系统建模与仿真仿真作业结果

合集下载

MATLAB Simulink系统建模与仿真 实验报告

MATLAB Simulink系统建模与仿真 实验报告

MATLAB/Simulink 电力系统建模与仿真实验报告姓名:******专业:电气工程及其自动化班级:*******************学号:*******************实验一无穷大功率电源供电系统三相短路仿真1.1 无穷大功率电源供电系统仿真模型构建运行MATLAB软件,点击Simulink模型构建,根据电路原理图,添加下列模块:(1)无穷大功率电源模块(Three-phase source)(2)三相并联RLC负荷模块(Three-Phase Parallel RLC Load)(3)三相串联RLC支路模块(Three-Phase Series RLC Branch)(4)三相双绕组变压器模块(Three-Phase Transformer (Two Windings))(5)三相电压电流测量模块(Three-Phase V-I Measurement)(6)三相故障设置模块(Three-Phase Fault)(7)示波器模块(Scope)(8)电力系统图形用户界面(Powergui)按电路原理图连接线路得到仿真图如下:1.2 无穷大功率电源供电系统仿真参数设置1.2.1 电源模块设置三相电压110kV,相角0°,频率50Hz,接线方式为中性点接地的Y形接法,电源电阻0.00529Ω,电源电感0.000140H,参数设置如下图:1.2.2 变压器模块变压器模块参数采用标幺值设置,功率20MVA,频率50Hz,一次测采用Y型连接,一次测电压110kV,二次侧采用Y型连接,二次侧电压11kV,经过标幺值折算后的绕组电阻为0.0033,绕组漏感为0.052,励磁电阻为909.09,励磁电感为106.3,参数设置如下图:1.2.3 输电线路模块根据给定参数计算输电线路参数为:电阻8.5Ω,电感0.064L,参数设置如下图:1.2.4 三相电压电流测量模块此模块将在变压器低压侧测量得到的电压、电流信号转变成Simulink信号,相当于电压、电流互感器的作用,勾选“使用标签(Use a label)”以便于示波器观察波形,设置电压标签“Vabc”,电流标签“Iabc”,参数设置如下图:1.2.5 故障设置模块勾选故障相A、B、C,设置短路电阻0.00001Ω,设置0.02s—0.2s发生短路故障,参数设置如下图:1.2.6 示波器模块为了得到仿真结果准确数值,可将示波器模块的“Data History”栏设置为下图所示:1.3 无穷大功率电源供电系统仿真结果及分析得到以上的电力系统参数后,可以首先计算出在变压器低压母线发生三相短路故障时短路电流周期分量幅值和冲击电流的大小,短路电流周期分量的幅值为Im=10.63kA,时间常数Ta=0.0211s,则短路冲击电流为Iim=17.3kA。

控制工程实训课程学习总结基于MATLAB的系统建模与仿真实验报告

控制工程实训课程学习总结基于MATLAB的系统建模与仿真实验报告

控制工程实训课程学习总结基于MATLAB 的系统建模与仿真实验报告摘要:本报告以控制工程实训课程学习为背景,基于MATLAB软件进行系统建模与仿真实验。

通过对实验过程的总结,详细阐述了系统建模与仿真的步骤及关键技巧,并结合实际案例进行了实验验证。

本次实训课程的学习使我深入理解了控制工程的基础理论,并掌握了利用MATLAB进行系统建模与仿真的方法。

1. 引言控制工程是一门应用广泛的学科,具有重要的理论和实践意义。

在控制工程实训课程中,学生通过实验来加深对控制系统的理解,并运用所学知识进行系统建模与仿真。

本次实训课程主要基于MATLAB软件进行,本文将对实验过程进行总结与报告。

2. 系统建模与仿真步骤2.1 确定系统模型在进行系统建模与仿真实验之前,首先需要确定系统的数学模型。

根据实际问题,可以选择线性或非线性模型,并利用控制理论进行建模。

在这个步骤中,需要深入理解系统的特性与工作原理,并将其用数学方程表示出来。

2.2 参数识别与估计参数识别与估计是系统建模的关键,它的准确性直接影响到后续仿真结果的可靠性。

通过实际实验数据,利用系统辨识方法对系统的未知参数进行估计。

在MATLAB中,可以使用系统辨识工具包来进行参数辨识。

2.3 选择仿真方法系统建模与仿真中,需要选择合适的仿真方法。

在部分情况下,可以使用传统的数值积分方法进行仿真;而在其他复杂的系统中,可以采用基于物理原理的仿真方法,如基于有限元法或多体动力学仿真等。

2.4 仿真结果分析仿真结果的分析能够直观地反映系统的动态响应特性。

在仿真过程中,需对系统的稳态误差、动态响应、鲁棒性等进行综合分析与评价。

通过与理论期望值的比较,可以对系统的性能进行评估,并进行进一步的优化设计。

3. 实验案例及仿真验证以PID控制器为例,说明系统建模与仿真的步骤。

首先,根据PID控制器的原理以及被控对象的特性,建立数学模型。

然后,通过实际实验数据对PID参数进行辨识和估计。

实验三数字基带传输系统建模和仿真

实验三数字基带传输系统建模和仿真

实验三 数字基带传输系统的建模与仿真一. 实验目的1. 了解数字基带传输系统的建模过程2. 了解数字基带传输系统的仿真过程二. 实验内容建立一个基带传输模型,发送数据为二进制双极性不归零码,发送滤波器为平方根升余弦滤波器,信道为加性高斯信道,接收滤波器与发送滤波器相匹配,接收机能自行恢复系统同步信号。

要求观察接收信号眼图,并设计接收机采样判决部分,对比发送数据与恢复数据波形,并统计误码率。

三. 实验原理数字基带传输系统框图如图5-1所示,它主要由脉冲形成器、发送滤波器、信道、接收滤波器和抽样判决器等部件组成为保证数字基带。

系统正常工作,通常还应有同步系统。

图中各部分原理及作用如下:脉冲形成器:输入的是由电传机、计算机等终端设备发送来的二进制数据序列或是经模/数转换后的二进制脉冲序列,用{}k d 表示,它们一般是脉冲宽度为T 的单极性码。

脉冲形成器的作用是将{}k d 变换成比较适合信道传输的码型,并提供同步定时信息,使信号适合信道传输,保证收发双方同步工作。

发送滤波器:发送滤波器的传输函数为()T G ω,其作用是将输入的矩形脉冲变换成适合信道传输的波形。

这是因为矩形波含有丰富的高频成分,若直接送入信道传输,容易产生失真。

信道:信道传输函数为()C ω。

基带传输的信道通常为有线信道,如市话电缆和架空明线等,信道的传输特性通常是变化的,信道中还会引入噪声。

在通信系统的分析中,常常把噪声等效,集中在信道引入。

这是由于信号经过信道传输,受到很大衰减,在信道的输图5-1 数字基带传输系统出端信噪比最低,噪声的影响最为严重,以它为代表最能反映噪声干扰影响的实际情况。

但如果认为只有信道才引入噪声,其他部件不引入噪声,是不正确的。

G ,它的主要作用是滤除带外噪声,对信道接收滤波器:接收滤波器的传输函数为()R特性进行均衡,使输出信噪比尽可能大并使输出的波形最有利于抽样判决。

抽样判决器:它的作用是在信道特性不理想及有噪声干扰的情况下,正确恢复出原来的基带信号。

物流系统建模与仿真实验报告

物流系统建模与仿真实验报告

物流系统建模与仿真实验报告物流系统建模与仿真实验报告一、引言物流系统是现代工业化与信息化相结合的产物,它包括了物质流动、信息流动与控制系统优化等多个方面。

本实验旨在通过模拟物流系统的运行,深入理解物流系统的构建、运作机制以及优化方法。

在此过程中,我们将利用数学建模和仿真技术,以实际物流系统为参考,构建一个简化的计算机模型,并对不同场景进行模拟和分析。

二、物流系统模型构建在构建物流系统模型的过程中,我们主要考虑了以下几个关键因素:货物供应、运输、存储和需求。

其中,货物供应和需求代表了系统的输入和输出,运输和存储则描述了货物的流动和暂存。

我们用随机过程生成货物供应和需求,用队列模拟运输和存储环节。

系统的运行状态用一组状态变量来描述,系统的行为则由一系列根据状态变化的规则来描述。

三、物流系统仿真实验在构建模型之后,我们对不同的场景进行了仿真实验。

首先,我们模拟了在货物供应和需求稳定的情况下,物流系统的运行状况。

然后,我们在供应和需求出现波动的情况下,观察了系统的响应。

此外,我们还测试了系统在出现故障(如运输故障)时的表现。

四、实验结果与分析实验结果显示,在稳定环境下,物流系统能够有效地处理货物供应和需求。

然而,当环境出现波动时,系统的表现会受到影响,尤其是当供应或需求出现突然增加或减少时。

此外,系统在应对故障时的能力也有限,如运输故障往往会导致货物积压和延迟。

我们的分析表明,为了提高物流系统的性能,可以考虑引入更多的运输资源,或者优化存储策略以应对供应和需求的波动。

此外,开发更有效的故障恢复机制也是必要的。

五、结论与展望通过本次实验,我们成功地构建了一个简化的物流系统模型,并对其进行了仿真实验。

实验结果揭示了物流系统在稳定和不稳定环境下的表现,并指出了可能的改进方向。

展望未来,我们希望进一步探索更复杂的物流系统特性。

例如,引入更多的货物种类、考虑货物的可替代性、优化运输策略等。

此外,我们还可以研究如何利用先进的算法和技术,如机器学习和,来提高物流系统的效率和性能。

数控工作台直线运动单元控制系统地建模与仿真分析报告报告材料2

数控工作台直线运动单元控制系统地建模与仿真分析报告报告材料2

《机电控制工程》数控工作台直线运动单元控制系统建模与仿真分析学号姓名:班级:指导老师:日期:一、题目介绍1.实践题目数控工作台单自由度直线运动单元速度开闭环控制系统建模与仿真分析2.实践目的1)、结合自动控制原理,掌握机电控制系统建模、仿真分析方法和技能;2)、学习使用MATLAB软件Simulink工具箱构建控制系统的数学模型,绘制时域、频域曲线;3.实践任务1)建立如图(1)所示的数控工作台的直线运动单元速度控制系统数学模型,以给定电压为输入、以实际丝杠转速为输出,求出系统开环传递函数;参考给定的相关数据表1,确定关键参数,进行相应简化处理后进行MATLAB/Simulink仿真分析,分析结构参数对系统性能的影响,并判断稳定性;比较matlab仿真分析结果与直线运动单元的实际运行结果,进行模型验证。

2)建立如图(2)所示的数控工作台直线运动单元的速度闭环的数学模型,以给定电机转速为输入、以实际电机轴转速为输出,求出系统闭环传递函数;参考给定的相关数据表1,确定关键参数,进行相应简化处理后进行MATLAB仿真分析,分析结构参数对系统性能的影响,并判断稳定性;比较matlab仿真分析结果与直线运动单元的实际运行结果,进行模型验证。

图(1)速度开环系统图(2)速度闭环系统表1工作台及电机参数4.实验步骤(1)分别就图(1)与图(2)两个系统按建模步骤写出建模过程;(2)画出动态结构图;(3)图(1)以给定电压为输入、以实际丝杠转速为输出,求出系统开环传递函数;(4)图(2)以给定电机转速为输入、以实际电机轴转速为输出,求出系统闭环传递函数;(5)采用MATLAB 对速度控制系统进行仿真分析,包括时域和频域分析,分析结构参数对系统性能的影响,并判断稳定性;(6)比较matlab 仿真与XY 工作台的实际运行效果,验证模型。

二、直线运动单元的开环系统模型及仿真1、速度开环系统建模(1) 根据克希霍夫定律,电枢回路电压平衡方程为:)()()()(t E t i R dt t di L t U A a a a a aa pm +⋅+=(2)一般电磁转矩与电枢电流成正比,即: )()(t i c t M a m m ⋅=其中mc 为转矩常数 。

2020三机九节点电力系统建模与仿真

2020三机九节点电力系统建模与仿真

学院专业姓名学号指导教师邮箱提交日期一、摘要电力系统仿真计算己经成为电力系统设计、运行与控制中不可缺少的手段。

通过设置不同故障类型、不同故障地点运用仿真技术可以对电力系统的暂态稳定进行分析。

本文采用IEEE 3 机9 节点的经典多机模型,基于隐式梯形积分法对系统发生三相金属性短路故障进行仿真,分析系统在这种情况下的暂态稳定。

发电机模型采用经典的二阶模型;负荷采用恒定阻抗负荷。

在Matlab2010 上编写程序进行调试和运行。

电力系统是由不同类型的发电机组、多种电力负荷、不同电压等级的电力网络等组成的十分庞大复杂的动力学系统。

其暂态过渡过程不仅包括电磁方面的过渡过程,而且还有机电方面的过渡过程。

由此可见,电力系统的数学模型是一个强非线性的高维状态方程组。

在动态稳定仿真中使用简单的电力系统模型,通过仿真计算分析说明,此仿真方法可以进行简单的电力系统暂态分析,对提高电力系统暂态稳定具有重要意义。

二、案例本次课程主要应用P. M. Anderson and A. A. Fouad 编写的《Power System Control and Stability》一书中所引用的Western System Coordinated Council (WSCC)三机九节点系统模型。

系统电路结构拓扑图如下:图2-1 3 机9 节点系统系统数据其中,节点数据如下:节点号有无负载类型电压相角有功负荷无功负荷有功出力无功出力电压基准期望电压N=[1 0 3 1.0400 0.00 0.00 0.00 71.60 27.00 16.50 1.0402 0 2 1.0250 0.00 0.00 0.00 163.00 6.70 18.00 1.0253 0 2 1.0250 0.00 0.00 0.00 85.00 -10.90 13.80 1.0254 0 0 1.0000 0.00 0.00 0.00 0.00 0.00 230.00 1.0265 1 0 1.0000 0.00 125.00 50.00 0.00 0.00 0.00 0.9966 1 0 1.0000 0.00 90.00 30.00 0.00 0.00 0.00 1.0137 0 0 1.0000 0.00 0.00 0.00 0.00 0.00 230.00 1.0268 1 0 1.0000 0.00 100.00 35.00 0.00 0.00 0.00 1.0169 0 0 1.0000 0.00 0.00 0.00 0.00 0.00 230.00 1.032]; %支路数据% 从到电阻电抗容纳类型变比B=[1 4 0.0 0.0576 0.0 1 12 7 0.0 0.0625 0.0 1 13 9 0.0 0.0586 0.0 1 14 5 0.010 0.085 0.176 0 04 6 0.017 0.092 0.158 0 05 7 0.032 0.161 0.306 0 06 9 0.039 0.170 0.358 0 07 8 0.0085 0.072 0.149 0 08 9 0.0119 0.1008 0.209 0 0];发电机数据如下:% 发电机母线Xd Xd' Td0' Xq Xq' Tq0’Tj XfGe=[ 1 1 0.1460 0.0608 8.96 0.0969 0.0969 0 47.28 0.05762 2 0.8958 0.1198 6.00 0.8645 0.1969 0.535 12.80 0.06253 3 1.3125 0.1813 8.59 1.2578 0.2500 0.600 6.02 0.0585];三、仿真框图在仿真之前,首先,应明确仿真的所要到达的结果,即仿真目标:本此仿真的结果主要是得到发电机攻角、转速随时间变化的值,包括故障前、故障中、故障后。

Flexsim仿真实验报告

Flexsim仿真实验报告集美大学实验课程: Flexsim仿真实验姓名: 阮达毅学号: 2007956028 班级: 物流0791班学院: 航海学院报告成绩:实验项目1 混合流水线系统仿真与分析1建立概念模型1.1概念定义多对象流水线生产有良种基本形式。

一种是可变流水线,其特点是:在计划期内,按照一定的间隔期,成批轮番生产多种产品;在间隔期内,只生产一种产品,在完成规定的批量后,转生产另一种产品。

另一种是混合流水线,其特点是:在同一时间内,流水线上混合生产多种产品,按固定的混合产品组组织生产,即将不同的产品按固定的比例和生产顺序编成产品组。

一个组一个组地在流水线上进行生产。

1.2模型描述一个工厂有5个不同的车间(普通车间,钻床车间,铣床车间,磨床车间,检测车间),加工3种类型产品。

每种产品都要按工艺顺序在5个不同的车间完成5道工序。

假定在保持车间逐日连续工作的条件下,仿真在多对象平准化中生产采用不同投产顺序来生产给定数量的3种产品。

通过改变投产顺序使产量、品种、工时和负荷趋于均衡,来减少时间损失。

如果一项作业在特定时间到达车间,发现该组机器全都忙着,该作业就在该组机器处排入一个FIFO规则的队列的暂存区,如果有前一天没有完成的任务,第二天继续加工。

1.3系统数据普通车间钻床车间铣床车间磨床车间检测车间机器数量 3 3 2 3 1普通机床钻床铣床磨床检测产品1 5 5 4 4 6产品2 4 4 3 4 3产品3 4 5 3 4 1总数(个) 每批量(个) 时间间隔(min)产品1 1000 10 3产品2 500 5 3产品3 200 2 3 1.4概念模型毛坯普通机床钻床铣床成品检测磨床2建立Flexsim模型第1步:在模型中生成所有实体:从左边实体库中依次拖拽出所有实体(一个Source,5个Queue,12个Processor,一个Conveyor,一个Sink)放在右边模型视图中,调整至适当的位置第2步:修改名称:双击左边暂存区,弹出实体属性的对话框,在名称栏里修改成相应名称第3步:连接端口:第4步:给Source指定临时实体流到达参数:第5步:给暂存区GeneralQueue设定参数第6步:给普通车间处理器组设定参数第7步:给钻床车间处理器组设定参数:第8步:给铣床车间处理器组设定参数:第9步:给磨床车间处理器组设定参数:第10步:给测试车间处理器组设定参数:第11步:设置模型停止时间:2系统分析与改进:1.改变123种类产品的投产顺序,输出相应的仿真报告,: (1).生产顺序:先生产1类型产品,再生产2类产,再生产3类产品 (2).生产顺序:先生产1类产品,再生产3类产品,再生产2类产品 (3).生产顺序:先生产2类产品,再生产1类产品,再生产3类产品 (4).生产顺序:先生产2类产品,再生产3类产品,再生产1类产品 (5).生产顺序:先生产3类产品,再生产1类产品,再生产2产品 (6).生产顺序:先生产3类产品,再生产2类产品,再生产1类产品仿真时间3000分钟因为第四种投产方案(4).生产顺序:先生产2类产品,再生产3类产品,再生产1类产品的MEAN值最大所以第四种投产方案最优2.为系统添加一个Processor添加了Processor后,产品数量MEAN植增大,改善了原来的模型。

通信系统建模与仿真实验报告

实验报告哈尔滨工程大学教务处制实验一:低通采样定理和内插与抽取实现一、实验目的用Matlab 编程实现自然采样与平顶采样过程,根据实验结果给出二者的结论;掌握利用MATLAB 实现连续信号采样、频谱分析和采样信号恢复的方法。

二、实验原理1.抽样定理若)(t f 是带限信号,带宽为m ω, )(t f 经采样后的频谱)(ωs F 就是将)(t f 的频谱 )(ωF 在频率轴上以采样频率s ω为间隔进行周期延拓。

因此,当s ω≥m ω时,不会发生频率混叠;而当 s ω<m ω 时将发生频率混叠。

2.信号重建经采样后得到信号)(t f s 经理想低通)(t h 则可得到重建信号)(t f ,即:)(t f =)(t f s *)(t h其中:)(t f s =)(t f ∑∞∞--)(s nT t δ=∑∞∞--)()(s s nT t nT f δ,)()(t Sa T t h c csωπω= 所以:)(t f =)(t f s *)(t h =∑∞∞--)()(s s nT t nT f δ*)(t Sa T c csωπω =πωcs T ∑∞∞--)]([)(s csnT t Sa nT f ω上式表明,连续信号可以展开成抽样函数的无穷级数。

利用MATLAB 中的t t t c ππ)sin()(sin =来表示)(t Sa ,有 )(sin )(πt c t Sa =,所以可以得到在MATLAB 中信号由)(s nT f 重建)(t f 的表达式如下:)(t f =πωcs T ∑∞∞--)]([sin )(s cs nT t c nT f πω我们选取信号)(t f =)(t Sa 作为被采样信号,当采样频率s ω=2m ω时,称为临界采样。

我们取理想低通的截止频率c ω=m ω。

下面程序实现对信号)(t f =)(t Sa 的采样及由该采样信号恢复重建)(t Sa :三、 实验内容已知信号()()990(1)cos 2(10050)m x t m m t π==++∑,试以以下采样频率对信号采样:(a) 20000s f Hz =; (b) 10000s f Hz =; (c)30000s f Hz =,求x(t)信号原信号和采样信号频谱,及用采样信号重建原信号x ’(t)时序图。

基于Flexsim的物流仓储系统的建模与仿真


3、分析结果
仿真结束后,需要对收集到的数据进行整理和分析。通过对比不同方案的数 据,我们可以评估各种方案的效果和优劣,从而选择最优的方案。
五、结论与展望
本次演示介绍了如何使用Flexsim对物流仓储系统进行建模和仿真。通过 Flexsim的强大功能,我们可以快速构建复杂的物流仓储系统模型,并对其进行 仿真和分析。这将有助于我们更好地理解和优化物流仓储系统,提高效率和降低 成本。
4、设定仿真参数
根据实际需求,设定仿真的时间范围、运行次数等参数。同时,还需要设定 每个元素的初始状态和属性。
四、物流仓储系统仿真
1、运行仿真
在Flexsim中,可以通过点击“运行”按钮来启动仿真。仿真过程中,系统 会按照设定的参数和规则进行模拟。
2、收集数据
在仿真过程中,可以实时收集各种数据,如货物的移动速度、叉车的利用率、 库存周转率等。这些数据可以帮助我们了解系统的性能和效率。
同时,这种方法还可以帮助企业发现自身存在的问题,并提供相应的改进建 议。
然而,本次演示的研究还存在一定的局限性。例如,在仿真过程中,未能考 虑到一些随机因素的影响等。未来研究可以进一步完善这一模型,考虑更多的实 际场景和因素,以提高模拟的真实性和可靠性。
总之,基于Flexsim的物流仓储系统建模与仿真是一种有效的研究方法,可 以为企业的物流仓储系统的优化和改进提供理论支持和实践指导。希望通过本次 演示的研究成果,能够为相关领域的研究者和企业提供一定的参考价值。
二、Flexsim简介
Flexsim是一款基于Windows的仿真软件,可用于对物流、供应链、制造和其 他流程进行建模和仿真。它提供了直观的图形用户界面,使用户能够轻松地创建 复杂的系统模型。Flexsim还支持多种仿真算法,包括离散事件仿真、系统动力 学仿真等,可根据实际需求选择合适的算法。

系统建模与仿真作业

病菌传染人数动态变化模型的仿真专业:机械电子工程姓名:王勇(10S030039)日期:2010年11月8日摘要本文利用已知的模型,运用MATLAB中Simulink工具箱对模型进行的准确的描述,然后进行仿真分析。

Simulink的每个子模型库包含有相应的功能模块,用户也可以定制和创建用户自已的模块,模型化图形输入是Simulink提供了一些按功能分类的基本的系统模块,通过对这些基本模块的调用,再将它们连接起来就可以构成所需要的系统模型,进而进行仿真与分析。

通过分析对传染情况有了准确的了解,利于对传染情况的控制。

关键字:建模,MATLAB/Simulink,分析AbstractThis paper using the known model, using MATLAB Simulink toolbox of model of accurate description, then the simulation analysis.Each submode Simulink this repository contains a corresponding function module, users can also customize and create user own module, modeling graph input is Simulink provides some according to the basic function classification system module, through to these basic modules calls, and then connect them up can form required system model, and then, a simulation and analysis.Through the analysis of infectious diseases have accurate understanding, benefit of infection status of control.Keywords:Modeling,MATLAB/Simulink,Analysis引言传染病是致病性(微)生物在人与人、动物与人及动物与动物之间相互传播的疾病,其流行既有隐蔽性又有突发性.不论急性还是慢性传染病都给人类健康带来极大灾难、给社会经济发展造成很大的损失。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Simulink仿真
根据以上的分析论证,将已求得的个函数参数带入动态结构图中,初步得到图3动态结构图。

图3
根据理论得到的各参数设计后可得到理论设计条件下输出转速曲线图4。

图4
可以清楚地看出,输出转速有很大的超调最大可达84.1%,调整时长为2.65s 之久,这是我们所不能接受的。

速度调节器的设计参数与实际调试结果相差比较大,使系统对负载扰动引起的动态速降(升)缺乏有效的抑制能力,存在起动和制动过程中超调量大,突加(减)负载时,动态速降(升)大等缺点。

所以,我们对ACR和ASR的参数进行整定,特别是速度控制器的参数。

我们就对其作出了适当的调整,将速度控制器的传递函数改成,将电流调节器的传递函数改为。

当然,这是需要时间和经验的。

校正后的动态结构图如图5所示
图5
校正后的输出转速曲线如图6所示
图六
电流环跟随性能仿真实验
如上文所述:电流环的作用就是保持电枢电流在动态过程中不超过允许值,在突加控制作用时不希望有超调,或者超调量越小越好。

这就需要我们对电流环的跟随性能加以分析。

将电流环从系统中分离出来(将电枢电压对电流环影响看成是扰动)。

电流环模型如图7所示:
图7
通过如下命令可以得到电流环的bode图和nyquist图以及电流环的单位阶跃响应。

[num,den]=linmod('current_loop')
sys=tf(num,den)
figure(1)
margin(sys)
[mag,phase,w]=bode(sys);
[gm,pm,wcg,wcp]=margin(mag,phase,w)
Figure(2)
Nyquist(sys)
Figure(3)
Step(sys)
我们还可以得到以下的数据:
gm = 4.2925
pm =47.7281
wcg =345.3056
cp =164.6317
剪切频率ωc=164.6317rad/s;相角相对裕度δ=47.7281°;-∏穿越频率ω
g=345.3056rad/s 幅值相对裕度Lh=20lg(4.2925)=12.65dB
图8电流环的bode图
图9电流环的nyquist图
图10电流环的单位阶跃响应
从图8与9种可以看出我们设计的电流环控制器是正确的,电流环是稳定的,根据剪切频率就可以看出电流的响应很快,即跟随性很好。

从图10中可以更直接的看到这一点。

在图20中还可以看出电流环的超调量很小(3.6%)与过渡过程时间很短(0.07s)。

转速环抗扰性能仿真
为了对转速环抗干扰能力进行更为细致的分析,我们将动态图做了如下的调整:
图11
转速环与系统输出对比
图12图13图14分别为ASR的输出与电动机转速动态特性仿真结果,ACR的输出与电动机转速动态特性仿真结果以及电动机电流与电动机转速动态特性仿真结果。

图12 ASR的输出特性
图13 ACR的输出特性
图14 电动机电流特性
(2)仿真结果分析
由图12、13、14可见,系统地工作过程可概括为如下几点:
(1)ASR从起动到稳速运行的过程中经历了两个状态,即饱和限幅输出与线性调节状态;
(2)ACR从起动到稳速运行的过程中制工作在一种状态,即线性调节状态;(3)该系统对于起动特性来说,已达到预期目的;
(4)对于系统性能指标来说,起动过程中电流的超调量为5.3%,转速的超调量为21.3%。

这与理论最佳设计有一定差距,尤其是转速超调量略高一些。

抗扰性能分析
实验中我们选取Start time=0.0,Stop time=5.0,仿真时间从0s到5.0s。

扰动加入的时间均为3.5s。

一般情况下,双闭环调速系统的干扰主要是负载突变与电网电压波动两种。

图15、绘出了该系统电动机转速在突加负载(ΔI=12A)情况下电动机电流Id 与输出转速n的关系;图16、17分别绘出了电网电压突减(ΔU=100V)情况下晶闸管触发整流装置输出电压Ud0、电动机两端电压Ud,与输出转速n的关系。

图15 突加负载抗扰特性
图16 电网电压突加的抗扰性能
图17电网电压突减的抗扰性能
通过仿真分析,对于该系统的抗扰性能,我们可有如下几个结论:
(1)系统对负载的大幅度突变具有良好的抗扰能力,在ΔI=12A的情况下系统恢复时间为tf=1.2s。

(2)系统对电网电压的大幅波动也同样具有良好的抗扰能力。

在ΔU=100V的情况下,系统恢复时间为tf=0.15s。

(3)与理想的电动机的起动特性相比较,该系统的起动和恢复时间显得略长一些(轻载状态下接近4s)。

实验总结
本次建模仿真实验,按我的理解是一个多学科交叉的综合性实验,在整个实验过程中,激起了我对电机学,运动控制理论的理论回忆,对于双闭环系统有了更加深刻的了解。

从数学建模开始从原理进行剖析学习,当然本次实验的中心思想还是对于仿真实验的训练,Simulink的仿真练习,对各模块的仿真有了更多的了解。

系统性的进行了仿真练习加深了我对仿真模型的认识与理解。

我们小组在实验初期在寻找突破口的地方发生了歧义,最后在运动控制系统的第二章和第三章中找到了灵感,利用MATLAB上的SIMULINK仿真平台对直流调速系统进行理论设计与调试,使得系统的性能分析过程简单且直观。

通过对系统进行仿真,可以准确地了解到理论设计与实际系统之间的偏差,逐步改进系统结构及参数,得到最优调节器参数,使得系统的调试得到简化,缩短了产品的开发设计周期。

在对于PID控制方面的有了进一步的学习与认识。

在这方面老师的帮助起到了十分重要的作用。

测偏纠偏的过程是本次实验的重点也是难点,每个系统的ASR转速调节器的传递函数都有所不同因此对于这里的测偏纠偏过程就变成的一种经验的积累,在一个围寻找最适合自己系统的传递函数显得尤为重要。

参考文献
[1] 阮毅,伯时.电力拖动自动控制系统:运动控制系统[M].:机械工业,2009:
[2] 恩让,聂诗良.控制系统仿真[M].:中国林业;大学,2006:。

相关文档
最新文档