有理数的加减乘除乘方运算
初一数学有理数的加减乘除以及乘方试题答案及解析

初一数学有理数的加减乘除以及乘方试题答案及解析1.科学发现:植物的花瓣、萼片、果实的数目以及其他方面的特征,都非常吻合于一个奇特的数列——著名的裴波那契数列:1,1,2,3,5,8,13,21,34,55,……仔细观察以上数列,则它的第11个数应该是 .【答案】89.【解析】观察发现:从第三个数开始,后边的一个数总是前边两个数的和,则第11个数是34+55=89.试题解析:第11个数是34+55=89.【考点】规律型:数字的变化类.2.将正整数依次按下表规律排成4列,根据表中的排列规律,数2014应在( )A.第672行第1列B.第672行第4列C.第671行第1列D.第671行第4列【答案】B.【解析】每行有3列,奇数开始的从左边开始排列,偶数开始的从右边开始排列.每行的最后都是3的倍数.2014÷3=671……1,所以数2014应在第672行第4列.故选B.【考点】规律型:数字的变化类.3.已知在0摄氏度及一个标准大气压下1cm3空气的质量是0.001293克,数0.001293用科学计数法表示为__________ .【答案】.【解析】用科学记数法表示绝对值小于的数,只要将小数定向右移到第一个不为零的数后,若共移动位,则最后乘以即可,如本题中向右移了位,变为,在后乘以,最后.【考点】科学记数法.4.计算:= 。
【答案】.【解析】【考点】同底数幂的乘法.5.在一次水灾中,大约有个人无家可归,假如一顶帐篷占地100米,可以放置40个床位(一人一床位),为了安置所有无家可归的人,需要多少顶帐篷?这些帐篷大约要占多少地方?若某广场面积为5000米2。
要安置这些人,大约需要多少个这样的广场?(所有结果用科学计数法表示)【答案】(1);(2);(3).【解析】根据帐篷的数量=总人数÷每一个帐篷所容纳的人数;所占面积=帐篷数×一顶帐篷所占的面积,计算即可.试题解析:根据题意得2.5×107÷40=625000=顶帐篷,625000×100=6.25×107米2,6.25×107÷5000=个.考点: 整式的除法.6.明近期几次数学测试成绩如下:第一次85分,第二次比第一次高8分,第三次比第二次低12分,第四次又比第三次高10分.那么小明第四次测验的成绩是()A.90分B.75分C.91分D.81分【答案】C【解析】小明第四次测验的成绩是故选C.7.下列各组的两个数中,运算后的结果相等的是()A.和B.和C.和D.和【答案】B【解析】A.,,故本选项错误;B.,,故本选项正确;C.,,故本选项错误;D.,,故本选项错误.故选B.8.若规定“!”是一种数学运算符号,且则的值为()A.B.99!C.9 900D.2!【答案】C【解析】根据题意可得:100!=100×99×98×97×...×1,98!=98×97× (1)∴=100×99="9" 900,故选C.9.若规定,则的值为 .【答案】【解析】.10.李强靠勤工俭学的收入维持上大学费用,表中是李强某一周的收支情况表,记收入为正,支出为负(单位:元):星期一二三四五六日(2)照这个情况估计,李强一个月(按30天计算)能有多少节余?(3)按以上的支出水平,李强一个月(按30天计算)至少有多少收入才能维持正常开支?【答案】(1)到这个周末,李强有14元节余.(2)照这个情况估计,李强一个月(按30天计算)能有60元节余.(3)按以上的支出水平,李强一个月(按30天计算)至少有360元收入才能维持正常开支.【解析】分析:(1)七天的收入总和减去支出总和即可;(2)首先计算出平均一天的节余,然后乘30即可;(3)计算出这7天支出的平均数,即可作为一个月中每天的支出,乘30即可求得.解:(1)由题意可得:(元).(2)由题意得:14÷7×30=60(元).(3)根据题意得:10+14+13+8+10+14+15=84,84÷7×30=360(元).答:(1)到这个周末,李强有14元节余.(2)照这个情况估计,李强一个月(按30天计算)能有60元节余.(3)按以上的支出水平,李强一个月(按30天计算)至少有360元收入才能维持正常开支.11.有理数0.0050400的有效数字的个数是().A.3个B.4个C.5个D.6个【答案】C【解析】有效数字是从左边第一个不是0的数字起,后面所有的数字都是有效数字.解:有理数0.0050400的有效数字有5、0、4、0、0这5个,故选C.【考点】近似数和有效数字点评:本题是基础应用题,只需学生熟练掌握有效数字的定义,即可完成.12.计算:;【答案】-5【解析】先根据有理数的乘方法则计算,再根据有理数的乘法法则计算,最后算加减即可.解:原式.【考点】有理数的混合运算点评:计算题是中考必考题,一般难度不大,学生要特别慎重,尽量不在计算上失分.13.观察下列各式:31=3,32=9,33=27,34=81, 35=243,36=729…你能从中发现底数为3的幂的个位数有什么规律吗?根据你发现的规律回答:3的个位数字是。
新浙教版七年级上册数学第二章有理数的运算知识点和典型例题

新浙教版七年级上册数学第二章有理数的运算学问点及典型例题将考点及相应习题联络起来考点一、有理数的加减乘除乘方运算1、 (-3)3÷214×(-23)2 – 4-23×〔- 232〕 2、 -32+(-2)3 –(0.1)2×(-10)33、 -0.5-〔-314〕+2.75+〔-712〕 4、〔-23〕-〔-5〕+〔-64〕-〔-12〕5、假如()()0132122=-+-++c b a ,求333c a abc -+的值.考点二、运用运算律进展简便运算1、-(-5.6)+10.2-8.6+(-4.2)2、(-12+16-34+512)×(-12) 3、(117512918--)×36-6××6 4、492425×(-5)考点三、及数轴相关的计算或推断1、有理数a,b,c 在数轴上的位置如下图,以下错误的选项是〔 〕 A 、b+c<0B 、-a+b+c<0C 、|a+b|<|a+c|D 、|a+b|>|a+c|2、a ,b 在数轴上的位置如下图,那么a ,b ,a +b ,a -b 中,负数的个数是〔 〕 A .1个 B .2个 C .3个 D .4个3、假设a .b .c 在数轴上位置如下图,那么必有〔 〕cb a -2-121A .abc >0B .ab -ac >0C .〔a +b 〕c >0D .〔a -c 〕b >04、有理数a ,b 在数轴上的位置如下图,那么在a +b ,a -b ,ab ,3a ,23a b s 这五个数中,正数的个数是〔 〕A .2B .3C .4D .55、有理数a 、b 在数轴上的对应的位置如下图,那么〔 〕 A .a + b <0 B .a + b >0 C .a -b = 0 D .a -b >06、a 、b 在数轴上的位置如图,化简a = ,b a += ,1+a = 。
有理数的乘除乘方运算(含答案)

有理数的运算(乘、除、乘方)教学目的:1、理解有理数的乘法法则;掌握异号两数的乘除运算的规律;2、会进行有理数的乘法、除法、乘方的运算,能灵活运用运算律进行简化运算。
教学重点:1、有理数的乘法、除法法则;2、熟练的进行有理数乘法、除法、乘方运算。
教学难点:若干个有理数相乘,积的符号的确定,乘方的符号确定。
有理数的乘法有理数的乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。
例1:计算(1) )3()5(-⨯-(2) 4)7(⨯-(3))109()35(-⨯-例题目的:掌握有理数的乘法法则。
有理数乘法法则的推广:(1)几个不等于0的数相乘,积的符号由负因数的个数决定。
当负数的个数为奇数时,积为负,当负因数为偶数个时,积为正。
(2)几个数相乘,有一个因数为0,积为0。
例2:(1))4()37(21-⨯-⨯ (2) )253()5.2()94(321-⨯-⨯-⨯例题目的:会算两个以上有理数的乘法,并能判定积的符号。
有理数乘法的运算律:在有理数运算中,乘法的交换律,结合律以及乘法对加法的分配律仍然成立。
乘法交换律:两个数相乘,交换因数的位置,积不变,用式子表示为a·b =b·a 乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变.用式子表示成(a·b)·c =a·(b·c)乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘. 用字母表示成:a(b +c)=a·b +a·c例3:计算:(1) 25.18)5.4(⨯⨯- (2) )]23()3[()2(-+-⨯-(3) )8(161571-⨯例题目的:掌握有理数乘法的运算律。
有理数的除法法则1:两个有理数相除,同号得正,异号向负,并把绝对值相除。
0除以任何非0的数都得0。
倒数与负倒数的概念:乘积为1的两个有理数互为倒数,即若a , b 互为倒数,则1=ab ;乘积为1-的两个有理数互为负倒数,即若b a ,互为负倒数,则1-=⋅b a法则2:除以一个数等于乘以这个数的倒数,即a ÷b )0(1≠⋅=b ba 例4:1. 求下列各数的倒数,负倒数。
初一有理数加减乘除乘方混合运算题

初一有理数加减乘除乘方混合运算题嘿,大家好,今天咱们聊聊有理数的加减乘除,还有那神奇的乘方运算!说到数学,很多人可能会直摇头,觉得这东西就像个黑洞,吸走了所有快乐。
其实呢,数学就像是玩游戏,有些规则,有些挑战,掌握了就能轻松上手,像个数学小超人一样。
咱们先说加法吧。
加法就像是把好东西往一起凑,想象一下,你有三个苹果,朋友又给你两个,这时候你就可以兴奋地算一算:哎呀,我总共有几个苹果呢?没错,五个!这就对了。
再说减法,减法嘛,感觉就像把东西给“拆分”了。
你手上有五个苹果,想给邻居一个,心里想着,哎,我还有几个?结果一算,哦,四个了。
看到没,数学其实就是生活中的一种计算,把快乐和烦恼都理顺。
乘法就像是把同样的东西重复,咱们来个小例子。
比如说,你要买五包糖,每包里有四颗糖。
你想,五包糖里总共有多少颗呢?这时候就得用乘法了,五乘四,答案是二十颗糖!想想这二十颗糖,满满一口袋,光想想就让人心情大好。
说到这里,乘法可真是个“省事”的好方法,要不然每次都去数,脑子得累成什么样啊!咱们聊聊除法。
除法就像是分东西,想想你和小伙伴们一起分享一大堆饼干。
你们四个人,饼干总共有八个。
每人分到几个?对了,正好两个!这就是除法的魅力,把东西均匀地分配。
生活中其实也常常需要用到这种“分配”的思维,比如说聚餐的时候,大家点了好多菜,最后怎么平均分配可得好好琢磨一番。
然后是乘方运算,听起来有点复杂,其实就是把一个数自己乘很多次。
比如说,二的平方就是二乘二,结果是四。
想象一下,一个小正方形,边长是二,面积就是四。
咱们再说立方,三的立方,三乘三再乘三,结果是二十七。
说到这,突然觉得,数学就像建筑,建一个个小房子,想想就觉得有趣。
在实际生活中,有理数的加减乘除可不是光在课本上,大家有没有注意到,购物的时候,价格的加减,算算折扣,都是在运用这些知识呢!走在超市,看到心仪的商品,打折了,心里乐开了花,心想这得省多少,哎,数学的用武之地可多着呢!有理数的运算其实是个工具,帮咱们更好地理解生活。
初中数学 文档:有理数乘除运算和乘方

有理数乘除运算和乘方一、基础知识1.有理数的乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;几个不为0的数相乘,积的符号由负因数的个数来决定;如果其中一个因数为0,则积为0。
2.有理数的除法法则:除以一个数等于乘以这个数的倒数。
或两数相除,同号得正,异号得负,把绝对值相除。
3.乘方:求几个相同因数积的运算。
4.处理好符号仍然是有理数乘法、除法及乘方运算的关键。
计算时,先定符号,再算结果。
5.乘除运算时,带分数化为假分数,小数往往化为分数。
6.运算过程中的负数要加上括号。
二、实战演练1:基础卷一.填空题:1.251542⨯-=______; 32)2()211(-⋅-=______。
2.8.0)40()25.1()5.2(⨯-⨯-⨯-=______。
322)8.0()32(3-÷-⨯-=______。
3.当5,2,3=-=-=c b a 时,则代数式a c b ÷+-)(的值为______。
4.倒数是它本身的数是______,相反数是它本身的数是______,平方是它本身的数是______;绝对值是它本身的数是______;立方是它本身的数是______。
5.在中,指数是______,底数是______,幂是______。
二.选择题:1.如果0=ab ,则( )A .都为0;B .不都为0;C .至少有一个是0;D .都不为0。
2.下列说法正确的是( )A .任何正数大于它的倒数;B .任何小于1的数,它的倒数一定大1;C .任何数都有倒数;D .两数互为倒数,它们的相同次幂仍互为倒数。
3.一个有理数和它的相反数之积( )A .符号必为正;B .符号必为负;C .一定不小于0;D .一定不大于04.若0>+b a 且0≤ab ,那么只要( )A .0,0<>b a ;B .0,0><b a ;C .异号;D .必有一个为正,且正的绝对值较大。
有理数的运算

1 统一为分数 (1) 0.25 1 2 3 (2) 7 4 注意运算顺序 4 2 7 (3) (2 ) (1 ) 化为假分数 3 9
2.计算:
3 计算:
1 3 1 (4) ( ) ( ) 3 4 12 注意观察 6 寻求最佳方法 (5) (24 ) (6) 7 2 4 2 (6) ( ) ( ) (1 ) (7) 3 5 5
1.确定下列两数积的符号 (口答)
• ①5× (-3); - ②(-4) ×6; • ③(-7) ×(-9);+ ④0.5×0.7.
+
2.口算:
• • • • ①6 × (-9) = -54 ③(-6) ×9= -54 ⑤(-6) ×(-1) = 6 ⑦(-6) ×0 = 0 ②(-6) ×(-9) = 54 ④(-6) ×1= -6 ⑥6 ×(-1) = -6 ⑧0×(-6)= 0
4 4 4 64
4
2 2
2 2 2 2 16
当底数是负数时,幂的正负由指数确定, 思考:例1的两个幂,底数都是负数,为 指数是偶数时,幂是正数;指数是奇数时, 什么这两个幂一个是正数而另一个是负数 幂是负数。 呢?是由什么数来确定它们的正负呢? 如果幂的底数正数,那么这个幂有可能是负数吗? 不可能!正数的任何次幂是都正数
4
退出 上一页 下一页 返回
二、把下列乘方写成乘法的形式:
.9 1、 0.9 = 0.9 0.9 0; 4 9 9 9 9 9 7 2、 7 = 7 7 7 ;
3
3、 a b =
a ba b ;
2
返回 退出上一页 下一页
a·a·…·a= an
2.5 有理数的混合运算(5大题型提分练)(原卷版)

题型三 含乘方的新定义运算问题
解题技巧提炼
新定义运算问题主要是运用题目中所给的新定义的运算方式进行计算即可,注意计算时的运算顺序,也是对有理数的混合运算的考查.
1.(2024•泸县二模)从n个不同元素中取出m个元素的所有不同组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号 表示.已知“!”是一种数学运算符号,且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1=24…,若公式 (n≥m,m,n为正整数),则 为( )
7.已知13=1 12×22,13+23=9 22×32,13+23+33=36 32×42,…,按照这个规律完成下列问题:
(1)13+23+33+43+53= 2×2.
(2)猜想:13+23+33+…+n3= .
(3)利用(2)中的结论计算:(写出计算过程)113+123+133+143+153+163+…+393+403.
A.21B.35C.42D.70
2.(2024•甘肃)定义一种新运算*,规定运算法则为:m*n=mn﹣mn(m,n均为整数,且m≠0).例:2*3=23﹣2×3=2,则(﹣2)*2=.
3.(2024•杭锦后旗模拟)我们规定:x⊗y=(x+2)2﹣y,例如:3⊗5=(3+2)2﹣5=20,则1⊗(﹣2)的值为( )
A.2B.3C.4D.5
2.(2023秋•宁远县期中)“算24点”的游戏规则是:用“+﹣×÷”四种运算符号把给出的4个数字连接起来进行计算,要求最终算出的结果是24.例如,给出2,2,2,8这四个数,可以列式(2÷2+2)×8=24.以下的4个数用“+﹣×÷”四种运算符号不能算出结果为24的是( )
初一数学有理数的加减乘除以及乘方试题

初一数学有理数的加减乘除以及乘方试题1.计算;(1)(2)(-)2007×1.52008×(-1)2008【答案】(1)0 (2)-【解析】有理指数幂运算,注意负指数幂.(1)原式==4+1-5=0(2)原式=(-)2007×()2008×1=(-)2007×()2007×=(-×)2007×=(-1)2007×=-【考点】指数幂运算.2.月球距离地球约为3.84×105千米,一架飞机速度为8×102千米/时,•若坐飞机飞行这么远的距离需 _________ 小时【答案】4.8×102.【解析】先根据时间=路程÷速度,算出时间为(3.84×105)÷(8×102),利用单项式除单项式的法则计算,然后再按照科学记数法的方法的形式表示即可.试题解析:依题意得(3.84×105)÷(8×102),=0.48×103=4.8×102(小时).∴坐飞机飞行这么远的距离需4.8×102小时.考点: 1.整式的除法;2科学记数法—表示较大的数.3.李强靠勤工俭学的收入维持上大学费用,表中是李强某一周的收支情况表,记收入为正,支出为负(单位:元):星期一二三四五六日(2)照这个情况估计,李强一个月(按30天计算)能有多少节余?(3)按以上的支出水平,李强一个月(按30天计算)至少有多少收入才能维持正常开支?【答案】(1)到这个周末,李强有14元节余.(2)照这个情况估计,李强一个月(按30天计算)能有60元节余.(3)按以上的支出水平,李强一个月(按30天计算)至少有360元收入才能维持正常开支.【解析】分析:(1)七天的收入总和减去支出总和即可;(2)首先计算出平均一天的节余,然后乘30即可;(3)计算出这7天支出的平均数,即可作为一个月中每天的支出,乘30即可求得.解:(1)由题意可得:(元).(2)由题意得:14÷7×30=60(元).(3)根据题意得:10+14+13+8+10+14+15=84,84÷7×30=360(元).答:(1)到这个周末,李强有14元节余.(2)照这个情况估计,李强一个月(按30天计算)能有60元节余.(3)按以上的支出水平,李强一个月(按30天计算)至少有360元收入才能维持正常开支.4.(1)|﹣4|﹣(﹣2)2+(﹣1)2011﹣1÷2;(2)(﹣2)2+3×(﹣2)﹣1÷()2.【答案】(1)﹣1(2)﹣18【解析】(1)根据运算顺序先算乘方运算,(﹣2)2表示两个﹣2的乘积,(﹣1)2011表示2011个﹣1的乘积,其结果为﹣1,同时根据负数的绝对值等于它的相反数化简原式的第一项,根据互为相反数的两数和为0化简,然后利用同号两数相加的法则即可得到结果;(2)根据运算顺序先算乘方运算,(﹣2)2表示两个﹣2的乘积,()2表示两个的乘积,然后利用除以一个数等于乘以这个数的倒数把除法运算化为乘法运算,利用两数相乘,同号得正、异号得负,并把绝对值相乘来计算乘法运算,利用减法法则:减去一个数等于加上这个数的相反数把减法运算化为加法运算,利用同号及异号两数相加的法则即可得到结果.解:(1)|﹣4|﹣(﹣2)2+(﹣1)2011﹣1÷2=4﹣4+(﹣1)﹣=﹣1+(﹣)=﹣1;(2)(﹣2)2+3×(﹣2)﹣1÷()2=4+(﹣6)﹣1÷=4+(﹣6)﹣1×16=4+(﹣6)+(﹣16)=4+(﹣22)=﹣18.点评:此题考查了有理数的混合运算,有理数的混合运算首先弄清运算顺序:先乘方,再乘除,最后算加减,有括号先算括号里边的,然后利用各种运算法则进行计算,有时可以利用运算律来简化运算,注意(﹣2)2与﹣22的区别,前者表示两个﹣2的乘积,后者表示2平方的相反数.5.2003年10月15日,航天英雄杨利伟乘坐“神舟五号”载人飞船,于9时9分50秒准确进入预定轨道,开始巡天飞行.飞船绕地球飞行了十四圈后,返回舱与推进舱于16日5时59分分离,结束巡天飞行.飞船共用了20小时49分10秒,巡天飞行了约6×105千米,则“神舟五号”飞船巡天飞行的平均速度约为________千米/秒.(结果精确到0.1)【答案】8.0【解析】仔细分析题意,再根据平均速度=总里程÷总时间列式计算即可.解:10月15日9时50秒到16日5时59分期间共有20小时50分10秒,共计75 010秒.6×105÷75 010=7.99千米/秒≈8.0千米/秒.答:“神舟五号”飞船巡天飞行的平均速度是8.0千米/秒.【考点】有理数的除法的应用点评:计算题是中考必考题,一般难度不大,学生要特别慎重,尽量不在计算上失分.6.计算:(1);(2)【答案】(1);(2)1【解析】(1)先根据积的乘方、幂的乘方法则化简,再算同底数幂的乘法,最后合并同类项;(2)先根据有理数的乘方法则计算,再算加减即可.(1)原式;(2)原式.【考点】整式的混合运算,实数的运算点评:计算题是中考必考题,一般难度不大,要特别慎重,尽量不在计算上失分.7.用“<”号,将、、、连接起来______【答案】【解析】先根据有理数的乘方法则依次计算出各个数的值,再根据有理数的大小比较法则比较. ∵,,,∴.【考点】有理数的乘方点评:计算题是中考必考题,一般难度不大,要特别慎重,尽量不在计算上失分.8.今年3月26日20:30至21:30,在参与“地球一小时”活动中,南京全城节约用电约10万度.约可以减少二氧化碳排放量99700千克,这个排放量用科学记数法表示为千克.【答案】9.97´104【解析】99700有效数字为9.97.小数点向左移动4位。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有理数的加减乘除乘方运算
⎧⎪⎨⎪⎩加减运算
有理数的运算乘除运算
乘方运算
知识点1 加减运算
一、法则
有理数加法法则:
①同号两数相加,取相同的符号,并把绝对值相加.
②异号两数相加,绝对值相等时,和为0;绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.
③一个数同0相加,仍得这个数.
注:两数相加,先定符号,再算绝对值
有理数减法法则:减去一个数,等于加这个数的相反数.
()
a b a b
-=+-.
二、运算律
有理数加法运算律:
①加法交换律:两个加数相加,交换加数的位置,和不变.
a b b a
+=+
②加法结合律:三个数加,先把前两个数相加,或者先把后两个数相加,和不变.
()()
a b c a b c
++=++
三、有理数加减混合运算的步骤:
①把算式中的减法转化为加法;
②省略加号与括号;
③利用运算律及技巧简便计算,求出结果.
四、加减混合运算技巧:
(1)把符号相同的加数相结合;
(2)凑零:互为相反数的两个数先相加
(3)凑整:相加和为整数的两个数先相加
(4)同分母:分数相加,同分母或易通分的分数先相加
(5)同形:分数与小数均有时,化统一形式
(6)带分数:带分数化为整数和真分数分别运算
知识点2 乘除运算
一、法则
有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.
任何数同0相乘,都得0.
二、有理数乘法的运算步骤:先确定积的符号,再确定积的绝对值.多个有理数相乘:
(1)几个不是0的数相乘,负因数的个数是偶数时,积为正数;
负因数的个数是奇数时,积为负数,即“奇负偶正”.
(2)几个数相乘,如果其中有因数为0,那么积等于0.
三、有理数乘法运算律:
(1)乘法交换律:一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等.
ab ba
(2)乘法结合律:一般地,有理数乘法中,三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等.
()()ab c a bc =
(3)分配律:一般地,有理数乘法中,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.
()a b c ab ac +=+
四、倒数的概念:乘积是1的两个数互为倒数.
五、负倒数:乘积是-1的两个数互为负倒数
整除:一个整数a 除以一个不为0的整数b ,商是整数,而没有余数,则我们说a 能被b 整除(或说b 能整除a ).
知识点3 乘方
乘方的概念:求n 个相同因数的积的运算叫做乘方,乘方的结果叫做幂.
(1)一般地,n 个相同的因数a 相乘,即n a a a a ⋅⋅⋅⋅⋅⋅⋅个
,记作,读作“a 的n 次方”;
(2)在中,a 叫做底数,n 叫做指数;
(3)当看作a 的n 次方的结果时,读作a 的n 次幂.
注意:()224-=,其底数为()2-,()()()2
2224-=-⨯-=; n a n a n a
224-=-,其底数为2,()()222121224-=-⨯=-⨯⨯=-;
239=749⎛⎫ ⎪⎝⎭,其底数为37,2333977749⎛⎫=⨯= ⎪⎝⎭
; 239=77,其底数为3,23339777
⨯==; 221391224⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,带分数的乘方运算,一定要先化成假分数后再运算.
一个数可以看作这个数本身的一次方,例如,5就是15,指数1通常省略不写.
正数的任何次幂都是正数;负数的奇数次幂是负数,负数的偶数次幂是正数.
特别的,一个数的二次方,也称为这个数的平方;一个数的三次方,也称为这个数的立方.
科学记数法:把一个大于10的数表示成10n a ⨯的形式(其中110a ≤<,n 是正整数).
用科学记数法表示一个n 位整数,其中10的指数是1n -,10的指数比整数的位数少1.
万410=,亿810= .。