高中数学第五章向量章节知识点与高考
高中数学必修知识点空间向量知识点

高中数学必修知识点空间向量知识点高中数学必修知识点:空间向量知识点一、空间向量的概念与表示空间向量是指具有大小、方向和作用线的量,可以用一个有向线段来表示。
设 A、B 是空间中的两点,用线段 AB 表示的向量称为向量AB,记作⃗AB 或 AB。
二、向量的加法与减法1. 向量的加法:设向量⃗AB 与向量⃗BC 共线,则向量⃗AC 称为向量⃗AB 和向量⃗BC 的和,记作⃗AB + ⃗BC = ⃗AC。
2. 向量的减法:设向量⃗AB 与向量⃗BC 共线,则向量⃗AC 称为向量⃗AB 和向量⃗BC 的差,记作⃗AB - ⃗BC = ⃗AC。
三、数量积与向量积1. 数量积的定义:设向量⃗a = (x₁, y₁, z₁) 与向量 ⃗b = (x₂, y₂, z₂),则向量⃗a 和向量⃗b 的数量积为 a·b = x₁x₂ + y₁y₂ + z₁z₂。
2. 数量积的性质:- 交换律:⃗a·⃗b = ⃗b·⃗a- 结合律:(k⃗a)·⃗b = k(⃗a·⃗b) = ⃗a·(k⃗b) (k 为常数)- 分配律:⃗a·(⃗b + ⃗c) = ⃗a·⃗b + ⃗a·⃗c- ⃗a·⃗a ≥ 0,当且仅当⃗a = ⃗0 时,⃗a·⃗a = 03. 向量积的定义:设向量⃗a = (x₁, y₁, z₁) 与向量⃗b = (x₂, y₂,z₂),则向量⃗a 和向量⃗b 的向量积为⃗a × ⃗b = (y₁z₂ - z₁y₂, z₁x₂ - x₁z₂, x₁y₂ - y₁x₂)。
4. 向量积的性质:- ⃗a × ⃗b = -⃗b × ⃗a- (k⃗a) × ⃗b = ⃗a × (k⃗b) = k(⃗a × ⃗b) (k 为常数)- ⃗a × ⃗b = ⃗0,当且仅当⃗a 与 ⃗b 共线或其中一个为⃗0 时,⃗a × ⃗b = ⃗0四、平面与空间向量的关系1. 平面方程的向量表示:设平面过点 A(x₁, y₁, z₁),且法向量为 ⃗n = (A, B, C),则平面上任意一点 M(x, y, z) 满足向量⃗AM·⃗n = 0。
高中数学平面向量知识点总结

高中数学平面向量知识点总结一、平面向量的基本概念1. 定义:平面向量是有大小和方向的量,可以用有序实数对表示。
2. 表示法:通常用小写字母加箭头表示,如 $\vec{a}$。
3. 相等:两个向量大小相等且方向相同时,这两个向量相等。
4. 零向量:大小为零的向量,没有特定方向。
二、平面向量的运算1. 加法:- 规则:平行四边形法则或三角形法则。
- 交换律:$\vec{a} + \vec{b} = \vec{b} + \vec{a}$。
- 结合律:$(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$。
2. 减法:- 规则:与加法类似,但方向相反。
- 逆向量:$\vec{a} - \vec{a} = \vec{0}$。
3. 数乘:- 定义:向量与实数相乘。
- 规则:$k\vec{a} = \vec{a}$ 的长度变为 $|k|$ 倍,方向与$k$ 的符号一致。
- 分配律:$(k + l)\vec{a} = k\vec{a} + l\vec{a}$。
- 结合律:$k(\vec{a} + \vec{b}) = k\vec{a} + k\vec{b}$。
三、平面向量的坐标表示1. 坐标表示:$\vec{a} = (x, y)$,其中 $x$ 和 $y$ 是向量在坐标轴上的分量。
2. 几何意义:$x$ 分量表示向量在 $x$ 轴上的长度,$y$ 分量表示向量在 $y$ 轴上的长度。
3. 坐标运算:- 加法:$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$。
- 减法:$(x_1, y_1) - (x_2, y_2) = (x_1 - x_2, y_1 - y_2)$。
- 数乘:$k(x, y) = (kx, ky)$。
四、平面向量的模与单位向量1. 模(长度):- 定义:向量从原点到其终点的距离。
高中数学:空间向量知识点

高中数学:空间向量知识点1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。
注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。
(2)空间的两个向量可用同一平面内的两条有向线段来表示。
2. 空间向量的运算。
定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。
;;运算律:⑴加法交换律:⑵加法结合律:⑶数乘分配律:3. 共线向量。
(1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,平行于,记作。
当我们说向量、共线(或//)时,表示、的有向线段所在的直线可能是同一直线,也可能是平行直线。
(2)共线向量定理:空间任意两个向量、(≠),//存在实数λ,使=λ。
4. 共面向量(1)定义:一般地,能平移到同一平面内的向量叫做共面向量。
说明:空间任意的两向量都是共面的。
(2)共面向量定理:如果两个向量不共线,与向量共面的条件是存在实数使。
5. 空间向量基本定理:如果三个向量不共面,那么对空间任一向量,存在一个唯一的有序实数组,使。
若三向量不共面,我们把叫做空间的一个基底,叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。
推论:设是不共面的四点,则对空间任一点,都存在唯一的三个有序实数,使。
6. 空间向量的直角坐标系:(1)空间直角坐标系中的坐标:在空间直角坐标系中,对空间任一点,存在唯一的有序实数组,使,有序实数组叫作向量在空间直角坐标系中的坐标,记作,叫横坐标,叫纵坐标,叫竖坐标。
(2)若空间的一个基底的三个基向量互相垂直,且长为,这个基底叫单位正交基底,用表示。
(3)空间向量的直角坐标运算律:①若,,则,,,,,。
②若,,则。
一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。
(4)模长公式:若,,则,(5)夹角公式:。
(6)两点间的距离公式:若,,则,或7. 空间向量的数量积。
数学向量知识点大全

数学向量知识点大全数学向量是高中数学的重要内容之一、它是表示大小和方向的物理量,常用箭头或有向线段表示。
下面是数学向量的一些重要知识点:1.向量的定义:向量是有大小和方向的量。
2.零向量:大小为零的向量,表示为0或。
3.等于向量:若向量和向量的对应分量相等,则称这两个向量相等。
4.向量的加法:若向量和向量都有相同的起点,则它们的和向量从共同起点出发,终点位于连接两个向量终点的直线上。
5. 向量的数量乘法:若向量a和实数k,积ka的大小为,k,乘以a的大小,方向和a相同(若k>0)或相反(若k<0)。
6.两个向量的数量乘积:向量的数量乘积是一个向量,大小等于这两个向量大小的乘积,方向和这两个向量夹角的余弦相同。
7.向量的平行条件:若向量和向量大小相等或其大小为零,则称这两个向量平行。
8.向量的线性组合:若给定向量,实数称为向量的系数,则向量的线性组合是形如的向量。
9.向量的加法交换律:对于任意两个向量a和b,有a+b=b+a。
10.向量的加法结合律:对于任意三个向量a、b和c,有(a+b)+c=a+(b+c)。
11.零向量的加法逆元:对于任意向量a,有a+(-a)=0。
12.向量长度的计算:向量的长度(或模)由勾股定理求得,即,a,=√(a₁²+a₂²)。
13.单位向量:长度为1的向量,可以通过将向量除以其长度得到。
14. 单位向量的夹角余弦:若a和b是非零向量,则向量a与向量b 的夹角余弦由公式cosθ = (a·b) / (,a,·,b,)求得。
15.向量的点乘积:向量的点乘积是一个标量,等于两个向量大小的乘积,方向是两个向量夹角的余弦。
表示为a·b。
16.向量的点乘积的性质:对于任意向量a、b和c,以及实数k,有以下性质:-a·b=b·a(交换律)-a·(b+c)=a·b+a·c(分配律)- (ka)·b = k(a·b)17.向量的叉乘积(向量积):向量的叉乘积是一个向量,大小等于两个向量大小的乘积与夹角的正弦乘积,方向垂直于这两个向量所确定的平面。
高中数学平面向量知识点总结

高中数学必修4之平面向量 知识点归纳一.向量的基本概念与基本运算1、向量的概念: ①向量:既有大小又有方向的量 向量不能比较大小,但向量的模可以比较大小.②零向量:长度为0的向量,记为0 ,其方向是任意的,0 与任意向量平行③单位向量:模为1个单位长度的向量④平行向量(共线向量):方向相同或相反的非零向量 ⑤相等向量:长度相等且方向相同的向量 2、向量加法:设,AB a BC b ==,则a +b =AB BC +=AC (1)a a a=+=+00;(2)向量加法满足交换律与结合律; AB BC CD PQ QR AR +++++=,但这时必须“首尾相连”.3、向量的减法: ① 相反向量:与a 长度相等、方向相反的向量,叫做a 的相反向量②向量减法:向量a 加上b 的相反向量叫做a 与b 的差,③作图法:b a -可以表示为从b 的终点指向a 的终点的向量(a 、b 有共同起点)4、实数与向量的积:实数λ与向量a 的积是一个向量,记作λa ,它的长度与方向规定如下: (Ⅰ)a a ⋅=λλ; (Ⅱ)当0>λ时,λa 的方向与a 的方向相同;当0<λ时,λa 的方向与a的方向相反;当0=λ时,0 =a λ,方向是任意的5、两个向量共线定理:向量b 与非零向量a 共线⇔有且只有一个实数λ,使得b =a λ6、平面向量的基本定理:如果21,e e 是一个平面内的两个不共线向量,那么对这一平面内的任一向量a ,有且只有一对实数21,λλ使:2211e e a λλ+=,其中不共线的向量21,e e 叫做表示这一平面内所有向量的一组基底 二.平面向量的坐标表示1平面向量的坐标表示:平面内的任一向量a 可表示成a xi yj =+,记作a =(x,y)。
2平面向量的坐标运算: (1) 若()()1122,,,a x y b x y ==,则()1212,a b x x y y ±=±± (2) 若()()2211,,,y x B y x A ,则()2121,AB x x y y =--(3) 若a =(x,y),则λa =(λx, λy)(4) 若()()1122,,,a x y b x y ==,则1221//0a b x y x y ⇔-=(5) 若()()1122,,,a x y b x y ==,则1212a b x x y y ⋅=⋅+⋅若a b ⊥,则02121=⋅+⋅y y x x三.平面向量的数量积 1两个向量的数量积:已知两个非零向量a 与b ,它们的夹角为θ,则a ·b =︱a ︱·︱b ︱cos θ叫做a 与b 的数量积(或内积) 规定00a ⋅= 2向量的投影:︱b ︱cos θ=||a b a ⋅∈R ,称为向量b 在a 方向上的投影投影的绝对值称为射影 3数量积的几何意义: a ·b 等于a 的长度与b 在a 方向上的投影的乘积 4向量的模与平方的关系:22||a a a a ⋅== 5乘法公式成立: ()()2222a b a b a ba b +⋅-=-=-; ()2222a b a a b b ±=±⋅+222a a b b =±⋅+ 6平面向量数量积的运算律:①交换律成立:a b b a ⋅=⋅ ②对实数的结合律成立:()()()()a b a b a bR λλλλ⋅=⋅=⋅∈ ③分配律成立:()a b c a c b c ±⋅=⋅±⋅()c a b =⋅±特别注意:(1)结合律不成立:()()a b c a b c ⋅⋅≠⋅⋅; (2)消去律不成立a b a c ⋅=⋅不能得到b c =⋅ (3)a b ⋅=0不能得到a =0或b =07两个向量的数量积的坐标运算: 已知两个向量1122(,),(,)a x y b x y ==,则a ·b =121x x y y + 8向量的夹角:已知两个非零向量a 与b ,作OA =a , OB =b ,则∠AOB=θ (001800≤≤θ)叫做向量a 与b 的夹角 cos θ=cos ,a ba b a b •<>=•=当且仅当两个非零向量a 与b 同方向时,θ=00,当且仅当a 与b 反方向时θ=1800,同时0与其它任何非零向量之间不谈夹角这一问题 9垂直:如果a 与b 的夹角为900则称a 与b 垂直,记作a ⊥b 10两个非零向量垂直的充要条件:a ⊥b ⇔a ·b =O ⇔2121=+y y x x 平面向量数量积的性质。
高中数学必修知识点空间向量知识点

高中数学必修知识点空间向量知识点在高中数学的学习中,空间向量是一个重要的知识点,它为我们解决空间几何问题提供了全新的思路和方法。
接下来,就让我们一起深入了解一下空间向量的相关知识。
一、空间向量的基本概念空间向量是指具有大小和方向的量。
它与平面向量类似,但存在于三维空间中。
一个空间向量可以用有向线段来表示,有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向。
空间向量的坐标表示:在空间直角坐标系中,若向量的起点坐标为\((x_1,y_1,z_1)\),终点坐标为\((x_2,y_2,z_2)\),则该向量的坐标为\((x_2 x_1, y_2 y_1, z_2 z_1)\)。
零向量:长度为\(0\)的向量,其方向任意。
单位向量:长度为\(1\)的向量。
二、空间向量的运算1、加法和减法空间向量的加法和减法运算遵循三角形法则和平行四边形法则。
若\(\overrightarrow{a} =(x_1,y_1,z_1)\),\(\overrightarrow{b} =(x_2,y_2,z_2)\),则\(\overrightarrow{a} +\overrightarrow{b} =(x_1 + x_2, y_1 + y_2, z_1 + z_2)\),\(\overrightarrow{a} \overrightarrow{b} =(x_1 x_2, y_1 y_2, z_1z_2)\)2、数乘运算若\(\lambda\)为实数,\(\overrightarrow{a} =(x,y,z)\),则\(\lambda\overrightarrow{a} =(\lambda x, \lambda y, \lambda z)\)数乘运算的规律:\(\lambda (\overrightarrow{a} +\overrightarrow{b})=\lambda\overrightarrow{a} +\lambda\overrightarrow{b}\)3、数量积空间向量的数量积\(\overrightarrow{a} \cdot \overrightarrow{b} =|\overrightarrow{a}||\overrightarrow{b}|\cos <\overrightarrow{a},\overrightarrow{b}>\)若\(\overrightarrow{a} =(x_1,y_1,z_1)\),\(\overrightarrow{b} =(x_2,y_2,z_2)\),则\(\overrightarrow{a} \cdot \overrightarrow{b} = x_1x_2 + y_1y_2 + z_1z_2\)数量积的性质:\(\overrightarrow{a} \perp \overrightarrow{b} \Leftrightarrow \overrightarrow{a} \cdot \overrightarrow{b} = 0\)\(\overrightarrow{a} \cdot \overrightarrow{a} =|\overrightarrow{a}|^2\)4、向量积空间向量的向量积\(\overrightarrow{a} \times \overrightarrow{b}\)是一个向量,其模长为\(|\overrightarrow{a}||\overrightarrow{b}|\sin <\overrightarrow{a},\overrightarrow{b}>\),方向垂直于\(\overrightarrow{a}\)和\(\overrightarrow{b}\)所确定的平面,遵循右手定则。
2021版高考数学一轮复习第五章平面向量第2讲平面向量基本定理及坐标表示练习理北师大版

第2讲 平面向量基本定理及坐标表示[基础题组练]1.在平面直角坐标系中,已知向量a =(1,2),a -12b =(3,1),c =(x ,3),若(2a +b )∥c ,则x =( )A .-2B .-4C .-3D .-1解析:选D.因为a -12b =(3,1),所以a -(3,1)=12b ,则b =(-4,2).所以2a +b=(-2,6).又(2a +b )∥c ,所以-6=6x ,x =-1.故选D.2.(2020·安徽合肥第一次质检)设向量a =(-3,4),向量b 与向量a 方向相反,且|b |=10,则向量b 的坐标为( )A.⎝ ⎛⎭⎪⎫-65,85B .(-6,8) C.⎝ ⎛⎭⎪⎫65,-85D .(6,-8)解析:选D.因为向量b 与向量a 方向相反,所以可设b =λa =(-3λ,4λ),λ<0,则|b |=9λ2+16λ2=25λ2=5|λ|=-5λ=10,所以λ=-2,所以b =(6,-8).故选D.3.已知向量AC →,AD →和AB →在边长为1的正方形网格中的位置如图所示,若AC →=λAB →+μAD →,则λ+μ等于( )A .2B .-2C .3D .-3解析:选A.如图所示,建立平面直角坐标系,则AD →=(1,0),AC →=(2,-2),AB →=(1,2).因为AC →=λAB →+μAD →,所以(2,-2)=λ(1,2)+μ(1,0)=(λ+μ,2λ),所以⎩⎪⎨⎪⎧2=λ+μ,-2=2λ,解得⎩⎪⎨⎪⎧λ=-1,μ=3.所以λ+μ=2.故选A. 4.已知平面直角坐标系内的两个向量a =(m ,3m -4),b =(1,2),且平面内的任一向量c 都可以唯一地表示成c =λa +μb (λ,μ为实数),则m 的取值范围是( )A .(-∞,4)B .(4,+∞)C .(-∞,4)∪(4,+∞)D .(-∞,+∞)解析:选C.平面内的任意向量c 都可以唯一地表示成c =λa +μb ,由平面向量基本定理可知,向量a ,b 可作为该平面所有向量的一组基底,即向量a ,b 是不共线向量.又因为a =(m ,3m -4),b =(1,2),则m ×2-(3m -4)×1≠0,即m ≠4,所以m 的取值范围为(-∞,4)∪(4,+∞).5.在平面直角坐标系xOy 中,已知A (1,0),B (0,1),C 为坐标平面内第一象限内的点,且∠AOC =π4,|OC |=2,若OC →=λOA →+μOB →,则λ+μ=( )A .2 2B . 2C .2D .4 2解析:选A.因为|OC |=2,∠AOC =π4,所以C (2,2),又因为OC →=λOA →+μOB →,所以(2,2)=λ(1,0)+μ(0,1)=(λ,μ),所以λ=μ=2,λ+μ=2 2.6.(2020·湖北荆门阶段检测)在△AOB 中,AC →=15AB →,D 为OB 的中点,若DC →=λOA →+μOB →,则λμ的值为________.解析:因为AC →=15AB →,所以AC →=15(OB →-OA →),因为D 为OB 的中点,所以OD →=12OB →,所以DC →=DO →+OC →=-12OB →+(OA →+AC →)=-12OB →+OA →+15(OB →-OA →)=45OA →-310OB →,所以λ=45,μ=-310,则λμ的值为-625.答案:-6257.已知O 为坐标原点,向量OA →=(1,2),OB →=(-2,-1),若2AP →=AB →,则|OP →|=________. 解析:设P 点坐标为(x ,y ),AB →=OB →-OA →=(-2,-1)-(1,2)=(-3,-3),AP →=(x-1,y -2),由2AP →=AB →得,2(x -1,y -2)=(-3,-3),所以⎩⎪⎨⎪⎧2x -2=-3,2y -4=-3,解得⎩⎪⎨⎪⎧x =-12,y =12.故|OP →|=14+14=22. 答案:228.已知A (-3,0),B (0,3),O 为坐标原点,C 在第二象限,且∠AOC =30°,OC →=λOA →+OB →,则实数λ的值为________.解析:由题意知OA →=(-3,0),OB →=(0,3), 则OC →=(-3λ,3),由∠AOC =30°知,以x 轴的非负半轴为始边,OC 为终边的一个角为150°,所以tan 150°=3-3λ, 即-33=-33λ,所以λ=1. 答案:19.已知A (-2,4),B (3,-1),C (-3,-4).设AB →=a ,BC →=b ,CA →=c ,且CM →=3c ,CN →=-2b .(1)求3a +b -3c ;(2)求满足a =m b +n c 的实数m ,n ; (3)求M ,N 的坐标及向量MN →的坐标.解:由已知得a =(5,-5),b =(-6,-3),c =(1,8). (1)3a +b -3c =3(5,-5)+(-6,-3)-3(1,8) =(15-6-3,-15-3-24)=(6,-42). (2)因为m b +n c =(-6m +n ,-3m +8n ),所以⎩⎪⎨⎪⎧-6m +n =5,-3m +8n =-5,解得⎩⎪⎨⎪⎧m =-1,n =-1.(3)设O 为坐标原点,因为CM →=OM →-OC →=3c , 所以OM →=3c +OC →=(3,24)+(-3,-4)=(0,20). 所以M (0,20).又因为CN →=ON →-OC →=-2b ,所以ON →=-2b +OC →=(12,6)+(-3,-4)=(9,2), 所以N (9,2).所以MN →=(9,-18). 10.如图,AB 是圆O 的直径,C ,D 是圆O 上的点,∠CBA =60°,∠ABD =45°,CD →=xOA →+yBC →,求x +y 的值.解:不妨设⊙O 的半径为1,以圆心O 为坐标原点,以OB ,OD 为x ,y 轴的正方向,建立如图所示的直角坐标系,则A (-1,0),B (1,0),D (0,1),C ⎝ ⎛⎭⎪⎫12,-32.所以CD →=⎝ ⎛⎭⎪⎫-12,1+32,BC →=⎝ ⎛⎭⎪⎫-12,-32.又CD →=xOA →+yBC →, 所以⎝ ⎛⎭⎪⎫-12,1+32=x (-1,0)+y ⎝ ⎛⎭⎪⎫-12,-32.所以⎩⎪⎨⎪⎧-12=-x -12y ,1+32=-32y ,解得⎩⎪⎨⎪⎧x =3+33,y =-3+233.所以x +y =3+33-3+233=-33.[综合题组练]1.已知P ={}a |a =(1,0)+m (0,1),m ∈R ,Q ={b |b =(1,1)+n (-1,1),n∈R }是两个向量集合,则P ∩Q 等于( )A.{}(1,1) B .{}(-1,1) C.{}(1,0)D .{}(0,1)解析:选A.设a =(x ,y ),则所以集合P 是直线x =1上的点的集合.同理,集合Q 是直线x +y =2上的点的集合,即P ={}(x ,y )|x =1,y ∈R ,Q ={}(x ,y )|x +y -2=0,所以P ∩Q ={}(1,1).故选A.2.(2020·包河区校级月考)古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:将一线段AB 分为两线段AC ,CB ,合得其中较长的一段AC 是全长与另一段CB 的比例中项,即满足AC AB =BC AC =5-12,后人把这个数称为黄金分割数,把点C 称为线段AB 的黄金分割点,在△ABC 中,若点P ,Q 为线段BC 的两个黄金分割点,设AP →x 1AB→+y 1AC →,AQ →=x 2AB →+y 2AC →,则x 1x 2+y 1y 2=( )A.5+12B .2 C. 5D .5+1解析:选C.由题意, AP →=AB →+BP →=AB →+⎝ ⎛⎭⎪⎫1-5-12BC →=AB →+3-52(AC →-AB →) =⎝⎛⎭⎪⎫1-3-52AB →+3-52AC →=5-12AB →+3-52AC →,同理,AQ →=AB →+BQ →=AB →+5-12BC →=AB →+5-12(AC →-AB →)=3-52AB →+5-12AC →. 所以x 1=y 2=5-12,x 2=y 1=3-52. 所以x 1x 2+y 1y 2=5-13-5+3-55-1= 5.3.(创新型)若α,β是一组基底,向量γ=x α+y β(x ,y ∈R ),则称(x ,y )为向量γ在基底α,β下的坐标,现已知向量a 在基底p =(1,-1),q =(2,1)下的坐标为(-2,2),则a 在另一组基底m =(-1,1),n =(1,2)下的坐标为________.解析:因为a 在基底p ,q 下的坐标为(-2,2), 即a =-2p +2q =(2,4), 令a =x m +y n =(-x +y ,x +2y ),所以⎩⎪⎨⎪⎧-x +y =2,x +2y =4,即⎩⎪⎨⎪⎧x =0,y =2. 所以a 在基底m ,n 下的坐标为(0,2). 答案:(0,2)4.已知非零不共线向量OA →,OB →,若2OP →=xOA →+yOB →,且PA →=λAB →(λ∈R ),则点P (x ,y )的轨迹方程是________.解析:由PA →=λAB →,得OA →-OP →=λ(OB →-OA →), 即OP →=(1+λ)OA →-λOB →. 又2OP →=xOA →+yOB →,所以⎩⎪⎨⎪⎧x =2+2λ,y =-2λ,消去λ得x +y -2=0.答案:x +y -2=0 5.(一题多解)如图,在同一个平面内,向量OA →,OB →,OC →的模分别为1,1,2,OA →与OC →的夹角为α,且tan α=7,OB →与OC →的夹角为45°.若OC →=mOA →+nOB →(m ,n ∈R ),求m +n 的值.解:法一:以O 为坐标原点,OA 所在直线为x 轴建立平面直角坐标系,则A (1,0),由tan α=7,α∈⎝ ⎛⎭⎪⎫0,π2,得sin α=752,cos α=152,设C (x C ,y C ),B (x B ,y B ),则x C =|OC →|cos α=2×152=15,y C =|OC →|sin α=2×752=75,即C ⎝⎛⎭⎪⎫15,75.又cos(α+45°)=152×12-752×12=-35,sin (α+45°)=752×12+152×12=45,则x B =|OB→|cos(α+45°)=-35,y B =|OB →|sin (α+45°)=45,即B ⎝ ⎛⎭⎪⎫-35,45,由OC →=m OA →+n OB →,可得⎩⎪⎨⎪⎧15=m -35n ,75=45n ,解得⎩⎪⎨⎪⎧m =54,n =74,所以m +n =54+74=3. 法二:由tan α=7,α∈⎝ ⎛⎭⎪⎫0,π2,得sin α=752,cos α=152,则cos(α+45°)=152×12-752×12=-35,OB →·OC →=1×2×22=1,OA →·OC →=1×2×152=15,OA →·OB→=1×1×⎝ ⎛⎭⎪⎫-35=-35,由OC →=m OA →+n OB →,得OC →·OA →=m OA →2+n OB →·OA →,即15=m -35n ①,同理可得OC →·OB →=m OA →·OB →+n OB →2,即1=-35m +n ②,联立①②,解得⎩⎪⎨⎪⎧m =54,n =74.所以m+n =54+74=3.6.已知△ABC 中,AB =2,AC =1,∠BAC =120°,AD 为角平分线. (1)求AD 的长度;(2)过点D 作直线交AB ,AC 的延长线于不同两点E ,F ,且满足AE →=xAB →,AF →=yAC →,求1x+2y的值,并说明理由.解:(1)根据角平分线定理:DB DC =AB AC =2,所以BD BC =23, 所以AD →=AB →+BD →=AB →+23BC →=AB →+23(AC →-AB →)=13AB →+23AC →,所以AD →2=19AB →2+49AB →·AC →+49AC →2=49-49+49=49,所以AD =23.(2)因为AE →=xAB →,AF →=yAC →,所以AD →=13AB →+23AC →=13x AE →+23y AF →,因为E ,D ,F 三点共线,所以13x +23y =1,所以1x +2y =3.。
高中数学平面向量知识点总结及常见题型

高中数学平面向量知识点总结及常见题型平面向量一、向量的基本概念与基本运算1.向量的概念:向量是既有大小又有方向的量。
向量一般用a、b、c等字母来表示,或用有向线段的起点与终点的大写字母表示,如:AB(几何表示法)或a(坐标表示法)。
向量的大小即向量的模(长度),记作|AB|或|a|。
向量不能比较大小,但向量的模可以比较大小。
②零向量:长度为0的向量,记为0,其方向是任意的,与任意向量平行。
③单位向量:模为1个单位长度的向量。
向量a为单位向量|a|=1.④平行向量(共线向量):方向相同或相反的非零向量。
任意一组平行向量都可以移到同一直线上。
方向相同或相反的向量,称为平行向量,记作a∥b。
由于向量可以进行任意的平移(即自由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量。
⑤相等向量:长度相等且方向相同的向量。
相等向量经过平移后总可以重合,记为a b。
大小相等,方向相同(x1,y1)(x2,y2)x1x2,y1y2.2.向量加法求两个向量和的运算叫做向量的加法。
设AB a,BC b,则a+b=AB BC=AC。
1)0+a=a;(2)向量加法满足交换律与结合律;向量加法有“三角形法则”与“平行四边形法则”:1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量。
2)三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点。
当两个向量的起点公共时,用平行四边形法则;当两向量是首尾连接时,用三角形法则。
向量加法的三角形法则可推广至多个向量相加:AB BC CD…+PQ QR AR,但这时必须“首尾相连”。
3.向量的减法①相反向量:与a长度相等、方向相反的向量,叫做a的相反向量,记作a。
零向量的相反向量仍是零向量。
关于相反向量有:(i)(a)=a;(ii) a+(a)=(a)+a=0.iii) 若向量a、b互为相反向量,则a=-b,b=-a,a+b=0.向量减法:向量a加上b的相反向量叫做a与b的差,记作a-b=a+(-b),求两个向量差的运算,叫做向量的减法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湖南卷文8.已知向量 ,向量 则 的最大值,最小值分别是()
A. B. C.16,0D.4,0
江苏卷16.平面向量 中,已知 =(4,-3), =1,且 =5,则向量 =______( )
上海卷文理6已知点A(1,-2),5,4)
(2000—文(2),理(4))
设a,b,c是任意的非零平面向量,且相互不共线,则
①(a•b)•c-(c·a)·b=0;
②|a|-|b|<|a-b|;
③(b·c)·a-(c·a)·b不与c垂直;
④(3a+2b)·(3a-2b)=9|a|2-4|b|2.
中,是真命题的有( ).
(A)①②(B)②③(C)③④(D)②④
已知两点 , 且点 使 , , 成公差小于 的等差数列.
(Ⅰ)点 的轨迹是什么曲线?
(Ⅱ)若点 坐标为 ,记 为 与 的夹角,求 .
分值
12
难度
文史
理工
0.16
0.25
(2003—文(8),理(4))
2.向量的运算:向量的加减法,数与向量的乘积,向量的数量(内积)及其各运算的坐标表示和性质
3.重要定理、公式(1)平面向量基本定理: 是同一平面内两个不共线的向量,那么,对于这个平面内任一向量,有且仅有一对实数 ,使
(2)两个向量平行的充要条件 ∥ =λ
(3)两个向量垂直的充要条件 ⊥ · =O
(4)线段的定比分点公式设点P分有向线段 所成的比为λ,即 =λ ,
(A)1(B) (C) (D)
重庆卷文理6.若向量 的夹角为 , ,则向量 的模为:()
A 2 B4C6 D 12
湖北卷理4文7.已知 为非零的平面向量.甲: ()
A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件
C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件
湖北卷文理19.如图,在Rt△ABC中,已知BC=a,若长为2a的线段PQ以点A为中点,问 的夹角 取何值时 的值最大?并求出这个最大值
(A) (B) (C) (D)
分值
5
难度
0.905
(2001—理(5))
若向量a=(1,1),b=(1,-1),c=(-1,2),则c=( ).
(A) a+ b(B) a b
(C) a b(D) a+ b
分值
5
难度
0.935
(2001—文(10),理(10))
设坐标原点为 ,抛物线 与过焦点的直线交于 两点,则( ).
天津卷理3文4.若平面向量 与向量 的夹角是 ,且 ,则 =
A. B. C. D.
天津卷文14.已知向量 , ,若 与 垂直,则实数 等于(-1)
浙江卷文理14.已知平面上三点A,B,C满足 则 的值等于-25
福建卷文理8.已知 、 是非零向量且满足( -2 ) ⊥ ,( -2 ) ⊥ ,则 与 的夹角是
一、知识结构:
二、基本知识点:
1.向量的概念:(1)向量的基本要素:大小和方向 (2)向量的表示:几何表示法 , ;坐标表示法 (3)向量的长度:即向量的大小,记作| | (4)特殊的向量:零向量 = | |=0.单位向量 为单位向量 | |=1 (5)相等的向量:大小相等,方向相同 (6)平行向量(共线向量):方向相同或相反的向量,称为平行向量.记作 ∥ .由于向量可以进行任意的平移(即自由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量
全国卷三理(10)文(11)在 中, ,则边 上的高为()
A. B. C. D.
全国卷四理11文12.△ABC中,a,b,c分别为∠A、∠B、∠C的对边.如果a,b,c成等差数列,∠B=30°,△ABC的面积为 ,那么b=()A. B. C. D.
全国卷四文15.向量 , 满足( - )·(2 + )=-4,且| |=2,| |=4,则 与 夹角的余弦值等于( )
全国卷一文理3.已知 , 均为单位向量,它们的夹角为60°,那么| +3 |=A B C D4
全国卷二理(9)已知平面上直线 的方向向量 ,点O(0,0)和A(1,-2)在 上的射影分别是O1和A1,则 = ,其中 =()(A) (B)- (C)2(D)-2
全国卷二文(9)已知向量 、 满足:| |=1,| |=2,| - |=2,则| + |=()
(4)了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算.
(5)掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度,角度和垂直的问题,掌握向量垂直的条件.
(6)掌握平面两点间的距离公式,以及线段的定比分点和中点坐标公式,并且能熟练运用,掌握平移公式.
3.四年试题:
分值
5
难度
文史
理工
0.52
0.64
(2000—文(22),理(22))
如图,已知梯形 中, ,点 满足 ,双曲线过 三点,且以 为
焦点,当 时,求双曲线离心率 的取值范围.
:文史类,题目中的 给出具体的值 ,求离心率 的值)
分值
14
难度
文史
理工
0.07
0.08
(2001—文(5))
若向量a=(3,2),b=(0,-1),则向量2b-a的坐标是( ).
(一)平面向量
1.考试内容:向量,向量的加法与减法,实数与向量的积,平面向量的坐标表示,线段的定比分点,平面向量的数量积,平面两点间的距离,平移.
2.考试要求:
(1)理解向量的概念,掌握向量的几何表示,了解共线向量的概念.
(2)掌握向量的加法和减法.
(3)掌握实数与向量的积,理解两个向量共线的充要条件.
则 = + (向量公式) (坐标公式)
当λ=1时,得中点公式: = ( + )或
(5)平移公式设点 按向量 平移后得到点 ,则 = + 或 ,曲线 按向量 平移后所得的曲线的函数解析式为: (6)正弦定理:
余弦定理:
,
三、巩固训练(高考试题)
广东卷1.已知平面向量 , ,且 ,则x=()A. –3 B. –1C. 1 D . 3
(A) (B) (C) (D)
分值
5
难度
文史
理工
0.620
0.790
(2002—文(12),理(10))
平面直角坐标系中, 为坐标原点,已知两点 , ,若点 满足 ,其中 ,且 ,则点 的轨迹方程为( ).
(A) (B)
(C) (D)
分值
5
难度
文史
理工
0.453
0.623
(2002—文(22),理(21))