矩阵及矩阵运算的应用

矩阵及矩阵运算的应用
矩阵及矩阵运算的应用

矩阵及矩阵运算的应用

例1 在讨论国民经济的数学问题中也常用到矩阵.例如,假设在某一地区,某一种物资,比如说媒,

有s 个产地A 1,A 2,…,A S 和n 个销地B 1,B 2,…,B n .那么一个调运方案就可以用一个矩阵

????

??

?

?

?

sn s s n n a a a a a a a a a 212222111211 来表示.其中a ij 表示由产地A i 运到销地B j 的数量.

则某一种物资若有s 个产地,n 个销地.那么一个调运方案就可表示为一个s ?n 矩阵,矩阵中的元素表示由产地A i 要运到销地B j 的这种物资的数量,比如说吨数.如果从这些产地还有另一种物资要用到这些销地,那么这种物资的调运方案也可表示为s ?n 矩阵,于是从产地到销地的总的运输

量也表示为一个矩阵.显然,这个矩阵就等于上面俩个矩阵的和.

例2 在ABO 血型的人们中,对各种群体的基因的频率进行了研究.如果我们把四种等位基因1A 、2A 、B 、O 区别开,有人报告了如下的相对频率,见下表

现在的问题是:一个群体与另外一个群体的接近程度如何?换句话说,就是要找到一个表示基因的“距离”合宜的度量.

解:有人提出一种利用矢量代数的方法.首先,我们用单位矢量,即绝对值为1的矢量,来表示每一个群体.为此目的,我们取每一种频率的平方根,记ki x =.由于对这四种群体

的每一种有

4

1

1,ki

i f

==∑所以我们得到4

2

1

1.ki i x ==∑.这意味着下列四个矢量

(爱斯基摩人)(班图人)(英国人)(朝鲜人)

311121413212224212341323433314244434,,,x x x x x x x x

x x x x x x x x αααα???????? ? ? ? ? ? ? ? ?==== ? ? ? ? ? ? ? ? ? ? ? ?

????????

的每一个都是单位矢量,即在四维空间中,这些矢量的顶端都位于一个半径为1的球面上. 现在用两个矢量间的夹角来表示两个对应的群体间的“距离”似乎是合理的.如果我们把1α和2α之间的夹角记为θ,那么由于121αα==,再由内积公式,得:cos θ=12.αα

有详细的数值是

120.53980.32160.00000.2943,0.17780.34640.82280.8307αα???? ? ? ? ?== ? ? ? ?????

cos θ=12.αα=(0.5398)(0.3216)+…….=0.9187

θ= 23.2。

按同样的方式,我们可得到下表:(单位为度)

最小的“距离”是班图人和英国人之间的“距离”,而爱斯基摩人和班图人之间的“距离”最大.

例3 人口迁移的动态分析问题 对城乡人口流动做年度调查,发现有一个稳定的朝向城镇流动的趋势:每年农村居民的2.5%移居城镇,而城镇居民的1%迁出.现在总人口的60%位于城镇.假如城乡总人口保持不变,并且认可流动的这种趋势继续下去,那么一年以后住在城镇人口所占比例是多少?两年以后呢?十年以后呢?最终呢?

解 设开始时,令乡村人口为0y ,城镇人口为0z ,一年以后有

乡村人口: .1001

1000975100y z y =+ 城镇人口:

.100

99

100025100z z y =+ 或写成矩阵形式

.1009910002510011000975

0011???

? ??????

??????=???? ??z y z y

两年以后,有

.1009910002510011000975

.1009910002510011000975001122???

? ??????

??????=???? ????????????=???? ??z y z y z y 十年以后,有

.1009910002510011000975

0010

1010???

? ???

???

??????=???? ??z y z y 事实上,它给出了一个差分方程;1+k u =A k u .我们现在来解这个差分方程.首先

.1009910002510011000975

????

??????=A

k 年之后的分布(将A 对角化):

.757

57275

10

0)200193(11521.0000???? ??????

?

?????-????????????????-=???? ??=???? ??z y z y A z y k k

k k =(00z y +)???

???????--+??????????7575)200193)(52(757200k y z .

这就是我们所要的解,而且容易看出经过很长一个时期以后这个解会达到一个极限状态

)(∞

z y =(00z y +)????

?

?????7572

总人口仍是00z y +,与开始时一样,但在此极限中人口的

75在城镇,而7

2

在乡村.无论初始分部是什么样的,这总是成立的.值得注意的是这个稳定的状态正是A 的属于特征值1的特

征向量.上述例子有一些很好的性质:人口总数保持不变,而且乡村和城镇的人口数绝不能为负.前一性质反映在下面的事实中:矩阵每一列加起来为1,每个人都被计算在内,而没有人重复或丢失.后一性质则反映在下面的事实中:矩阵没有负元素;同样地0y 和0z 也是非负

的,从而1y 和1z ,2y 和2z 等也是这样.

第3章 矩阵及其运算

第3章 矩阵及其运算 3.1 基本要求、重点难点 基本要求: 1.1.掌握矩阵的定义. 2.2.掌握矩阵的运算法则. 3.3.掌握伴随矩阵的概念及利用伴随矩阵求逆矩阵的方法. 4.4.掌握矩阵秩的概念及求矩阵秩的方法. 5.5. 掌握初等变换和初等矩阵的概念,能够利用初等变换计算矩阵的秩,求可逆矩阵的逆矩阵. 6.6.掌握线形方程组有解得判定定理及其初等变换解线形方程组的方法. 重点难点:重点是矩阵定义,矩阵乘法运算,逆矩阵的求法,矩阵的秩,初等 变换及线性方程组的解. 难点是矩阵乘法,求逆矩阵的伴随矩阵方法. 3.2 基本内容 3.2.1 3.2.1 重要定义 定义3.1 由n m ?个数)2,1;,2,1(n j m i a ij ==组成的m 行n 列的数表成为一个m 行n 列矩阵,记为 ????????????mn m m n n a a a a a a a a a 2122221 11211 简记为A n m ij a ?=)(,或A )(ij a =,n m A ?,mn A 注意行列式与矩阵的区别: (1) (1) 行列式是一个数,而矩阵是一个数表. (2) (2) 行列式的行数、列数一定相同,但矩阵的行数、列数不一定相 同. (3) (3) 一个数乘以行列式,等于这个数乘以行列式的某行(或列)的所有元素,而一个数乘以矩阵等于这个数乘以矩阵的所有元素. (4) (4) 两个行列式相等只要它们表示的数值相等即可,而两个矩阵相等则要求两个矩阵对应元素相等. (5) (5) 当0||≠A 时,||1A 有意义,而A 1 无意义.

n m =的矩阵叫做阶方阵或m 阶方阵.一阶方阵在书写时不写括号,它在 运算中可看做一个数. 对角线以下(上)元素都是0的矩阵叫上(下)三角矩阵,既是上三角阵, 又是下三角的矩阵,也就是除对角线以外的元素全是0的矩阵叫对角矩阵.在对角矩阵中,对角线上元素全一样的矩阵叫数量矩阵;数量矩阵中,对角线元素全是1的n 阶矩阵叫n 阶单位矩阵,常记为n E (或n I ),简记为E (或I ),元素都是0的矩阵叫零矩阵,记为n m 0?,或简记为0. 行和列分别相等的两个矩阵叫做同型矩阵,两个同型矩阵的且对应位置上的 元素分别相等的矩阵叫做相等矩阵. 设有矩阵A =n m ij a ?)(,则A -n m ij a ?-=)(称为A 的负矩阵. 若A 是方阵,则保持相对元素不变而得到的行列式称为方针A 的行列式,记 为||A 或A Det . 将矩阵A 的行列式互换所得到的矩阵为A 的转置矩阵,记为T A 或A '. 若方阵A 满足A A T =,则称A 为对称矩阵,若方阵A 满足A A T -=,则称A 为反对称矩阵. 若矩阵的元素都是实数,则矩阵称为实矩阵.若矩阵的元素含有复数,则称矩 阵为复矩阵,若A =n m ij a ?)(是复矩阵,则称矩阵n m ij a ?)((其中ij a 为ij a 的共轭矩阵,记为A n m ij a ?=)(. 定义3.2 对于n 阶矩阵A ,如果存在n 阶矩阵B ,使得E BA AB ==,则 称方阵A 可逆,B 称为A 的逆矩阵,记做1-=A B . 对于方阵A n m ij a ?=)(,设ij a 的代数余子式为ij A ,则矩阵 *A ????????????=nm n n n n A A A A A A A A A 2122212 12111 称为A 的伴随矩阵,要注意伴随矩阵中元素的位置. 定义3.3 设有矩阵A ,如果: (1) (1) 在A 中有一个r 阶子式D 不为零.

矩阵的运算及其运算规则

矩阵基本运算及应用 201700060牛晨晖 在数学中,矩阵是一个按照长方阵列排列的复数或实数集合。矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。在电力系统方面,矩阵知识已有广泛深入的应用,本文将在介绍矩阵基本运算和运算规则的基础上,简要介绍其在电力系统新能源领域建模方面的应用情况,并展望随机矩阵理论等相关知识与人工智能电力系统的紧密结合。 1矩阵的运算及其运算规则 1.1矩阵的加法与减法 1.1.1运算规则 设矩阵,, 则

简言之,两个矩阵相加减,即它们相同位置的元素相加减! 注意:只有对于两个行数、列数分别相等的矩阵(即同型矩阵),加减法运算才有意义,即加减运算是可行的. 1.1.2运算性质 满足交换律和结合律 交换律; 结合律. 1.2矩阵与数的乘法 1.2.1运算规则 数乘矩阵A,就是将数乘矩阵A中的每一个元素,记为或. 特别地,称称为的负矩阵. 1.2.2运算性质 满足结合律和分配律 结合律:(λμ)A=λ(μA);(λ+μ)A =λA+μA. 分配律:λ(A+B)=λA+λB.

已知两个矩阵 满足矩阵方程,求未知矩阵. 解由已知条件知 1.3矩阵与矩阵的乘法 1.3.1运算规则 设,,则A与B的乘积是这样一个矩阵: (1) 行数与(左矩阵)A相同,列数与(右矩阵)B相同,即 . (2) C的第行第列的元素由A的第行元素与B的第列元素对应相乘,再取乘积之和.

矩阵的秩与行列式的几何意义

矩阵的秩与行列式的几何意义 这里首先讨论一个长期以来困惑工科甚至物理系学生的一个数学问题,即,究竟什么是面积,以及面积的高维推广(体积等)? 1 关于面积:一种映射 大家会说,面积,不就是长乘以宽么,其实不然。我们首先明确,这里所讨论的面积,是欧几里得空间几何面积的基本单位:平行四边形的面积。平行四边形面积的定义,几何上说是相邻两边边长乘以他们之间的夹角的正弦。 然而为了应对更一般情形和更高维度的数理问题,我们有必要把面积的定义推广开来。注意到以下事实: 面积是一个标量,它来自于(构成其相邻边)两个矢量。因此,我们可以将面积看成一个映射: 其中V就是一个矢量,V*V代表两个矢量的有序对;f就是面积的值。 下面我们将说明这个映射是一个线性映射。 从最简单的例子出发。如果第一个矢量是(1,0),第二个矢量是(0,1);也就是说,两个矢量分别是X和Y轴上的单位正向量,那么由这两个矢量张成的四边形就是一个正方形,其面积根据定义,就是长乘以宽=1*1=1。 因此有:

如果我们把第一个矢量”缩放“a倍,面积将会相应是原来的a倍;把第二个矢量“缩放”b倍,面积也会成为原来的b倍。如果同时缩放,很显然,面积将会变成原面积的ab倍。这表明,面积映射对于其两个操作数(矢量)的标量积是各自线性的,如下: 最后,我们要说明,面积映射对于其操作数(矢量)的矢量加法也是线性的。因为矢量加法操作的本身是线性的,那么其面积映射理应对此也是一个线性映射。这里我们打算从几个实际的例子出发,说明映射的加法线性性的后果。 显然(两个共线矢量所张成的平行四边形还是一条线,因此面积为0): 假定面积映射是一个关于矢量加法的线性映射,那么我们有: 注意计算过程中用到了上面的结论。这说明:

求矩阵的基本运算

求矩阵的基本运算 #include #include void jiafa() { int m,n; float a[20][20],b[20][20],c[20][20]; int i,j; printf("请输入矩阵行数:"); scanf("%d",&m); printf("请输入矩阵列数:"); scanf("%d",&n); printf("请输入第一个矩阵:"); for(i=0; i

矩阵的定义及其运算规则 (2)

矩阵的定义及其运算规则 1、矩阵的定义 一般而言,所谓矩阵就是由一组数的全体,在括号()内排列成m行n 列(横的称行,纵的称列)的一个数表,并称它为m×n阵。 矩阵通常是用大写字母 A 、B …来表示。例如一个m 行n 列的矩阵可以简记为: ,或 。即: (2-3) 我们称(2-3)式中的为矩阵A的元素,a的第一个注脚字母,表示矩阵的行数,第二个注脚字母j(j=1,2,…,n)表示矩阵的列数。 当m=n时,则称为n阶方阵,并用表示。当矩阵(a ij)的元素仅有一行或一列时,则称它为行矩阵或列矩阵。设两个矩阵,有相同的行数和相同的列数,而且 它们的对应元素一一相等,即,则称该两矩阵相等,记为A=B。 2、三角形矩阵 由i=j的元素组成的对角线为主对角线,构成这个主对角线的元素称为主对角线元素。 如果在方阵中主对角线一侧的元素全为零,而另外一侧的元素不为零或不全为零,则该矩阵叫做三角形矩阵。例如,以下矩阵都是三角形矩阵: ,,,。 3、单位矩阵与零矩阵 在方阵中,如果只有的元素不等于零,而其他元素全为零,如: 则称为对角矩阵,可记为。如果在对角矩阵中所有的彼此

都相等且均为1,如:,则称为单位矩阵。单位矩阵常用E来表示,即: 当矩阵中所有的元素都等于零时,叫做零矩阵,并用符号“0”来表示。 4、矩阵的加法 矩阵A=(a ij)m×n和B=(b ij)m×n相加时,必须要有相同的行数和列数。如以C=(c ij)表示矩阵A及B的和,则有: m ×n 式中:。即矩阵C的元素等于矩阵A和B的对应元素之和。 由上述定义可知,矩阵的加法具有下列性质(设A、B、C都是m×n矩阵): (1)交换律:A+B=B+A (2)结合律:(A+B)+C=A+(B+C) 5、数与矩阵的乘法 我们定义用k右乘矩阵A或左乘矩阵A,其积均等于矩阵中的所有元素都乘上k之后所得的矩阵。如: 由上述定义可知,数与矩阵相乘具有下列性质:设A、B都是m×n矩阵,k、h为任意常数,则: (1)k(A+B)=kA+kB (2)(k+h)A=kA+hA (3)k(hA)=khA

矩阵的秩的相关不等式的归纳小结

矩阵的秩的相关不等式的归 纳小结 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

矩阵的秩的相关不等式的归纳小结 林松 (莆田学院数学系,福建,莆田) 摘要:利用分块矩阵,证明一些矩阵的秩的相关不等式,观察矩阵在运算后秩的变化,归纳出常见的有关矩阵的秩的不等式,由此引出等式成立的条件。 关键词:矩阵的秩,矩阵的初等变换 引言:矩阵的秩是指矩阵中行(或列)向量组的秩,与之等价的说法通常是指矩阵中不为零的子式的最高阶数,是矩阵最重要的数字特征之一。利用分块矩阵,把子式看成元素,可将高阶矩阵的运算化为较低阶矩阵的运算,也为矩阵的秩的一些常见不等式的证明带来了方便。本文将讨论矩阵的秩的一些常见不等式,并由此引出一些秩的不等式等号成立的等价条件。 一基本的定理 1 设A是数域P上n m ?矩阵,于是 ?矩阵,B是数域上m s 秩(AB)≤min [秩(A),秩(B)],即乘积的秩不超过个因子的秩 2设A与B是m n ?矩阵,秩(A±B)≤秩(A)+秩(B) 二常见的秩的不等式 1 设A与B为n阶方阵,证明若AB = 0,则 r(A) + r(B) ≤ n 证:设r(A) = r,r(B )= s,则由AB = 0,知,B的每一列向量都是以A为系数方阵的齐次线性方程组的解向量。 当r = n时,由于该齐次方程组只要零解,故此时 B = 0,即此时r(A) = n,r(B) = 0,结论成立。 当r〈 n 时,该齐次线性方程组的基础解系中含n-r个向量,

从而B 的列向量组的秩≤n-r,即r (B )≤ n-r 所以 r(A) + r(B) ≤ n 2设A 为m n ?矩阵,B 为n s ?矩阵,证明不等式r(AB)≤r(A)+r(B)-n 证:设E 为n 阶单位矩阵, S E 为S 阶单位方阵,则由于 000S E B A AB A E E E B ??????= ? ? ?-?????? 而 0S E B E ?? ?-?? 可逆,故 r(A)+r(B) ≥ 秩 0A E B ?? ? ?? =秩 0A AB E ?? ???=秩 0 0AB E ?? ??? =r(AB)+r(E) =r(AB)+n 从而r(AB) ≥ r(A) + r(B) - n 3设A ,B 都是n 阶方阵,E 是n 阶单位方阵,证明 秩(AB-E )≤秩(A-E )+秩(B-E ) 证:因为0A E B E B E --?? ? -??00B E ?? ???00AB E B E -?? = ?-?? 故秩(AB-E )≤秩00AB E B E -?? ?-??≤秩0A E B E B E --?? ?-?? =秩(A-E )+秩(B-E ) 因此 秩(AB-E )≤秩(A-E )+秩(B-E ) 4 设A ,B ,C 依次为,,m n n s s t ???的矩阵,证明 r(ABC) ≥ r(AB) + r(BC) - r(B)

GE矩阵+计算方法+案例(一班三组)

GE矩阵法及其使用方法介绍 一、GE矩阵法概述 GE矩阵法又称通用电器公司法、麦肯锡矩阵、九盒矩阵法、行业吸引力矩阵是美国通用电气公司(GE)于70年代开发了新的投资组合分析方法。对企业进行业务选择和定位具有重要的价值和意义。GE矩阵可以用来根据事业单位在市场上的实力和所在市场的吸引力对这些事业单位进行评估,也可以表述一个公司的事业单位组合判断其强项和弱点。在需要对产业吸引力和业务实力作广义而灵活的定义时,可以以GE矩阵为基础进行战略规划。按市场吸引力和业务自身实力两个维度评估现有业务(或事业单位),每个维度分三级,分成九个格以表示两个维度上不同级别的组合。两个维度上可以根据不同情况确定评价指标。 二、方格分析计算方法介绍: GE矩阵可以用来根据事业单位在市场上的实力和所在市场的吸引力对这些事业 单位进行评估,也可以表述一个公司的事业单位组合判断其强项和弱点。在需要 对产业吸引力和业务实力作广义而灵活的定义时,可以以GE矩阵为基础进行战 略规划。按市场吸引力和业务自身实力两个维度评估现有业务(或事业单位),

每个维度分三级,分成九个格以表示两个维度上不同级别的组合。两个维度上可以根据不同情况确定评价指标。 绘制GE矩阵,需要找出外部(行业吸引力)和内部(企业竞争力)因素,然后对各因素加权,得出衡量内部因素和市场吸引力外部因素的标准。当然,在开始搜集资料前仔细选择哪些有意义的战略事业单位是十分重要的。 1. 定义各因素。选择要评估业务(或产品)的企业竞争实力和市场吸引力所需的重要 因素。在GE内部,分别称之为内部因素和外部因素。下面列出的是经常考虑的一些因素(可能需要根据各公司情况作出一些增减)。确定这些因素的方法可以采取头脑风暴法或名义群体法等,关键是不能遗漏重要因素,也不能将微不足道的因素纳人分析中。 2. 估测内部因素和外部因素的影响。从外部因素开始,纵览这张表(使用同一组经理), 并根据每一因素的吸引力大小对其评分。若一因素对所有竞争对手的影响相似,则对其影响做总体评估,若一因素对不同竞争者有不同影响,可比较它对自己业务的影响和重要竞争对手的影响。在这里可以采取五级评分标准(1=毫无吸引力,2=没有吸引力,3=中性影响,4=有吸引力,5=极有吸引力)。然后也使用5级标准对内部因素进行类似的评定(1=极度竞争劣势,2=竞争劣势,3=同竞争对手持平,4=竞争优势,5=极度竞争优势),在这一部分,应该选择一个总体上最强的竞争对手做对比的对象。 具体的方法是:- 确定内外部影响的因素,并确定其权重- 根据产业状况和企业状况定出产业吸引力因素和企业竞争力因素的级数(五级)- 最后,用权重乘以级数,得出每个因素的加权数,并汇总,得到整个产业吸引力的加权值 下面分别用折线图和表格两种形式来表示。

数学实验矩阵的运算doc资料

数学实验矩阵的运算

数学实验报告 学院: 班级: 学号: 姓名: 完成日期:

实验四矩阵的运算 (一)投入产出分析 一.实验目的 1.理解投入产出分析中的基本概念和模型; 2.从数学和投入产出理论的角度,理解矩阵乘法、逆 矩阵等的含义。 二.问题描述 设国民经济由农业、制造业和服务业三个部门构成,已知某年它们之间的投入产出关系、部需求、初始投入等如表1-1所示 表1-1国民经济三产部门之间的投入产出表 根据表回答下列问题: (1)如果农业、制造业、服务业外部需求为 50,150,100,问三个部门总产出分别为多少? (2)如果三个部门的外部需求分别增加一个单位,问他们的总产出分别为多少? 三.实验过程

1.问题(1)的求解 (1)求直接消耗矩阵A 根据直接消耗的计算公式 a ij=x ij/x j 和各部门中间需求; x n a n 运行如下代码可得直接消耗系数表。 X=[15 20 30;30 10 45;20 60 0]; X_colsum=[100 200 150]; X_rep=repmat(X_colsum,3,1) A=X./ X_rep 运行结果为: A = 0.1500 0.1000 0.2000 0.3000 0.0500 0.3000 0.2000 0.3000 0 (2)求解 根据公式 X=(I-A)-1y 在运行如下代码 y=[50;150;100]; n=size(y,1);

W=eye(n)-A; X=W\y 运行结果为 X = 139.2801 267.6056 208.1377 即三个部门的总产出分别为139.2801,267.6056, 208.1377亿元。 2.问题2求解 设外部需求由y增加至y+Δy,则产出x的增量为Δx=(I-A)-1(y+Δy)- (I-A)-1y=(I-A)-1Δy 利用问题(1)求得的I-A矩阵,再运行如下的MATLAB代码可得问题的结果: dx=inv(W) 运行结果: dx = 1.3459 0.2504 0.3443 0.5634 1.2676 0.4930 0.4382 0.4304 1.2167 根据上述结果可知,当农业的外部需求增加1个单位时,农业、制造业、服务业的总产出分别增加

线性代数论文设计(矩阵在自己专业中地应用及举例)

矩阵在自己专业中的应用及举例

摘要: I、矩阵是线性代数的基本概念,它在线性代数与数学的许多分支中都有重要的应用,许多实际问题可以用矩阵表达并用相关的理论得到解决。 II、文中介绍了矩阵的概念、基本运算、可逆矩阵、矩阵的秩等容。 III、矩阵在地理信息系统中也有许多的应用,比如文中重点体现的在计算机图形学中应用。 关键词: 矩阵可逆矩阵图形学图形变换 正文: 第一部分引言 在线性代数中,我们主要学习了关于行列式、矩阵、方程、向量等相关性比较强的容,而这些容在我们专业的其他一些学科中应用也是比较广泛的,是其它一些学科的很好的辅助学科之一。因此,能够将我们所学的东西融会贯通是一件非常有意义的事,而且对我们的学习只会有更好的促进作用。在计算机图形学中矩阵有一些最基本的应有,但是概念已经与线性代数中的有一些不同的意义。在计算机图形学中,矩阵可以是一个新的额坐标系,也可以是对一些测量点的坐标变换,例如:平移、错切等等。在后面的文章中,我通过查询一些相关的资料,对其中一些容作了比较详细的介绍,希望对以后的学习能够有一定的指导作用。在线性代数中,矩阵也占据着一定的重要地位,

与行列式、方程、向量、二次型等容有着密切的联系,在解决一些问题的思想上是相同的。尤其他们在作为处理一些实际问题的工具上的时候。 图形变换是计算机图形学领域的主要容之一,为方便用户在图形交互式处理过程中度图形进行各种观察,需要对图形实施一系列的变换,计算机图形学主要有以下几种变换:几何变换、坐标变换和观察变换等。这些变换有着不同的作用,却又紧密联系在一起。 第二部分 研究问题及成果 1. 矩阵的概念 定义:由n m ?个数排列成的m 行n 列的矩阵数表 ????? ???????ann an an n a a a n a a a ΛM ΛM M K Λ212222111211 称为一个n m ?矩阵,其中an 表示位于数表中第i 行第j 列的数,i=1,2,3,…n ,又称为矩阵的元素。A,B 元素都是实数的矩阵称为实矩阵。元素属于复数的矩阵称为复矩阵。 下面介绍几种常用的特殊矩阵。 (1)行距阵和列矩阵 仅有一行的矩阵称为行距阵(也称为行向量),如 A=(a11 a12 .... a1n), 也记为 a=(a11,a12,.....a1n). 仅有一列的矩阵称为列矩阵(也称为列向量),如

矩阵的运算及其运算规则

矩阵的运算及其运算规则 一、矩阵的加法与减法 1、运算规则 设矩阵,, 则 简言之,两个矩阵相加减,即它们相同位置的元素相加减! 注意:只有对于两个行数、列数分别相等的矩阵(即同型矩阵),加减法运算才有意义,即加减运算是可行的. 2、运算性质(假设运算都是可行的) 满足交换律和结合律 交换律; 结合律. 二、矩阵与数的乘法 1、运算规则

数乘矩阵A,就是将数乘矩阵A中的每一个元素,记为或.特别地,称称为的负矩阵. 2、运算性质 满足结合律和分配律 结合律:(λμ)A=λ(μA);(λ+μ)A =λA+μA. 分配律:λ(A+B)=λA+λB. 典型例题 例6.5.1已知两个矩阵 满足矩阵方程,求未知矩阵. 解由已知条件知 三、矩阵与矩阵的乘法 1、运算规则

设,,则A与B的乘积是这样一个矩阵: (1) 行数与(左矩阵)A相同,列数与(右矩阵)B相同,即. (2) C的第行第列的元素由A的第行元素与B的第列元素对应相乘,再取乘积之和. 典型例题 例6.5.2设矩阵 计算 解是的矩阵.设它为 想一想:设列矩阵,行矩阵,和的行数和列数分别是多少呢 是3×3的矩阵,是1×1的矩阵,即只有一个元素. 课堂练习

1、设,,求. 2、在第1道练习题中,两个矩阵相乘的顺序是A在左边,B在右边,称为A左乘B 或B右乘A.如果交换顺序,让B在左边,A在右边,即A右乘B,运算还能进行吗?请算算试试看.并由此思考:两个矩阵应当满足什么条件,才能够做乘法运算. 3、设列矩阵,行矩阵,求和,比较两个计算结果,能得出什么结论吗? 4、设三阶方阵,三阶单位阵为,试求和,并将计算结果与A比较,看有什么样的结论. 解: 第1题 . 第2题 对于

矩阵的运算实例程序

设计一个矩阵相乘的程序 假设有 1 5 7 3 3 9 1 4 1 4 A= 3 6 3 9 B= 5 6 7 9 0 3 1 2 8 7 3 2 7 2 5 6 0 3 1 9 9 7 4 7 8 0 3 2 5 4 求出A*B的矩阵 程序构思: 我们所知的矩阵乘法运算的算式如下: C ij = A ik X B kj的k从1到n 的和,那么可以用一个3层循环来运算此算式: C(1,1)=A(1,1)*B(1,1)+A(1,2)*B(2,1)+A(1,3)*B(3,1)+A(1,4)*B(4,1) =(1*3)+(5*5)+(7*3)+(3*9) =3+25+21+27 =76 同理 C(1,2)=A(1,1)*B(1,2)+A(1,2)*B(2,2)+A(1,3)*B(3,2)+A(1,4)*B(2,2) =(1*9)+(5*6)+(7*2)+(3*7) =9+30+14+21 =74 依此类推,我们可以求得矩阵A与矩阵B的矩阵乘积。 void main(void) { int matrixa[5][4]={1,5,7,3, 3,6,3,9, 1,2,8,7, 0,3,1,9, 3,2,5,4}; int matrixb[4][6]={3,9,1,4,1,4, 5,6,7,9,0,3, 3,2,7,2,5,6, 9,7,4,7,8,0}; int matrixc[5][6]; int i,j,k; for(i=0;i<5;i++) for(j=0;j<6;j++) { matrixc[i][j]=0; for(k=0;k<4;k++) matrixc[i][j]+=matrixa[i][k]*matrixb[k][j];

浅谈矩阵计算

浅谈矩阵计算 一丶引言 矩阵是高等代数学中的常见的工具。在应用数学,物理学,计算机科学中都有很大的作用。研究矩阵的计算,可以简化运算,并深入理解矩阵的性质。在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。矩阵常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。对一些应用广泛而形式特殊的矩阵,例如稀疏矩阵和准对角矩阵,有特定的快速运算算法。关于矩阵相关理论的发展和应用,请参考矩阵理论。在天体物理、量子力学等领域,也会出现无穷维的矩阵,是矩阵的一种推广。矩阵的研究历史悠久,发展也是历久弥新,拉丁方阵和幻方在史前年代已有人研究。 作为解决线性方程的工具,矩阵也有不短的历史。成书最迟在东汉前期的《九章算术》中,用分离系数法表示线性方程组,得到了其增广矩阵。在消元过程中,使用的把某行乘以某一非零实数、从某行中减去另一行等运算技巧,相当于矩阵的初等变换。但那时并没有现今理解的矩阵概念,虽然它与现有的矩阵形式上相同,但在当时只是作为线性方程组的标准表示与处理方式。 矩阵正式作为数学中的研究对象出现,则是在行列式的研究发展起来后。逻辑上,矩阵的概念先于行列式,但在实际的历史上则恰好相反。日本数学家关孝和(1683年)与微积分的发现者之一戈特弗里德·威廉·莱布尼茨(1693年)近乎同时地独立建立了行列式论。其后行列式作为解线性方程组的工具逐步发展。1750年,加布里尔·克拉默发现了克莱姆法则。 矩阵的现代概念在19世纪逐渐形成。1800年代,高斯和威廉·若尔当建立了高斯—若尔当消去法。1844年,德国数学家费迪南·艾森斯坦(F.Eisenstein)讨论了“变换”(矩阵)及其乘积。1850年,英国数学家詹姆斯·约瑟夫·西尔维斯特(James Joseph Sylvester)首先使用矩阵一词。英国数学家凯利被公认为矩阵论的奠基人。他开始将矩阵作为独立的数学对象研究时,许多与矩阵有关的性质已经在行列式的研究中被发现了,这也使得凯利认为矩阵的引进是十分自然的。他说:“我决然不是通过四元数而获得矩阵概念的;它或是直接从行列式的概念而来,或是作为一个表达线性方程组的方便方法而来的。”他从1858年开始,发表了《矩阵论的研究报告》等一系列关于矩阵的专门论文,研究了矩阵的运算律、矩阵的逆以及转置和特征多项式方程。凯利还提出了凯莱-哈密尔顿定理,并验证了3×3矩阵的情况,又说进一步的证明是不必要的。哈密尔顿证明了4×4矩阵的情况,而一般情况下的证明是德国数学家弗罗贝尼乌斯(F.G.Frohenius)于1898年给出的。1854年时法国数学家埃尔米特(C.Hermite)使用了“正交矩阵”这一术语,但他的正式定义直到1878年才由费罗贝尼乌斯发表。1879年,费罗贝尼乌斯引入矩阵秩的概念。至此,矩阵的体系基本上建立起来了。 无限维矩阵的研究始于1884年。庞加莱在两篇不严谨地使用了无限维矩阵和行列式理论的文章后开始了对这一方面的专门研究。1906年,希尔伯特引入无限二次型(相当于无限维矩阵)对积分方程进行研究,极大地促进了无限维矩阵的研究。在此基础上,施密茨、赫林格和特普利茨发展出算子理论,而无限维矩阵成为了研究函数空间算子的有力工具。 二、矩阵的介绍与基本运算 由m×n个数a ij(i=1,2,…,m;j=1,2,…,n)排成的m行n列的数表称为m行n列矩阵,简称m ×n矩阵。只有一行的矩阵A=(a1,a2…a n)称为行矩阵或行向量,只有一列的矩阵称为列矩阵或列向量。矩阵计算的合适出发点是矩阵与矩阵的乘法。这一问题在数学上虽然简单,但从计算上来看却是十分丰富的。矩阵相乘可以有好几种不同的形式,还将引入矩阵划分的概念,并将其用来刻画计

第3讲矩阵的秩与矩阵的初等变换.

§1.3 矩阵的秩与矩阵的初等变换 主要问题:1. 自由未知数个数的唯一性 2. 相抵标准形的唯一性 3. 矩阵秩的性质 4. 满秩矩阵的性质 一、矩阵的秩 定理矩阵用初等行变换化成的阶梯形矩阵中,主元的个数(即非零行的数目)唯一。 定义矩阵A 用初等行变换化成的阶梯形矩阵 中主元的个数称为矩阵A的秩,记为秩(A)或r(A)例求下述矩阵的秩 2 1 0 3 12 3 1 2 1 01 A 4 1 6 3 58 2 2 2 6 16

2 1 0 3 1 2 3 1 2 1 0 1 A 4 1 6 3 5 8 2 2 2 6 1 6 R4 ( 1)R1 2 1 0 3 1 2 R3 ( 2)R1 R2 ( 1)R1 1 2 2 2 1 1 0 3 6 9 3 4 0 1 2 3 2 8 1 2 2 2 1 1 R2 R1 2 1 0 3 1 2 0 3 6 9 3 4 0 1 2 3 2 8 1 2 2 2 1 1 R2 ( 2)R1 0 5 4 7 3 4 0 3 6 9 3 4 0 1 2 3 2 8 1 2 2 2 1 1 R2 R4 0 1 2 3 2 8 0 3 6 9 3 4 0 5 4 7 3 4

所以秩(A) = 4 o | 性质 (1) 秩(A) = 0当且仅当 A = 0 ⑵秩(A m n ) min{ m , n} (3)初等行变换不改变矩阵的秩。 定义设A 是n 阶方阵。若秩(A) = n ,则称A 是满秩方阵;若 秩(A) < n ,则称A 是降秩方阵。 定理 满秩方阵只用初等行变换即可化为单位 方阵。 R 4 ( 5)R 2 R 3 3R 2 1 2 2 2 1 0 1 2 3 2 0 0 0 0 3 1 8 20 0 0 6 8 13 44 01 0 0 6 8 13 44 0 0 0 0 3 20 R 3

矩阵的基本运算

矩阵的基本运算 (摘自:华东师范大学数学系;https://www.360docs.net/doc/962547611.html,/)§3.1 加和减 §3.2矩阵乘法 §3.2.1 矩阵的普通乘法 §3.2.2 矩阵的Kronecker乘法 §3.3 矩阵除法 §3.4矩阵乘方 §3.5 矩阵的超越函数 §3.6数组运算 §3.6.1数组的加和减 §3.6.2数组的乘和除 §3.6.3 数组乘方 §3.7 矩阵函数 §3.7.1三角分解 §3.7.2正交变换 §3.7.3奇异值分解 §3.7.4 特征值分解 §3.7.5秩 §3.1 加和减

如矩阵A和B的维数相同,则A+B与A-B表示矩阵A与B的和与差.如果矩阵A和B的维数不匹配,Matlab会给出相应的错误提示信息.如: A= B= 1 2 3 1 4 7 4 5 6 2 5 8 7 8 0 3 6 0 C =A+B返回: C = 2 6 10 6 10 14 10 14 0 如果运算对象是个标量(即1×1矩阵),可和其它矩阵进行加减运算.例如: x= -1 y=x-1= -2 0 -1 2 1 §3.2矩阵乘法 Matlab中的矩阵乘法有通常意义上的矩阵乘法,也有Kronecker乘法,以下分别介绍. §3.2.1 矩阵的普通乘法 矩阵乘法用“ * ”符号表示,当A矩阵列数与B矩阵的行数相等时,二者可以进行乘法运算,否则是错误的.计算方法和线性代数中所介绍的完全相同. 如:A=[1 2 ; 3 4]; B=[5 6 ; 7 8]; C=A*B, 结果为 C=×==

即Matlab返回: C = 19 22 43 50 如果A或B是标量,则A*B返回标量A(或B)乘上矩阵B(或A)的每一个元素所得的矩阵. §3.2.2 矩阵的Kronecker乘法 对n×m阶矩阵A和p×q阶矩阵B,A和B的Kronecher乘法运算可定义为: 由上面的式子可以看出,Kronecker乘积A B表示矩阵A的所有元素与 B之间的乘积组合而成的较大的矩阵,B A则完全类似.A B和B A均为np ×mq矩阵,但一般情况下A B B A.和普通矩阵的乘法不同,Kronecker乘 法并不要求两个被乘矩阵满足任何维数匹配方面的要求.Kronecker乘法的Matlab命令为C=kron(A,B),例如给定两个矩阵A和B: A= B= 则由以下命令可以求出A和B的Kronecker乘积C: A=[1 2; 3 4]; B=[1 3 2; 2 4 6]; C=kron(A,B) C = 1 3 2 2 6 4 2 4 6 4 8 12 3 9 6 4 12 8

矩阵的秩及其求法求秩的技巧

第五节:矩阵的秩及其求法 一、矩阵秩的概念 1. k 阶子式 定义1 设 在A 中任取k 行k 列交叉处元素按原相对位置组成的 阶行列式,称为A 的一个k 阶子式。 例如 共有 个二阶子式,有 个三阶子式 矩阵A 的第一、三行,第二、四列相交处的元素所构成的二阶子式为 而 为 A 的一个三阶子式。显然, 矩阵 A 共有 个 k 阶子式。 2. 矩阵的秩 定义2 设 有r 阶子式不为0,任何r+1阶子式(如果存在的话)全为0 , 称r为矩阵A的秩,记作R (A)或秩(A )。 规定: 零矩阵的秩为 0 . 注意:(1) 如 R ( A ) = r ,则 A 中至少有一个 r 阶子式 所有 r + 1 阶子式为 0,且更高阶子式均为 0,r 是 A 中不为零的子式的最高阶数,是唯一的 . (2) 有行列式的性质, (3) R(A) ≤m , R (A ) ≤n , 0 ≤R (A ) ≤min { m , n } . (4) 如果 An ×n , 且 则 R ( A ) = n .反之,如 R ( A ) = n ,则 因此,方阵 A 可逆的充分必要条件是 R ( A ) = n . 二、矩阵秩的求法 1、子式判别法(定义)。 例1 设 为阶梯形矩阵,求R(B ) 。 解 由于 存在一个二阶子式不为0,而任何三阶子式全为0,则 R(B ) = 2. 结论:阶梯形矩阵的秩=台阶数。 例如 () n m ij a A ?={}),m in 1(n m k k ≤≤????? ??----=110145641321A 182423=C C 43334=C C 10122--=D 1015643 213-=D n m ?k n k m c c () n m ij a A ?=0, r D ≠()(). T R A R A =0,A ≠0.A ≠????? ??=000007204321B 02021≠????? ??=010*********A ????? ??=001021B ????? ??=100010011C 125034000D ?? ?= ? ???21235081530007200000E ?? ? ?= ? ??? ()3=A R ()2=B R ()3=C R ()2 R D =()3R E =

矩阵运算性质其应用

第一讲 矩阵运算性质及其应用 矩阵是数学中的一个重要内容,它是继数值这个运算对象之后,人们研究的又一个新的运算对象,也是处理线性模型的重要工具.矩阵的运算,到目前为止,人们已经研究了几十上百种.在这一讲中,我们复习学习过的其中10种,包括加法、减法、数乘、乘法、乘方、转置、共轭、行列式、伴随和求逆.学习矩阵运算,重点有两方面:运算的条件和性质.而运算需要的条件和数值运算是大不相同的. 一 矩阵的概念及其运算方法 首先,我们复习矩阵的概念及其运算方法. 定义1 由m n ?个数字ij a (1,2,,i m =L ,1,2,,j n =L )排成的m 行n 列的数表,称为一个 m 行n 列矩阵,简称为m n ?型矩阵.通常用圆括号或方括号括起来表示矩阵数表是一个整体,并 用大写字母表示,即 1112121 22 212 n n m m mn a a a a a a A a a a ?? ? ? = ? ??? L L M M O M L 位于矩阵A 的第i 行第j 列的数字ij a ,称为A 的(,)i j 元素,简称(,)i j 元.以ij a 为(,)i j 元的矩阵可简记作()ij a .m n ?型矩阵A 也记作m n A ?或m n A ?.m n =时,n n ?型矩阵A 也称为n 阶矩阵,记作n A . 两个矩阵的行数相等,列数也相同时,称为同型矩阵.两个矩阵A 与B 是同型矩阵,且它们的对应位置上的数字元素都相等,就称这两个矩阵A 与B 相等,记作A B =. 有一些矩阵的元素分布比较特殊,我们用专门规定的记号来表示,如 零矩阵O ,它的元素全为0.要注意,不同型的零矩阵是不同的. 单位矩阵E (也记作I ),它是对角线元素都为1,其余元素都为0的方阵. 对角矩阵()1 2 12diag ,,,=n n λλλλλλ?? ? ?Λ= ? ?? ? L O (与行列式中一样,不写出的元素就是0). 下面,我们来复习矩阵的10个运算方法. 定义2 设两个矩阵()ij m n A a ?=和()ij s t B b ?=, ①A 与B 能相加、减的条件是:A 与B 同型,即m s =且n t =. ②A 与B 相加的和记作A B +,A 与B 相减的差记作A B -. 运算方法规定为

矩阵的秩与行列式的几何意义

矩阵的秩与行列式的几何意义 2016年7月16日16:39:30 1 关于面积:一种映射 大家会说,面积,不就是长乘以宽么,其实不然。我们首先明确,这里所讨论的面积,是欧几里得空间几何面积的基本单位:平行四边形的面积。平行四边形面积的定义,几何上说是相邻两边边长乘以他们之间的夹角的正弦。 然而为了应对更一般情形和更高维度的数理问题,我们有必要把面积的定义推广开来。注意到以下事实: 面积是一个标量,它来自于(构成其相邻边)两个矢量。因此,我们可以将面积看成一个映射: 其中V就是一个矢量,V*V代表两个矢量的有序对;f就是面积的值。 下面我们将说明这个映射是一个线性映射。 从最简单的例子出发。如果第一个矢量是(1,0),第二个矢量是(0,1);也就是说,两个矢量分别是X和Y轴上的单位正向量,那么由这两个矢量张成的四边形就是一个正方形,其面积根据定义,就是长乘以宽=1*1=1。 因此有: 如果我们把第一个矢量”缩放“a倍,面积将会相应是原来的a倍;把第二个矢量“缩放”b倍,面积也会成为原来的b倍。如果同时缩放,很显然,面积将会变成原面积的ab倍。这表明,面积映射对于其两个操作数(矢量)的标量积是各自线性的,如下:

最后,我们要说明,面积映射对于其操作数(矢量)的矢量加法也是线性的。因为矢量加法操作的本身是线性的,那么其面积映射理应对此也是一个线性映射。这里我们打算从几个实际的例子出发,说明映射的加法线性性的后果。 显然(两个共线矢量所张成的平行四边形还是一条线,因此面积为0): 假定面积映射是一个关于矢量加法的线性映射,那么我们有: 注意计算过程中用到了上面的结论。这说明: 也就是说,交换相互垂直操作数矢量的顺序,面积映射取负。孰正孰负取决于认为的定义。一般,我们把X轴单位矢量在前,Y轴单位矢量在后,从X轴到Y 轴张成的一个平行四边形的面积,取做正号。 1.1 右手定则 由此我们引入右手定则。注意右手定则只在三维空间中有效。如果以X正方向为首,Y正方向为尾,右手定则告诉我们,纸面向外是面积的正方向;如果反过来,那么纸面向内就是该面积的正方向,与规定的正方向相反,取负号。那么面积正负号的几何意义就明显了。 由此,我们不难得到平面内任意两个矢量所张成的平行四边形的面积(*): 我们不难看到,所谓面积就是一个2x2矩阵的行列式:

浅谈矩阵在实际生活中的应用

浅谈矩阵在实际生活中的应用 摘要:从数学的发展来看,它来源于生活实际,在科技日新月异的今天, 数学越来越多地被应用于我们的生活,可以说数学与生活实际息息相关。我们在学习数学知识的同时,不能忘记把数学知识应用于生活。在学习线性代数的过程中,我们发现代数在生活实践中有着不可或缺的位置。在本文中,我们对代数中的矩阵在成本计算、人口流动、加密解密、计算机图形变换等方面的应用进行了探究。 关键词:线性代数矩阵实际应用 Abstract:From the development of mathematics, we can see that it comes from our life. With the development of science and technology, the math is more and more being used in our lives, it can be said that mathematics and real life are closely related. While learning math knowledge we can not forget to apply mathematical knowledge to our life. In the process of learning linear algebra, we found that algebra has an indispensable position in life practice. In this article, we explore the application of the matrix in the costing, population mobility, encryption and decryption, computer graphics transform. Keywords: linear algebra matrix practical application

相关文档
最新文档