烟气成分分析方法及设备
烟气基本参数的测定

烟气基本参数的测定烟气基本参数的测定是指对工业燃烧过程中产生的烟气中的各项关键参数进行测试和监测。
这些参数的测量可以对燃烧过程以及环境污染情况进行评估,有助于改进燃烧设备的设计和运行,减少对环境的污染。
以下是一些常见的烟气基本参数及其测定方法。
1.烟气温度:烟气温度是指燃烧过程中产生的烟气的温度,通常以摄氏度或华氏度表示。
烟气温度的测量可以通过接触测温法或非接触测温法来实现,如热电偶、红外线辐射测温仪或烟气温度计等。
2.烟气湿度:烟气湿度用于描述烟气中水蒸汽的含量,一般以相对湿度或绝对湿度表示。
烟气湿度的测量可以通过湿度传感器或化学分析法来进行。
3.烟气压力:烟气压力是指燃烧过程中烟气的压力,一般以毫巴或帕斯卡表示。
烟气压力的测量可以通过差压传感器或压力传感器来实现。
4.烟气流速:烟气流速是指烟气在管道中的流动速度,一般以米/秒表示。
烟气流速的测量可以通过烟气流量计、烟气风速计或超声波流量计等设备来实现。
5.烟气成分:烟气的成分分析是通过燃烧后产生的烟气中各种气体的含量比例来评估燃烧过程的完全性和环境污染情况。
常见的烟气成分包括二氧化碳、一氧化碳、氧气、氮氧化物和硫氧化物等。
烟气成分的测量可以通过气体分析仪或化学分析法来实现。
6.烟气流量:烟气流量是指单位时间内通过管道或烟囱的烟气体积,一般以立方米/小时或立方英尺/分钟表示。
烟气流量的测量可以通过烟气流量计来实现,如热式烟气流量计、超声波流量计或旋翼流量计等。
7.烟气颗粒物浓度:烟气中的颗粒物是指燃烧过程中形成的微小固体或液体颗粒,它们对环境和人体健康都可能造成不良影响。
烟气颗粒物浓度的测量可以通过颗粒物采集器和颗粒物分析仪来实现。
8.烟气露点:烟气露点是指在给定温度和湿度条件下,烟气中的水蒸汽开始凝结成液态水的温度。
烟气露点的测量可以通过露点计或露点仪来实现。
总之,烟气基本参数的测定对于评估燃烧过程和环境污染情况具有重要意义。
通过准确地测量这些参数,可以优化燃烧设备的设计和运行,降低对环境的影响,实现绿色、低碳的生产过程。
烟气分析仪的工作原理 分析仪工作原理

烟气分析仪的工作原理分析仪工作原理烟气分析仪是利用电化学传感器连续分析测量CO2、CO、NOx、SO2等烟气含量的设备。
紧要用于小型燃油、燃气锅炉污染排放或污染源相近的环境监测手持使用。
烟气的紧要构成成分烟气的紧要构成成分有:氮气,二氧化碳,水蒸气,颗粒物(尘、黑度),氧气,一氧化碳,氮氧化合物,二氧化硫,硫化氢,碳氢化合物,氰化氢,氨气,卤化物等。
原理烟气分析仪的工作原理常用两种,一种是电化学工作原理,另一种是红外工作原理。
市场上的便携式烟气分析仪通常是这两种原理相结合。
以下是这两种烟气分析仪的工作原理介绍:电化学气体传感器工作原理:将待测气体经过除尘、去湿后进入传感器室,经由渗透膜进入电解槽,使在电解液中被扩散吸取的气体在规定的氧化电位下进行电位电解,依据耗用的电解电流求出其气体的浓度。
在一个塑料制成的筒状池体内安装工作电极、对电极和参比电极,在电极之间充分电解液,由多孔四氟乙烯做成的隔膜,在顶部封装。
前置放大器与传感器电极的连接,在电极之间施加了确定的电位,使传感器处于工作状态。
气体在电解质内的工作电极发生氧化或还原反应,在对电极发生还原或氧化反应,电极的平衡电位发生变化,变化值与气体浓度成正比。
可测量SO2、NO、NO2、CO、H2S等气体,但这些气体传感器灵敏度却不相同,灵敏度从高到低的次序是H2S、NO、NO2、SO2、CO,响应时间一般为几秒至几十秒,一般小于1min;它们的寿命,短的只有半年,长则2年、3年,而有的CO传感器长达几年。
红外传感器工作原理:利用不同气体对红外波长的电磁波能量具有特别吸取特性的原理而进行气体成分和含量分析。
红外线一般指波长从0.76m至1000m范围内的电磁辐射。
在红外线气体分析仪器中实际使用的红外线波长大约在1~50m 。
碳硫分析仪维护注意事项仪器需要常常的维护和保养,长时间下仪器的性能会大大的降低,分析仪器的用户需要懂得仪器的日常维护和对紧要技术指标的简易测试方法,用户本身常常对仪器进行维护和测试,可以保证仪器工作在较佳状态。
烟气挥发性、半挥发性成分及其分析技术

通过加热将吸附剂上的挥发性、半挥发性成分解析出来。
超声波提取
利用超声波的振动作用,将样品中的挥发性、半挥发性成分提取 出来。
检测技术
色谱分析
利用色谱柱将挥发性、半挥发性 成分分离,再通过检测器进行检
测。
质谱分析
将挥发性、半挥发性成分电离后, 通过测量其质量与电荷之比来进行 分析。
红外光谱分析
潜在危害。芳香烃在烟气中的含量较低,主要来源于燃料的燃烧过程。
含氧化合物
一氧化碳
无色无味的有毒气体,主要来源于燃料的不完全燃烧。一 氧化碳对人体的神经系统和心血管系统有严重危害,可导 致昏迷、窒息甚至死亡。
氮氧化物
包括一氧化氮、二氧化氮等化合物,具有强氧化性和腐蚀 性。氮氧化物是大气的主要污染物之一,可形成酸雨、光 化学烟雾等环境问题。
利用红外光谱的吸收特性,对挥发 性、半挥发性成分进行定性和定量 分析。
04 烟气中挥发性、半挥发性 成分的控制与减排
控制策略与措施
01
源头控制
通过改进生产工艺和设备,降低 烟气中挥发性、半挥发性成分的 产生。
过程控制
02
03
末端治理
通过添加吸附剂、催化剂等手段, 对烟气进行净化处理,减少有害 物质的排放。
采用高效除尘、脱硫脱硝等设备, 对已产生的烟气进行治理,降低 其对环境的影响。
减排技术与方法
吸附法 催化燃烧法
冷凝法 生物法
利用吸附剂对烟气中的有害物质进行吸附,从而达到净化的目 的。
通过催化剂的作用,使烟气中的有机物在较低的温度下进行燃 烧,生成无害的物质。
利用物质在不同温度下的蒸汽分压差异,通过降温使有害物质 冷凝成液体,从而达到净化的目的。
烟气分析实验报告

烟气分析实验报告研究背景烟气是产生于工业生产和能源利用过程中的废气,其中包含了大量的有害物质。
烟气分析实验是通过对烟气成分的分析,了解烟气的组成和特性,从而评估其对环境和人体的潜在危害。
本实验旨在通过一系列步骤,对烟气进行分析并得出结论。
实验材料和设备•烟气采集设备:烟气采集罩、烟气管道、烟气泵等。
•分析仪器:气相色谱仪、质谱仪等。
•试剂:标准气体、吸附剂等。
实验步骤1.实验准备在进行实验之前,需要准备好所有的实验材料和设备,并确保其正常工作状态。
同时,根据实验的要求,准备好所需的试剂和标准气体。
2.烟气采集将烟气采集罩安装在需要采集烟气的设备上,确保其紧密贴合。
接通烟气管道并打开烟气泵,开始采集烟气。
根据实验要求确定采集时间。
3.烟气样品处理将采集到的烟气样品转移到适当的容器中,以便后续的分析。
根据实验的需要,可以对烟气样品进行预处理,例如降温、去除杂质等。
4.气相色谱分析将处理好的烟气样品注入气相色谱仪中进行分析。
通过气相色谱仪的分离和检测系统,可以得到烟气中各种组分的浓度和峰值信息。
5.质谱分析对气相色谱分析结果中的关键组分进行质谱分析,以确定其具体的分子结构和质量。
6.数据处理和分析根据实验得到的分析结果,进行数据处理和分析。
可以使用统计学方法对数据进行统计和比较,得出结论并提出建议。
实验结果和讨论通过烟气分析实验,我们得到了烟气样品中各种组分的浓度和峰值信息。
根据分析结果,我们可以评估烟气对环境和人体的潜在危害。
例如,如果检测到有害物质的浓度超过了环境标准或健康指导值,就说明该烟气对环境和人体可能存在潜在危害。
在实验结果的基础上,我们可以进一步分析烟气成分的来源和影响因素。
例如,可以比较不同设备或工艺条件下的烟气成分,以评估不同工艺对烟气成分的影响。
这些分析结果可以为改进工艺设计和烟气治理提供科学依据。
结论通过烟气分析实验,我们可以了解烟气的组成和特性,并评估其对环境和人体的潜在危害。
热工实验三烟气分析

3、装溶液 手提式气体分析器共有5个吸收瓶,因做烟气
分以析只一 用般 其测 中烟 的气3个中即C可O 。2、O2、CO及N2的含量,所
为方便操作,我们选用X1、X2、X3三个吸收瓶 盛装吸收液,其中X1盛装KOH溶液,用以吸收CO 2 、X2中盛装焦性没食子酸钾溶液,用以吸收O2; X3中盛装氯化亚铜铵溶液,用以吸收CO。每瓶吸 收液装入量约200毫升。
将水准瓶内装入约200毫升5%硫酸溶液中,加 甲基橙数滴,使溶液呈现红色,作为指示剂溶液。
再把液封瓶及保温套中注满蒸馏水,以起到液 封及保温作用。
4、检查仪器的严密性:
关闭K1至K6开关,打开K7、K8开关,抬高水 准瓶,使量瓶中充满指示剂溶液,然后关闭K8,落 下准瓶。如果此时量管中的指示液没有明显下降, 即说明仪器的严密性可靠。如果量管中的指示液随 水准瓶的落下而有明显的下降,则说明仪器有漏气 的地方,应找出漏气处,严加密封。
液面对齐至同一高度,记下此时量气管中液面读数。 每数次不打变开 ,K即1说,明重C复O上2已法被操完作全,吸直收到,量记气下管读中数液V面1。读
下读数然V后2。再最打后开打K2开,K按3,上进述行方C法O进的行测O定2的,测记定下,读记数 V3。
五、实验结果计算与分析:
⒈实验数据记录 实验数据记录在表2-1。
自然对流是指流体由于各部分温度不均匀而 引起的流动,由此引起的对流换热称为自然对流 换热。各种热工设备和管道的热表面向周围空气 的对流换热就是典型的自然对流换热。
实验研究的是受热体(圆管)在大空间中的 自然对流换热现象。根据传热学和相似原理理论, 当一个受热表面在流体中发生对流换热时,包含 自然对流换热系数的准数关系式可整理为:
用相似准则综合实验数据的方法,认识相似理论在 对流换热实验研究中的指导意义。
烟气分析仪的测试原理介绍

烟气分析仪的测试原理介绍烟气分析仪是一种专门用于分析烟气中各种气体和颗粒的仪器。
它在工业生产中有着广泛的应用,能够帮助企业了解自身的排放情况,保障生态环境的可持续发展。
本文将介绍烟气分析仪的测试原理,以帮助读者更好地了解它的工作原理和使用方法。
烟气分析仪的构造烟气分析仪的主要组成部分包括:取样气体管道、过滤器、传感器、信号处理器和数据显示装置等。
取样气体管道是烟气分析仪最基本的组成部分,通常由不锈钢材质制成,其主要作用是取样烟气中的有害气体和颗粒物。
过滤器则用于去除烟气中的颗粒物,避免对传感器的影响。
传感器是烟气分析仪的核心部分,主要用于检测烟气中的各种气体成分,并将检测结果通过信号处理器输出显示。
烟气分析仪的测试原理烟气分析仪一般采用化学方法、光谱法和电化学法等多种方法进行检测。
下面将分别介绍它们的测试原理。
化学方法化学方法是烟气分析仪用于检测二氧化硫、氮氧化物和氧气等化学物质浓度的主要方法之一。
该方法是通过将烟气和一种特定的化学试剂反应产生颜色变化,并通过比色法或吸光光度法测量颜色深浅,从而得出烟气中的化学物质浓度。
光谱法光谱法主要用于检测烟气中的CO、CO2、NOx和SO2等气体成分,其基本原理是通过激光器或光源产生一束特定波长的光,照射到烟气中,烟气中各种气体成分吸收或反射不同波长的光,形成不同的光谱图像。
通过分析光谱图像,计算各种气体成分的浓度,从而得出烟气中的气体成分浓度。
电化学法电化学法主要用于检测烟气中的NOx和SO2等气体成分。
该方法是通过将烟气与电极分离,电极与烟气中的气体成分反应,释放电子进入电解质中,使电导率发生变化,从而测量气体成分的浓度。
烟气分析仪的使用方法烟气分析仪的使用方法相对简单,下面将介绍一般的使用流程。
1.确认要检测的气体成分,选择相应的传感器和测试方法。
2.将烟气分析仪连接到需要检测的管道或烟囱上,开启采集和测试程序。
3.等待烟气分析仪采集足够的样本数据。
卷烟烟气主要有害成分的分析
液相色谱分析条件
色谱柱: LUNA C18 5μm 4.6mm× 150mm 流动相A:1% 醋酸 流动相B:醋酸/乙腈/水(1/30/69) 柱温: 30℃ 柱流量: 1ml/min 梯度: 0分钟: B 20%;40分钟: B
卷烟烟气分析的仪器分析方法
酚类物质(HPLC) 羰基化合物(HPLC) 芳香胺(GC/MS) VOC(GC/MS) 氨(离子色谱) HCN(流动分析仪)
卷烟烟气有害成分检测方法
第二部分 定量分析技术
内容
一、多环芳烃的分析研究 二、烟草特有亚硝胺的分析研究 三、HCN的分析研究 四、挥发性羰基化合物的分析研究 五、酚类化合物的分析研究 六、芳香胺的分析研究 七、氮氧化物 八、氨 九、 SEMI-VOCs 十、 VOCs 十一、痕量金属元素分析
三、HCN的分析研究
卷烟烟气中HCN的来源
卷烟烟气中氰主要以氢氰酸的形式存在, 主要由氨基酸及相关化合物在7001000℃裂解产生
烟气中HCN的分析方法
光度法是最常用的氰化氢的检测方法 在微酸性介质中,氰根与氯胺T或溴氧化物反应生成
CNCl或CNBr,然后与含吡啶基团的化合物反应使吡啶 环裂开产生戊烯二醛,戊烯二醛与芳胺或其它含氮的有 机试剂反应生成亚甲基染料,然后进行光度分析。 显色试剂
N NO
CH3 N NO
CH2OH
N
iso-NNAL
OH
N
NO N
CH3
CH3 N NO
NNAL
COOH
N
iso-NAAC
烟草中TSNAs的形成
TSNAs在青烟叶中含量极少 TSNAs主要在烟叶调制过程中
烟气分析实验报告
烟气分析实验报告1. 引言本实验旨在通过对烟气进行分析,了解烟气中的成分及其对环境的影响。
通过本实验可以了解烟气中的主要成分和排放浓度,为环境保护提供科学依据。
2. 实验装置和方法2.1 实验装置本实验使用的装置主要包括以下几个部分:•烟气采样器:用于采集烟气样品。
•烟气分析仪:用于对采集的烟气样品进行分析。
•数据记录仪:用于记录实验数据。
2.2 实验方法本实验的具体步骤如下:1.打开烟气采样器,将其连接至烟气源头,确保采样器处于正常工作状态。
2.打开烟气分析仪,进行预热。
预热时间根据具体仪器的要求而定。
3.将烟气采样器的进样口置于烟气中,保持一定的采样时间,确保采集到足够的烟气样品。
4.将采集到的烟气样品送入烟气分析仪进行分析。
5.使用数据记录仪记录实验数据,包括烟气中各组分的浓度、温度、压力等。
3. 实验结果与分析3.1 烟气成分分析根据实验测得的数据,我们可以得到烟气中主要成分的浓度。
根据实验条件,我们测试了烟气中的二氧化硫(SO2)、氮氧化物(NOx)、颗粒物(PM)等成分的浓度。
实验结果如下:•SO2浓度:XX mg/m³•NOx浓度:XX mg/m³•PM浓度:XX mg/m³3.2 烟气成分的环境影响根据实验结果分析,高浓度的SO2和NOx对环境具有一定的危害。
SO2是一种常见的酸性气体,会导致酸雨的产生,对植物和水体造成伤害。
NOx是大气中的臭氧生成的主要原因之一,臭氧对植物和人体健康都有一定的危害。
而颗粒物对空气质量也有一定的影响,会导致雾霾等问题。
4. 结论通过本次实验,我们了解到烟气中的主要成分及其对环境的影响。
高浓度的二氧化硫(SO2)、氮氧化物(NOx)和颗粒物(PM)对环境具有一定的危害。
因此,在工业生产和能源利用过程中,应该加强对烟气的处理和净化,减少其对环境的影响。
这对于保护环境、改善空气质量非常重要。
5. 参考文献[参考文献1] [参考文献2] [参考文献3]。
燃烧烟气测试实验报告(3篇)
第1篇一、实验目的本实验旨在了解燃烧烟气中主要污染物的种类、含量及变化规律,为烟气治理和环境保护提供技术支持。
通过实验,掌握燃烧烟气测试方法,提高对烟气污染的认识,为我国烟气治理提供参考。
二、实验原理燃烧烟气测试主要采用化学分析法、物理分析法、生物分析法等。
本实验采用化学分析法,利用烟气分析仪对烟气中的主要污染物进行定量分析。
三、实验仪器与试剂1. 仪器:烟气分析仪、气体采样器、气体流量计、数据采集器、计算机等。
2. 试剂:氧气、一氧化碳、二氧化硫、氮氧化物、碳氢化合物等标准气体。
四、实验方法1. 样品采集:在实验过程中,使用气体采样器采集烟气样品,并通过气体流量计记录采样流量。
2. 样品分析:将采集到的烟气样品送入烟气分析仪,根据仪器操作手册进行操作,对烟气中的主要污染物进行定量分析。
3. 数据处理:将实验数据输入计算机,利用数据处理软件对数据进行整理、分析,得出烟气中主要污染物的含量及变化规律。
五、实验步骤1. 样品采集:在实验开始前,将烟气采样器连接到气体流量计,调整采样流量,对烟气进行连续采集。
2. 样品预处理:将采集到的烟气样品通过烟气分析仪进行预处理,去除杂质,保证样品的纯净度。
3. 样品分析:将预处理后的样品送入烟气分析仪,根据仪器操作手册进行操作,对烟气中的主要污染物进行定量分析。
4. 数据采集:在实验过程中,利用数据采集器实时记录烟气分析仪的输出数据,并将数据传输到计算机。
5. 数据处理:将实验数据输入计算机,利用数据处理软件对数据进行整理、分析,得出烟气中主要污染物的含量及变化规律。
六、实验结果与分析1. 实验结果(1)氧气含量:在实验过程中,氧气含量保持在20%左右。
(2)一氧化碳含量:在实验过程中,一氧化碳含量在10-50ppm之间波动。
(3)二氧化硫含量:在实验过程中,二氧化硫含量在0.1-1.0ppm之间波动。
(4)氮氧化物含量:在实验过程中,氮氧化物含量在5-20ppm之间波动。
锅炉烟气成分分析
7.2锅炉烟气成分分析在火力发电的过程中,对锅炉烟气含氧量、二氧化碳含量、一氧化碳含量的分析测量对于指导锅炉燃烧控制有重要的意义。
为保持锅炉处于最佳燃烧状态,应使实际供给的空气量大于理论空气量,锅炉机组热损失最小的炉膛出口的最佳过剩空气系数应保持在一定范围内。
对锅炉铟气中的过剩空气系数的分析测量要考虑到烟气取样点的选择或给予必要的修正。
目前,一般把烟气取样点设计在过热器出口或省煤器出口处。
燃烧理论指出:在燃料一定情况下,当完全燃烧时,过剩空气系数是烟气中氧量或二氧化碳含量的函数,此时一氧化碳的含量为零。
当不完全燃烧时,因烟气中含有一氧化碳,过剩空气系数与氧量或二氧化碳含量的函数要受到一氧化碳含量的影响:因此对一氧化碳含量和氧气或二氧化碳含量的监视,对于指导燃烧更为有利。
实际燃烧时,很多情况是烟气中一氧化碳含量比较少.因此,对于一氧化碳分析仪要求有较高的灵敏度和精确度。
在不完全燃烧时,烟气中还会有未燃尽的可燃物含量对烟气中的一氧化碳的含量、二氧化碳含量和氧量都有影响。
过剩空气系数α与一氧化碳含量二氧化碳含量和氧量的函数关系就更复杂,这种情况下.通过对一氧化碳含量和氧量的监测来指导燃烧会更有实际意义。
目前,对于高压大型锅炉,烟气中未燃尽可燃物的含量很小.通常多是通过对烟气中的含氧量的监测来指导燃烧控制。
7.2.2 氧化锆氧量计氧化锆氧量计属于电化学分析器中的一种。
氧化锆(2ZrO )是一种氧离子导电的固体电解质。
氧化锆氧量计可以用来连续地分析各种锅炉烟气中的氧含量,然后控制送风量来调整过剩空气系数α值,以保证最佳的空气燃料比,达到节能效果。
氧化锆传感器探头可以直接插人烟道中进行测量,氧化锆测量探头工作温度必须在850℃左右的高温下运行,否则灵敏度将会下降。
所以氧化锆氧量计在探头上都装有测温传感器和电加热设备。
1) 氧化锆传感器测量原理氧化锆在常温下为单斜晶体,当温度为1150℃时,晶体排列由单斜晶体变为立方晶体,同时有不到十分之一的体积收缩。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
现行烟气成分分析及其一些设备
在烟气成分测量中用的比较普遍的是测量烟气中氧含量的各种氧量计,测量二氧化碳
的各种二氧化碳分析仪。
但随着色谱分析技术,质谱分析技术,色谱质谱联用技术以
及红外线光谱分析技术的迅速发展,在烟气成分测量中也越来越的的采用这些先进的
技术,下面仅介绍传统的奥式气体分析仪器法和那些先进技术的工作原理及相关设备。
奥式气体分析仪器法
工作原理:传统的烟气分析方法即奥式气体分析仪器法是利用不同的溶液来相继吸收
气体试样中的不同组分:用40%的氢氧化钠吸收试样中的二氧化碳;用焦没食子酸钾
溶液吸收试样中的氧气;用氨性氯化亚铜溶液来吸收试样中的一氧化碳。
然后根据吸
收前后试样体积的变化来计算各组分的含量。
奥氏气体分析仪特点是结构简单,虽一次购置成本低但长期运行成本高,除去分析人
员的成本,仅每年买试剂和玻璃器皿至少要1万多元,而且必须对烟气进行人工取样,在实验室进行分析,其中分析人员的操作技能和“态度”对分析的精确度有很大影响。
奥氏气体分析仪只能单一成份地逐个进行检测分析,不具备多重输入和信号处理功能,分析费时,操作烦琐,响应速度慢,效率低,难以实时地分析生产工况。
现逐渐被全
自动分析仪器替代。
色谱分析法
工作原理:色谱分析法是通过一次进样利用色谱柱使烟气中的所有组分—氧气、氮气、一氧化碳、二氧化碳分离通过检测器和记录器测定并记录整个分析过程,然后用
面积归一化计算出各组分的含量。
色谱法特点是分离效能高、样品用量少、可进行多组分分析、分析精度高和标定周
期长。
但是价格高且样品质量要求高,对操作员素质要求也很高,因此,一般小厂难
以承受。
红外分析法
工作原理:是基于某些气体对不同波长的红外线辐射具有选择性吸收的特性,其吸
收程度取决于被测气体的浓度。
对于不同的分子化合物,每种分子只能吸收某一波长
范围的红外辐射能,即每种分子化合物都有一个或几个特定的吸收频率,叫特征频率。
CO、CO 有其固定的特征频率,因此烟气中的CO、CO 含量很容易被检测出来。
红外分析仪还有以下几个方面的优点:①良好的选择性。
对于多组分的混合气体,不管背景气中的干扰组分浓度如何变化,它只对待测组分的浓度有反应;②分析范围广;③分析周期短、响应时问快;④可同时测量若干个组分。
但对分析对称结构无极
性双原子分子及单原子分子气体不适用。