1.3㊀实验用疫苗㊁细胞㊁不同型别假病毒㊀实验用疫苗为国内企业生产的mRNA疫苗ꎬ编号V1~V9ꎮ其中V1为原型株疫苗ꎬV2~V7为二价2019-nCoV变异株mRNA疫苗(OmicronBA.4/5株和Delta株双价㊁OmicronBA.4/5株和Beta株双价㊁OmicronBA.2株和原型株双价以及OmicronXBB.1.5株和BQ.1.7株双价)ꎬV8~V9是2019-nCoV变异株mRNA疫苗(OmicronBA.1)ꎻVero细胞购自ATCCꎬ本室传代保存ꎻ假病毒原型株㊁Delta株㊁Beta株㊁O ̄micronBA.1㊁OmicronBA.2㊁OmicronBA.4/5㊁OmicronXBB.1.5购自北京云菱生物技术公司ꎻ不同株2019-nCoVS蛋白抗原分别购自北京义翘神州生物技术有限公司和北京百普赛斯公司ꎮ1.4㊀免疫剂量及免疫程序1.4.1㊀mRNA疫苗免疫剂量和免疫程序研究㊀将V1mRNA疫苗(原型株)配制成不同浓度后ꎬ按照不同的免疫程序分成A㊁B㊁C3组:A组程序为免疫1针ꎬ14d采血ꎻB组程序为间隔7d加强免疫1针后7d采血ꎻC组程序为间隔14d加强免疫1针后7d采血ꎮ每种免疫程序按照不同的免疫剂量分成3个小组ꎬ分别是每只小鼠注射2㊁5和10μgꎬ共计9组ꎬ每组10只小鼠ꎮ同时10只小鼠注射生理盐水作为阴性对照组ꎮ每只小鼠后肢肌肉注射100μL疫苗ꎬ眼球取血分离血清ꎬ-20ħ保存备用ꎮ用假病毒中和试验法检测抗2019-nCoV中和抗体ꎮ1.4.2㊀实验疫苗免疫和检测㊀mRNA变异株疫苗及二价疫苗均按照企业的免疫剂量和免疫程序进行免疫和采血ꎬ分离血清后于-20ħ保存ꎮ分别进行中和抗体和IgG结合抗体的检测ꎮ1.5㊀假病毒中和试验(PBNA法)㊀按照操作规程进行[9-10]ꎬ在96孔板上3倍系列稀释的血清100μLꎬ分别加入各型假病毒[用DMEM培养基稀释至1.3ˑ104半数组织培养感染剂量(TCID50)/mL]ꎬ每孔加入50μLꎬ同时设立病毒对照和细胞对照ꎮ37ħ5%CO2培养箱中和1hꎬ加入2ˑ105个/mL的Vero细胞悬液ꎬ每孔100μLꎬ37ħ5%CO2培养箱培养20~28h后ꎬ从细胞培养箱中取出96孔板ꎬ用多道移液器从每个上样孔中吸弃150μL上清ꎬ然后加入100μL荧光素酶检测试剂ꎬ室温避光反应2minꎮ反应结束后ꎬ用多道移液器将反应孔中的液体反复吹吸6~8次ꎬ使细胞充分裂解ꎬ从每孔中吸出100μL液体ꎬ加于对应96孔化学发光检测板中ꎬ置于化学发光检测仪中读取发光值ꎮ计算抑制率={1-[样品组的发光强度均值-空白对照CC(CellControlꎬCC)均值]/[阴性组的发光强度VC(VirusControlꎬVC)均值-空白对照值CC均值]}ˑ100%ꎮ根据中和抑制率结果ꎬ按照ReedMuench法计算中和抗体滴度半数效应剂量(50%maximaleffectiveconcentrationꎬEC50)ꎬEC50>30为抗体阳性ꎮ1.6㊀特异性抗2019-nCoVSpike蛋白IgG抗体检测㊀将2019-nCoV各株抗原分别用1ˑPBS稀释至2μg mL-1ꎬ取96孔板每孔加100μLꎬ(5ʃ3)ħ条件下包被过夜16hꎬPBST洗板3次ꎬ拍干后加入封闭液(2%BSA溶液)ꎬ100μL/孔ꎬ37ħ孵箱里封闭2hꎬ加入系列稀释后的待检测血清样本ꎬ37ħ孵箱里孵育后1hꎬPBST洗板3次ꎬ加入辣根过氧化物酶(HRP)标记的羊抗小鼠IgG抗体ꎬ每孔100μLꎬ37ħ孵育后1hꎬPBST洗板3次ꎬ加入底物TMB50μLꎬ室温避光显色3~5minꎬ加入1mol L-1硫酸溶液终止液终止ꎬ150μL/孔ꎬ在酶标仪上检测波长450nm/630nm的OD值ꎬ以阴性小鼠吸光度均值的2.1倍为cutoff值ꎮ血清A值大于cutoff值为抗体阳性ꎬ取阳性A值最大的血清稀释度为血清的IgG抗体滴度ꎮ1.7㊀统计学方法㊀使用GraphPadPrism8.0进行数据分析ꎬ相同免疫剂量不同免疫程序以及相同免疫程序不同免疫剂量间中和抗体滴度以及不同企业mRNA疫苗免疫后中和抗体之间比较采用单因素方差分析评估组间差异ꎬ中和抗体和IgG抗体之间差异采用t检验分析ꎬP<0.05表示差异有统计学意义ꎮ2㊀结果2.1㊀不同免疫剂量和不同免疫程序的抗体反应㊀针对原型株mRNA疫苗不同免疫剂量和免疫程序的中和抗体检测结果显示ꎬ2㊁5㊁10μgmRNA疫苗免疫小鼠后ꎬ1针免疫组和2针免疫组抗体阳性率均为100%ꎮ2㊁5㊁10μg首针免疫后14d或21d中和抗体反应具有明显的剂量-效应关系ꎮ相同免疫剂量㊁不同免疫程序结果显示ꎬ2针免疫组高于1针免疫组ꎬ其中2μg剂量组不同针次之间抗体滴度结果差异有统计学意义(F=20.64ꎬP<0.001)ꎻ5μg剂量组不同针次之间抗体滴度结果差异有统计学意义(F=18.27ꎬP<0.001)ꎻ10μg剂量组不同针次之间抗体滴度结果差异有统计学意义(F=11.37ꎬP<0.001)ꎮ2针免疫组中14d加强免疫组高于7d加强免疫组及1针组(F=57.13ꎬP<0.001)ꎮ其中2μg间隔7d加强免疫和间隔14d加强免疫组产生的中和抗体几何平均滴度(geometricmeantiterꎬGMT)分别为218和468ꎬ14d为7d的2.15倍ꎬ差异有统计学意义(t=3.40ꎬP=0.003)ꎻ5μg间隔7d加强免疫和间隔14d加强免疫产生的中和抗体GMT分别为499和1436ꎬ14d为7d的2.88倍ꎬ差异有统计学意义(t=3.62ꎬP=0.002)ꎻ10μg间隔7d加强免疫和间隔14d加强免疫产生的中和抗体GMT分别为608和1909ꎬ14d为7d的3.14倍ꎬ差异有统计学意义(t=3.23ꎬP=0.005)ꎮ相同免疫程序㊁不同免疫剂量诱导的抗体反应结果显示ꎬ1针免疫组不同剂量间相比(F=7.33ꎬP=0.003)ꎻ2针免疫组ꎬ间隔7d不同剂量间相比(F=6.40ꎬP=0.005)ꎻ2针免疫组ꎬ间隔14d不同剂量间相比(F=7.64ꎬP=0.002)ꎬ差异均有统计学意义ꎬ结果见表1ꎮ表1㊀V1疫苗不同免疫剂量和免疫程序的中和抗体滴度及阳性率剂量/μgGMT(95%CI)A组B组C组F值P值阳性率(%)260(46~73)218(167~629)468(263~674)20.64P<0.001100.05187(102~271)499(311~688)1436(759~2112)18.27P<0.001100.010349(52~646)608(269~948)1909(709~3109)11.37P<0.001100.0F值7.336.407.643.40a3.62b3.23cP值0.0030.0050.0020.003a0.002b0.005c阳性率(%)100.0100.0100.0///㊀注:GMT为几何平均滴度:95%CI:95%可信区间ꎻ/表示无统计ꎻabc2㊁5㊁10μg间隔7d和间隔14d中和抗体滴度分别进行t检验ꎮ2.2㊀8家企业生产的新冠变异株mRNA疫苗体内效力检测结果㊀8家企业生产的疫苗V2~V9按照企业的免疫剂量和免疫程序免疫BALB/c小鼠后ꎬ中和抗体及特异性IgG抗体检测结果见表2ꎮ表2㊀不同企业生产的mRNA疫苗抗体检测结果生产者免疫程序检测批数LgIgG(GMT)中和抗体EC50(GMT)(LgEC50)V37d2针免疫14d采血V47d2针免疫14d采血V514d2针免疫21d采血V614d2针免疫21d采血V714d2针免疫21d采血V814d2针免疫28d采血V914d2针免疫28d采血25.95.61202(3.1)N/A35.65.71268(3.1)N/A15.96.0410(2.6)966(3.0)26.05.7617(2.8)1456(3.2)36.05.7644(2.8)1671(3.2)46.96.6667(2.8)3935(3.6)14.54.81291(3.1)2080(3.3)24.74.91556(3.2)2353(3.4)34.74.81361(3.1)2582(3.4)44.64.91050(3.0)1931(3.3)16.06.11274(3.1)3812(3.6)26.15.81170(3.1)2798(3.4)36.05.81589(3.2)3097(3.5)46.06.01298(3.1)4074(3.6)15.04.87495(3.9)1427(3.2)25.15.06230(3.8)1257(3.1)35.35.29580(4.0)2806(3.4)17.1/24453(4.4)/27.5/27976(4.4)/37.5/26979(4.4)/15.6/65630(4.8)/25.6/40445(4.6)/35.6/25343(4.4)/F值或t值11.47a17.56b70.03cP值P<0.001aP<0.001bP<0.001c㊀注: / 代表该疫苗为单价疫苗ꎻ N/A 代表该组分未检测ꎻ 1㊁2㊁3㊁4 分别代表检测批数ꎮa代表组分1IgG结合抗体和中和抗体滴度t检验结果ꎻb代表组分2IgG结合抗体和中和抗体滴度t检验结果ꎻc代表各企业之间中和抗体滴度方差分析结果ꎮ组分1和组分2代表双价疫苗中的单价组分ꎬ如V7疫苗:组分1为德尔塔株ꎬ组分2为奥密克戎BA.4/5株ꎮ2.3㊀特异性IgG结合抗体和中和抗体结果分析㊀检测结果以对数转换后进行t检验ꎬ组份1IgG和EC50比较t=11.47ꎬP<0.001ꎻ组份2IgG和EC50比较t=17.56ꎬP<0.001ꎬ均显示中和抗体检测结果和IgG结合抗体检测差异有统计学意义ꎮPearson相关系数r分别为0.42和0.22ꎮ虽然两种方法抗体检测结果相关性较差ꎬ但均可以检测到高水平的抗体特异性反应ꎮ两种方法检测各企业3~4批疫苗ꎬIgG抗体结果批间变异系数在1.0%~7.6%ꎬ中和抗体结果批间变异系数在2.0%~7.9%ꎬ提示两种抗体检测方法均可以用于评价疫苗体内效价的批间一致性ꎮ各企业mRNA疫苗的中和抗体结果对数转换后进行组间方差分析ꎬ差异有统计学意义(F=70.03ꎬP<0.001)ꎮ3㊀讨论新冠mRNA疫苗临床前和临床研究中均证实疫苗的有效性与动物或人群保护力之间有一定的量效关系[11-14]ꎮ中和抗体是最重要的保护性抗体ꎬ与2019-nCoV感染者症状严重程度之间也有一定的相关性[15-16]ꎮ因此建立标准的中和抗体检测平台技术对COVID-19疫苗进行评价尤为重要[17]ꎮ本研究采用的假病毒中和方法经国内多家实验室联合验证[9ꎬ18]ꎬ抗体检测结果相对客观ꎬ与IgG结合抗体检测相比更能体现疫苗的免疫原性ꎮ尤其对于多价疫苗ꎬ假病毒中和抗体检测方法可实现对不同变异株抗体分别进行检测ꎬ能较好的反映出针对多价疫苗各毒株组份疫苗诱导的抗体中和活性ꎮ通过对1批mRNA原型株疫苗不同免疫剂量和不同免疫程序的分析ꎬ提示mRNA疫苗免疫小鼠后的中和抗体水平与免疫剂量和免疫程序有密切关系ꎮ本研究发现ꎬ同等剂量下(2㊁5㊁10μg)间隔7d与间隔14d2针免疫的抗体结果差异有统计学意义ꎬ对于mRNA疫苗来说ꎬ间隔7d的第2针加强免疫不是产生高滴度中和抗体的最适宜的程序ꎬ疫苗实际使用过程中第2针加强免疫的时间选择在21d或28d[11-12]ꎮ因此mRNA疫苗体内效力的评价应适当关注免疫程序的设计ꎮ研究结果显示mRNA变异株单价疫苗或二价疫苗中针对不同组分的IgG抗体滴度均在104.5~107.5间ꎬ符合各企业的质量标准(不低于103或104)ꎬ且各企业生产的疫苗IgG抗体结果批间一致性良好ꎬ变异系数在1.0%~7.6%之间ꎮ假病毒法检测中和抗体滴度在102.6~104.8之间ꎬ不同企业生产的疫苗免疫后中和抗体水平差异有统计学意义(F=70.03ꎬP<0.001)ꎬ与国产mRNA疫苗已公布的Ⅰ~Ⅱ期临床研究数据一致ꎬ不同企业新冠mRNA疫苗在人体内产生的中和抗体滴度有差异[12-15]ꎮ各企业不同批次中和抗体检测结果变异系数为2.0%~7.9%ꎮ因此中和抗体检测可用于不同企业mRNA疫苗效力的比较研究以及疫苗批间一致性的评价ꎮ辉瑞公司生产的BNT162b为30μg/剂ꎬ莫德纳公司mRNA-1273为100μg/剂ꎮ两款疫苗对2019-nCoV感染的保护效力分别达到了94.6%和94.1%ꎬ不同的人用剂量和免疫程序可产生相同的临床保护力[19-21]ꎮmRNA-1273Ⅲ期临床研究结果显示接种该疫苗后假病毒法检测中和抗体滴度半数抑制稀释(50%inhibitorydilutionꎬID50)为10㊁100和1000ꎬ测算疫苗保护效力分别为78%㊁91%和96%[22]ꎻ新冠灭活疫苗NVX-CoV2373中和抗体滴度ID50为50㊁100和7230(IU50 mL-1)ꎬ疫苗保护效力分别为75.7%㊁81.7%和96.8%[23]ꎮ本研究结果显示国产新冠mRNA疫苗小鼠免疫后中和抗体均达到较高水平ꎬ无论是1针免疫还是2针免疫EC50除个别企业因单价组分配比含量低ꎬ造成滴度偏低(V4)外ꎬ其余企业中和抗体滴度均在在1000以上甚至更高ꎬ提示国产新冠mRNA疫苗的体内效力结果已达到较高的标准要求ꎮ虽然本研究未利用上述新冠mRNA疫苗进一步开展攻毒保护力研究ꎬ但随着mRNA疫苗大量的临床研究数据以及真实世界的保护力数据公布ꎬ会对疫苗的效力评价标准提供更有效的数据支持ꎮ尽快建立效力评价用疫苗参考品和血清检测用标准物质ꎬ提高国产mRNA疫苗的质量评价水平是下一步研究方向ꎮ参考文献:[1]㊀EARLEKAꎬAMBROSINODMꎬFIORE-GARTLANDAꎬetal.EvidenceforantibodyasaprotectivecorrelateforCO ̄VID-19vaccines[J].Vaccineꎬ2021ꎬ39(32):4423-4428. [2]KHOURDSꎬCROMERDꎬREYNALDIRAꎬetal.Neu ̄tralizingantibodylevelsarehighlypredictiveofimmuneprotectionfromsymptomaticSARS-CoV-2infection[J].NatMedꎬ2021ꎬ27(7):1205-1211.[3]WorldHealthOrganization.Coronavirus(COVID-19)Dashboard[EB/OL].(2023-08-30).https://covid19.who.int(AccessedAug30ꎬ2023).[4]WHOTRSNʎ1039.WHOExpertCommitteeonBiologicalStandardization.Seventy-fourthreport[EB/0L].(2022-04-12).https://www.who.int/publications/i/item/9789240046870.[5]LIUMAꎬZHOUTꎬSHEETSRLꎬetal.WHOinformalconsultationonregulatoryconsiderationsforevaluationofthequalityꎬsafetyandefficacyofRNA-basedprophylacticvaccinesforinfectiousdiseases20-22April2021[J].EmergMicrobesInfectꎬ2022ꎬ11(1):384-391. [6]EuropeanMedicinesAgency.Conceptpaperonthedevel ̄opmentofaGuidelineontheQualityaspectsofmRNAvaccines[EB/OL].(2023-06-23).https://www.print ̄friendly.com/p/g/K3BwRq.[7]中国食品药品检定研究院.ʌWHO会议ɔ王军志院士㊁王佑春研究员参加WHO传染病预防性mRNA疫苗质量㊁安全及有效性评价法规考虑要点网络咨询会[EB/OL].(2021-05-11).https://www.nifdc.org.cn//nifdc/gjhz/gjjl/202105111550513416.html.[8]国家药品监督管理局.国家药监局药审中心关于发布«新型冠状病毒预防用疫苗研发技术指导原则(试行)»等5个指导原则的通告(2020年第21号)[EB/OL].(2020-08-14).https://www.nmpa.gov.cn/xxgk/ggtg/ypggtg/ypqtggtg/20200814230916157.html. [9]NIEJꎬLIQꎬWUJꎬetal.Establishmentandvalidationofapseudo-virusneutralizationassayforSARS-CoV-2[J].EmergMicrobesInfectꎬ2020ꎬ9(1):680-686.[10]NIEJꎬLIQꎬWUJꎬetal.QuantificationofSARS-CoV-2neutralizingantibodybyapseudo-typedvirus-basedassay[J].NatProtocꎬ2020ꎬ15(11):3699-3715.[11]LIJLꎬLIUQꎬLIUJꎬetal.DevelopmentofBivalentmRNAVaccinesagainstSARS-CoV-2Variants[J].Vac ̄cines(Basel)ꎬ2022ꎬ10(11):1807.[12]YANGRꎬDENGYꎬHUANGBYꎬetal.Acore-shellstructuredCOVID-19mRNAvaccinewithfavorablebio ̄distributionpatternandpromisingimmunity[J].SignalTransductTargetTherꎬ2021ꎬ6(1):213.[13]CHENGLꎬLIXFꎬDAIXHꎬetal.Safetyandimmunoge ̄nicityoftheSARS-CoV-2ARCoVmRNAvaccineinChineseadults:arandomizedꎬdouble-blindꎬplacebo-con ̄trolledꎬphase1trial[J].LancetMicrobeꎬ2022ꎬ3(3):e193-e202.[14]XUKꎬLEIWWꎬKANGBꎬetal.AnovelmRNAvaccineꎬSYS6006ꎬagainstSARS-CoV-2[J].FrontImmunolꎬ2023(13):1051576.[15]GARCIA-BELTRANWFꎬLAMECꎬASTUDILLOMGꎬetal.COVID-19-neutralizingantibodiespredictdiseaseseverityandsurvival[J].Cellꎬ2021ꎬ184(2):476-488. [16]KHOURYDSꎬCROMERDꎬREYNALDIAꎬetal.Neu ̄tralizingantibodylevelsarehighlypredictiveofimmuneprotectionfromsymptomaticSARS-CoV-2infection[J].NatMedꎬ2021ꎬ27(7):1205-1211.[17]WANGYC.StandardizedneutralisingantibodyassaysareneededforevaluatingCOVID-19vaccines[J].EBioMedi ̄cineꎬ2021(73):103677.[18]GUANLDꎬYUYLꎬWUXHꎬetal.ThefirstChinesena ̄tionalstandardsforSARS-CoV-2neutralizingantibody[J].Vaccineꎬ2021ꎬ39(28):3724-3730.[19]POLACKFPꎬTHOMASSJꎬKITCHINNꎬetal.SafetyandEfficacyoftheBNT162b2mRNACovid-19Vaccine[J].NEnglJMedꎬ2020ꎬ383(27):2603-2615.[20]SKOWRONSKIDMꎬDESERRESG.SafetyandefficacyoftheBNT162b2mRNAcovid-19vaccine[J].NEnglJMedꎬ2021ꎬ384(16):1576-1577.[21]BADENLRꎬELSAHLYHMꎬESSINKBꎬetal.EfficacyandsafetyofthemRNA-1273SARS-CoV-2vaccine[J].NEnglJMedꎬ2021ꎬ384(5):403-416.[22]GILBERTPBꎬMONTEFIRRIDCꎬMCDERMOTTABꎬetal.ImmunecorrelatesanalysisofthemRNA-1273CO ̄VID-19vaccineefficacyclinicaltrial[J].Scienceꎬ2022ꎬ375(6576):43-50.[23]FONGYꎬHUANGYꎬBENKESERDꎬetal.Immunecorre ̄latesanalysisofthePREVENT-19COVID-19vaccineefficacyclinicaltrial[J].NatCommunꎬ2023ꎬ14(1):331.(收稿日期:2023-10-13)(上接第883页)[15]WUYBꎬPENGMCꎬZHANGCꎬetal.Quantitativedeter ̄minationofmulti-classbioactiveconstituentsforqualityassessmentoftenAnoectochilusꎬfourGoodyeraandoneLudisiaspeciesinChina[J].ChinHerbMedꎬ2020ꎬ12(4):430-439.[16]DUXMꎬIRINONꎬFURUSHONꎬetal.PharmacologicallyactivecompoundsintheAnoectochilusandGoodyeraspecies[J].JNatMedꎬ2008ꎬ62(2):132-148.[17]DUXMꎬSUNNYꎬCHENYꎬetal.Hepatoprotectiveali ̄phaticglycosidesfromthreeGoodyeraspecies[J].BiolPharmBullꎬ2000ꎬ23(6):731-734.[18]张婉菁ꎬ刘量ꎬ胡荣ꎬ等.斑叶兰抗氧化活性组分研究及其乳膏的制备[J].中医药导报ꎬ2017ꎬ23(1):59-62. [19]朱平福ꎬ赵怡ꎬ金晶.斑叶兰抗炎作用的实验研究[J].中国民族民间医药ꎬ2010ꎬ19(4):35-36.[20]DAILYꎬYINQMꎬQIUJKꎬetal.GoodyschleAꎬanewbutenolidewithsignificantBchEinhibitoryactivityfromGoodyeraschlechtendaliana[J].NatProdResꎬ2021ꎬ35(23):4916-4921.[21]DUXMꎬSUNNYꎬTakizawaNꎬetal.Sedativeandanti ̄convulsantactivitiesofgoodyerinꎬaflavonolglycosidefromGoodyeraschlechtendaliana[J].PhytotherResꎬ2002ꎬ16(3):261-263.[22]党友超ꎬ黄哲ꎬ李蒙禹ꎬ等.黔产金线莲及其易混品(斑叶兰)的显微鉴定研究[J].贵阳中医学院学报ꎬ2018ꎬ40(4):30-34.[23]黄哲ꎬ党友超ꎬ王世清.黔产金线莲与其易混品斑叶兰的叶表皮显微特征研究[J].贵阳中医学院学报ꎬ2019ꎬ41(2):34-37.(收稿日期:2023-05-08)。
中和试验

4.病毒的中和抗体(neutralization antibody )指:针对病毒某些表面抗原的抗体,此类 抗体能与细胞外游离的病毒结合从而消除病 毒的感染能力。 5.中和抗体的作用机制:
①直接封闭病毒表面抗原,如与病 毒表面吸附蛋白(VAP)结合,从 而阻断病毒的吸附
②改变病毒表面结构
6.病毒中和试验:Neutralization of a virus is defined as the loss of infectivity through reaction of the virus with specific antibody.
• 以测定病毒感染力为基础,以病毒受免疫 血清中和后残存的感染力为依据,来判定 免疫血清中和病毒的能力。
步 骤 三
加至已长成单层 的MRC-5细胞
16h,18h,20h 所铺细胞数目要求较高,防止细胞叠层
梯度乙醇固定细胞, 封闭30min
相继用IE1单抗, 生物素标记羊抗鼠IgG,
链霉亲和素-HRP, 以及底物显色
图像采集与数据处理
步骤一 步骤二 步骤三
实验组
病毒对照
细胞对照
25μ l血清 25μ l维持液 25μ l维持液
以hcmv中和抗体效价测定为例2倍稀释血清样02ml2倍稀释血清样品终体积02ml200pfu02ml200pfuhcmv每孔02ml加到成单层mrc5细胞37孵育1h弃去液体弃去液体pbs洗三含03琼脂的维持液覆盖35天再次覆盖14天甲醛固定孵育1h甲基蓝染色中和抗体效价的测定同时设病毒对照和细胞对照病毒对照组只加病毒不加血清细胞对照组用维持液代替血清和病毒
体内中和试验也称保护试验,试验时先对实验动物接 种疫苗或抗血清,间隔一定时间后,再用一定量病毒攻 击,最后根据动物是否得到保护来判定结果。常用于疫 苗免疫原性的评价和抗血清的质量评价。
新冠中和抗体参考值

新冠中和抗体参考值摘要:一、新冠中和抗体概述二、新冠中和抗体参考值的重要性三、我国新冠中和抗体参考值的研究进展四、新冠中和抗体检测的临床应用五、提高新冠中和抗体检测准确性的方法六、结语正文:新冠中和抗体是指能够中和新冠病毒(SARS-CoV-2)感染力的抗体,是衡量人体免疫力的重要指标。
在新冠病毒大流行的背景下,新冠中和抗体参考值的研究和应用受到了广泛关注。
一、新冠中和抗体概述新冠病毒感染人体后,机体会产生免疫应答,其中一部分人会产生中和抗体。
这些抗体能够与新冠病毒的表面抗原结合,阻止病毒进入宿主细胞,从而中和病毒感染力。
新冠中和抗体水平的高低反映了个体对病毒的免疫防御能力。
二、新冠中和抗体参考值的重要性新冠中和抗体参考值是对疫苗接种效果和新冠病毒感染病情评估的重要依据。
研究发现,新冠疫苗接种后,中和抗体水平与疫苗保护效果密切相关。
此外,新冠患者康复后的中和抗体水平也能反映病毒清除效果和病情恢复程度。
因此,研究和建立合适的新冠中和抗体参考值具有重要的临床和公共卫生意义。
三、我国新冠中和抗体参考值的研究进展我国科研团队在新冠中和抗体参考值研究方面取得了世界领先成果。
通过对大量新冠康复患者和疫苗接种者的血清样本进行分析,研究者们逐步确立了一套符合我国人群特点的新冠中和抗体参考值。
这些研究结果为我国新冠疫苗接种和疫情防控提供了重要依据。
四、新冠中和抗体检测的临床应用新冠中和抗体检测已在临床实践中广泛应用,包括:疫苗接种后抗体水平的监测、新冠病毒感染病情评估、新冠病毒疫苗接种策略研究等。
通过检测新冠中和抗体水平,可以更好地指导疫苗接种和疫情防控工作。
五、提高新冠中和抗体检测准确性的方法为确保新冠中和抗体检测的准确性,实验操作和检测设备的标准化、血清样本处理的规范性以及数据分析的严谨性至关重要。
此外,研究者还可以通过多中心合作、大样本研究,不断优化和修正新冠中和抗体参考值,提高检测准确性。
六、结语新冠中和抗体参考值在疫苗接种效果评估、疫情防控以及患者康复评估等方面具有重要应用价值。
新冠中和抗体胶体金法

新冠中和抗体胶体金法【新冠中和抗体胶体金法】——探索更精准的病毒检测与治疗方法导语:自2020年爆发以来,新冠疫情给全球带来了严重的健康威胁,对于如何准确检测和治疗新冠病毒感染成为了各国科研工作者关注的焦点。
在这个求知探索的过程中,新冠中和抗体胶体金法(COVID-19 Neutralizing Antibody Colloidal Gold Method)作为一种新兴的检测和治疗手段,备受瞩目。
本文将从深度和广度两个方面,全面评估新冠中和抗体胶体金法的优点与应用,并对其未来发展进行展望。
一、什么是新冠中和抗体胶体金法1.1 新冠中和抗体新冠中和抗体是人体感染新型冠状病毒后产生的一种特殊抗体,可以与病毒结构蛋白相结合,抑制病毒进一步感染细胞。
新冠中和抗体成为了研究新冠病毒感染和治疗的重要标志。
1.2 胶体金法胶体金法是一种常见的生物学实验技术,利用胶体金颗粒的特殊性质来检测生物分子。
胶体金颗粒具有高度稳定性、较大比表面积以及可视化特性,使得其成为一种理想的检测工具。
1.3 新冠中和抗体胶体金法新冠中和抗体胶体金法是将胶体金颗粒与新冠中和抗体结合,形成一种可见的检测试剂。
通过检测新冠中和抗体与病毒结构蛋白的相互作用,新冠中和抗体胶体金法可以实现快速可靠的新冠病毒感染检测,同时也为新冠病毒的治疗提供了一种新途径。
二、新冠中和抗体胶体金法的优点与应用2.1 检测精确度高新冠中和抗体胶体金法采用了高度特异性的新冠中和抗体,可以识别和结合新冠病毒独有的结构蛋白,从而在感染早期、无症状感染和复阳等情况下进行准确的检测,避免了传统方法在感染早期的易失误问题。
2.2 快速可视化胶体金颗粒具有可视化特性,使得新冠中和抗体胶体金法可以直观地展示检测结果。
通过简单的颜色变化,人们可以判断样本中是否存在新冠病毒,大大提高了检测的简便性和实用性。
2.3 多领域应用新冠中和抗体胶体金法不仅可以用于感染检测,也可以用于评价疫苗有效性、追踪病毒传播等多个方面。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
病毒中和抗体检测 1. 病毒TCID50检测
TCID50 是指组织培养物(细胞)半数致死剂量。它有几个性质我们必须明白:1)它表示
的是计量,不是浓度; 2)它是一个单位;3)它的值等于1,实际上问它的值等于多少是一个没有意义的问题,就像问km的值等于多少一样,如果非要说出的的值等于多少,那我们只能说它的值在任何情况下都等于1。理解这三个性质对于理解TCID50非常重要,但是这三个性质经常被误解,所以导致对TCID50的理解出现偏差。 首先我们来看一下这个表示法的意思:病毒滴度为ml 。它表示的是每ml病毒溶液里含有个TCID50的病毒,这和氯化钠的浓度为L表示每L溶液中含有个mol的氯化钠是一样的道理。经常可以听到人说我的病毒的TCID50是。这个说法是不科学的,应该说我这个溶液里含有个TCID50的病毒或者说我这个溶液的病毒滴度是10xxTCID50/ml。也可以说病毒的TCID50效价是。 TCID50=10^。即:将病毒悬液作10^稀释后,接种细胞,可以使50%的细胞产生CPE。(将病毒悬液作10^稀释后,中含1个TCID50,作其他一些实验时(如中和试验),一般常用100TCID50/或者100TCID50/) 本方法的优缺点:①.优点:出现阳性结果时间较短,且较明显;②.缺点:有时候,在用枪头吸出细胞生长液时,容易出现污染; 使用本方法时的注意事项:①.稀释病毒时,每做一个病毒稀释度都需要换枪头,减少浓度误差; ②.96孔板,每孔接种的细胞量:一般在此种测定病毒滴度的方法下,要将细胞密度适当调低,至少要比正常传代时低一些,否则细胞生长速度过快,未到7天则细胞出现死亡,对观察CPE不利.一般情况下,小塑料瓶(8-9ml液体为正常用量),培养长慢单层后,消化细胞,加入6ml培养液,吹匀,吸出其中的2ml,到另外的瓶子,在该瓶中加入14-16ml即可,如果不放心,可以用显微镜看一下,细胞数过多则补加培养液,少则补加剩余4ml的细胞悬液; 维持液,即病毒培养液,配方为:①.MEM+2%小牛血清+3%谷氨酰胺+1%双抗+NaHCO3; ②. MEM+3%谷氨酰胺+1%双抗+NaHCO3;两种维持液的不同在于是否有FBS(小牛血清).我个人曾经做过实验,在状态很好的细胞上接种病毒,分别使用两种不同的维持液,最终结果是一样的,没有什么不同,所以可以根据个人需要进行选择.另外,曾经请教过专门做中和实验的老师,他认为适当的FBS对细胞有保护作用,而且他说这是国外文献上的报道.
1) 细胞准备 检查培养瓶中的单层细胞,以5ml胰酶-EDTA轻微冲洗 加入4-5ml 胰酶-EDTA以覆盖单层细胞 放平培养瓶,37℃ 5%CO2培养箱中孵育10-20min,直到细胞脱落 加入5-10ml培养液,洗下细胞后移到离心管中 以PBS洗细胞两次(12000rpm, 5min) 以D-MEM重悬细胞,并用血球计数板计数 以D-MEM将将细胞浓度调整到1×10^5/ml ×10^5/ml 在微量培养板的各孔中加入100μl细胞, 相当于×10^4细胞/孔 在37℃ 5%CO2培养箱中过夜培养(18-22h),用处于生长相刚达到完全融合的细胞进行病毒的滴定 2) 病毒制备 3) 病毒稀释 取冻存的病毒,以病毒生长培养液(VGM)稀释10倍,即100微升病毒液+900微升稀释液,共1毫升。(于 EP管中进行,将混合液充分吹打振荡,很重要!) 做10倍稀释 在另一新 EP管中加入100μl第一管稀释病毒液(1/10),按10的比例进行倍比稀释,再加入900μl稀释液,将混合液充分吹打振荡。以此类推共稀释至10^13倍。 此过程中需要使用加样器和tip头。使用前用75%乙醇擦拭加样器,并用紫外线照射20min,确保无菌。使用新高压的tip头,外包装一定在超净台(或安全柜中打开)
4) 病毒接种: 取细胞培养板,用多道加样器(又称排枪)吸去96孔板中的培养液,吸取孵育液或无血清DMEM加在每孔中再轻轻吹打一次,然后吸出孵育液(此步目的是去除血清,因为血清能干扰病毒的吸附)。 于各孔中加100ul各不同的病毒稀释液,每个稀释度做一列孔,即每个病毒稀释度做8个平行复孔,根据观察的习惯,一般从右到左,从上到下,从高稀释度到低稀释度到原液加样。 (病毒稀释度的选择10^3—10^12或者10^4—10^13,因为目的基因不同,重组腺病毒滴度差距很大,应该尽量将稀释度加大,看到有人用的稀释度是10^6—10^13) 第11列和12列为阴性对照,阴性对照孔中加入100ul含5%胎牛血清的DMEM,监测细胞存活情况;切记:设置正常的细胞对照。每次实验要重复4次,计算标准差。 3 4 5 6 7 8 9 10 11 12 CON CON
A B C D E F G H
37℃CO2培养箱中孵育1h,取出培养板吸去病毒液(从低浓度向高浓度吸取可避免窜孔),加入维持液200µl继续于37℃,5% CO2培养5--10天; 逐日观察,5--10天后倒置显微镜下观察,计算每一列中出现CPE(cytopathic effects,CPEs)的孔数。只要有一小点或是一些细胞出现CPE即为阳性,如果无法确定,可与阴性对照比较; 如果阴性对照中无任何CPE且细胞生长良好,最低稀释度100%阳性而最高稀释度100%阴性,则本试验即为有效; 计算每一列中出现阳性的孔数; 用Reed-Muench法计算病毒TCID50/ml。 (1)计算各病毒稀释度阳性孔数目(1)和阴性孔数目(2) (2)计算阳性和阴性孔的累积数。 阳性孔累积数由下向上累计(3);阴性孔累积数由上向下累计(4) (3)计算阳性孔的百分比:比率(5)=(3)/〔(3)+(4)〕,(6)=(5)×100 (4)计算 距离比例(PD)=(大于50%的阳性百分比-50)/(大于50%的阳性百分比-小于50%的阳性百分比) TCID50的对数=大于50%的阳性百分比的最高稀释对数 + 距离比例×稀释系数的对数 (稀释系数的对数 1:10稀释为1,半对数稀释为,倍比稀释为,1:5稀释为)
举例计算:TCID50的测定和计算(Reed-Muench法) 病毒液稀释度 细胞管观察结果 累计细胞官数 细胞管总数 出现CPE的细胞管所占的% 出现CPE管 不出现CPE管 出现CPE管 不出现CPE
管 10-1 8 0 27 0 27 100(27/27) 10-2 8 0 19 0 19 100(19/19) 10-3 7 1 11 1 12 (11/12) 10-4 3 5 4 6 10 40(4/10) 10-5 1 7 1 13 14 (1/14) 10-6 0 8 0 21 21 0(0/21) 出现细胞病变(CPE)以及血凝素等的细胞管数分别列于表14-2的第二和第三列,它们的累计数分别列于第四和第五列(根据箭头所示方向),第六列为细胞管总数,第七列为出现细胞病变的细胞管数占细胞管总数的百分率。可见该病毒株的TCID50在10-3(%)和10-4(40%)之间,其确切稀释倍数可按下列公式计算:
(高于50%的百分数)-50
(高于50%的百分数)-40(低于50%的百分数) == 将由上式获得加在高于50%死亡的稀释度的对数(3)上,因此该病毒的TCID50应是 稀释的病毒液。查反对数得6310,即该病毒6310倍稀释液等于1个TCID50。
2. 中和实验 1) 细胞准备 检查培养瓶中的单层细胞,以5ml胰酶-EDTA轻微冲洗 加入4-5ml 胰酶-EDTA以覆盖单层细胞 放平培养瓶,37℃ 5%CO2培养箱中孵育10-20min,直到细胞脱落 加入5-10ml培养液,洗下细胞后移到离心管中 以PBS洗细胞两次(12000rpm, 5min) 以D-MEM重悬细胞,并用血球计数板计数 以D-MEM将将细胞浓度调整到1×10^5/ml ×10^5/ml 在微量培养板的各孔中加入100μl细胞, 相当于×10^4细胞/孔 在37℃ 5%CO2培养箱中过夜培养(18-22h),用处于生长相刚达到完全融合的细胞进行病毒的滴定
2)待测血清准备 动物血清中,含有多种蛋白质成分对抗体中和病毒有辅助作用,如补体、免疫球蛋白和抗补体抗体等。为排除这些不耐热的非特异性反应因素,用于中和试验的血清须经加热灭活处理。各种不同来源的血清,须采用不同温度处理,猪、牛、猴、猫及小鼠血清为60℃;水牛、狗及地鼠血清为62℃;马兔血清为65℃;人和豚鼠血清为56℃。加热时间为20-30min,60℃以上加热时,为防止蛋白质凝固,应先以生理盐水作适当稀释。 取已灭活处理的血清,在96孔微量细胞培养板上,用稀释液作一系列倍比稀释,使其稀释度分别为原血清的1:2、1:4、1:8、1:16、1:32、1:64,或者按1:10,1:20,1:40,1:80,1:160,1:320,1:640,1:1280稀释,每个稀释度做3-4个平行孔。
3) 加入病毒,感作 以VGM将病毒稀释到100 TCID50/50μl (200 TCID50/100μ) 除细胞对照孔外每孔中加入与血清量相等的病毒液,在细胞对照孔中加入与血清量相等的VGM 轻混病毒-血清混和物,37℃ 5%CO2培养箱中孵育2h
4)接种细胞 准备用于接种的刚达到完全融合的细胞的培养板,吸掉培养液,加入350μl无血清D-MEM培养液以洗掉剩下的FBS 病毒-血清混和物孵育2h结束后,各取100μl中和液到细胞培养板相应的孔中 37℃ 5%CO2培养箱中孵育2h 吸掉中和液,加250μl D-MEM 洗涤 加200μl D-MEM 在37℃ 5%CO2培养箱中孵育3-4d,检测培养液中血凝活性,以能保护50%细胞培养管不被感染的最高血清稀释度的倒数作为中和终点。 在制备细胞悬液时,其浓度以在24h内长满单层为度:血清病毒中和1h后取出,每孔加入100μl细胞悬液。置5%CO2 37℃温箱培养,自培养48h开始逐日观察记录,14D终判。由于各种病毒引起细胞病变时间不同,终判时间应根据病毒致细胞病变的快慢而定。
5)对照组
对照的设定:包括细胞对照(培养液中仅含细胞,不含病毒和血清),阴性
对照(培养液中含有l00TCID50病毒、细胞及阴性血清)和空白对照(培养基中含有100TCID50病毒及细胞,不含血清),各设3个平行孔。