小学奥数 同余问题 精选练习例题 含答案解析(附知识点拨及考点)
六年级奥数专题讲义(基础卷+提高卷)-第38讲 同余法解题 通用版(含答案)

第三十八讲同余法解题基础卷1、乘积418×814×1616除以13所得的余数是多少418÷13=32…2,814÷13=62…8,1616÷13=124…4,2×8×4=64,64÷13=4…12;答:乘积418×814×1616除以13所得的余数是12.2、已知2000年的儿童节是星期四,求2021年的儿童节是星期几2000年到2021年由十二年天数为12*3653(04,08,12年为闰年)=4383天4383/7=6261即2021年的5月31日为周四,则周五即为2021年儿童节3、求除以7的余数。
2021=7*28622021³=7*2862³=7m1m为正整数)“2021的2021次方”2021^2021=2021³^668=7m1^668所以2021的2021次方除以7的余数是14、有一个整数,除300,262,205,得到的余数相同,这个整数是多少300-262=38262-205=57这个数可以同时整除38和57这个数为195、有一个整数,用它去除63,91,129得到3个余数的和是25,这个整数是多少也就是说,(6391129)除以这个数的余数是25即:6391129-25=258能够被这个数整除258=2*3*43那么这个数可能是:2、3、43、6、86、129又这个数应小于63,经检验,这个数是436、一个小于200的数,它除以11余8,除以13余10,这个数是多少设这个数为X,因为这个数除以11余8,也就是说,X加上3(11-8)就可以整除11了;同理,X除以13余10,也就是说,X加上3(13-10)就可以整除13了因此,(X3)可以整除11和13的最小公倍数143,即这个数为143的倍数再减3,又因为这个数小于200,所以这个数是143*1-3=140提高卷1、自然数nn〉分别除442,297和210得到相同的余数,这个相同的余数是多少这个相同的余数是7方法同基础卷第42、有一个自然数,用它分别去除63,90,130,都有余数,三个余数的和为25,这三个余数中最小的一个是几设这个自然数为m,m去除63,90,130所得的余数分别为a,b,c,则63-a,90-b,130-c都是m的倍数.可得:(63-a)(90-b)(130-c)=283-(abc)=283-25=258也是m的倍数.又258=2×3×43.则可能是2或3或6或43;abc=25,故a,b,c中至少有一个要大于8;根据除数必须大于余数,可以确定=43.从而a=20,b=4,c=1.显然,1是三个余数中最小的.故答案为:1.3、号码分别为101,126,173,193的四个运动员进行乒乓球比赛,规定每两人比赛的盘数是他们号码的和被3除所得的余数。
五年级奥数同余问题

1.两数相除商37余73,求被除数的最小值。
解析:28812.两数相除,商4余8,被除数、除数、商和余数的和为415,则被除数是多少?解析:被除数是424,除数是79.3.小明在做题的时候由于马虎,错把被除数360看做390,商比原来大了3,求原来的除数。
解析:除数是10.4.小明在做题的时候由于马虎,错把被除数360看做390,商比原来大了3,余数也比原来大了3.求原来的除数。
解析:除数是9.5.求算式3218+26-757除以9的余数。
解析:3.6.求413除以5的余数。
解析:1.7. 2461×135×6047÷11的余数是多少?解析:5.8. 19992000÷7的余数是多少?解析:0.9.……199200除以9的余数是________;解析:3.10. 数11…1(2007个1),被13除余多少?解析:711.已知一个两位数除1477,余数是49.那么,满足那样条件的所有两位数是 .解析:1477-49=1428是这两位数的倍数,又1428=2×2×3×7×17=51×28=68×21=84×17,因此所求的两位数51或68或84.12.有苹果,桔子各一筐,苹果有240个,桔子有313个,把这两筐水果分给一些小朋友,已知苹果等分到最后余2个不够分,桔子分到最后还余7个桔子不够再分,求最多有多少个小朋友参加分水果?解析:此题是一道求除数的问题.原题就是说,已知一个数除240余2,除313余7,求这个数最大为多少,我们可以根据带余除法的性质把它转化成整除的情况,从而使问题简化,因为240被这个数除余2,意味着240-2=238恰被这个数整除,而313被这个数除余7,意味着这313——2=238(个) ,313—7=306(个) ,(238,306)=34(人) .因数与倍数:两数的最大公因数乘最小公倍数等于这两数的乘积。
2021年小学奥数—同余问题

数论之同余问题欧阳光明(2021.03.07)余数问题是数论知识板块中另一个内容丰富,题目难度较大的知识体系,也是各大杯赛小升初考试必考的奥数知识点,所以学好本讲对于学生来说非常重要。
许多孩子都接触过余数的有关问题,并有不少孩子说“遇到余数的问题就基本晕菜了!”余数问题主要包括了带余除法的定义,三大余数定理(加法余数定理,乘法余数定理,和同余定理),及中国剩余定理和有关弃九法原理的应用。
知识点拨:一、带余除法的定义及性质:一般地,如果a是整数,b是整数(b≠0),若有a÷b=q……r,也就是a=b×q+r,0≤r<b;我们称上面的除法算式为一个带余除法算式。
这里:(1)当时:我们称a可以被b整除,q称为a除以b的商或完全商(2)当时:我们称a不可以被b整除,q称为a除以b的商或不完全商一个完美的带余除法讲解模型:如图,这是一堆书,共有a本,这个a就可以理解为被除数,现在要求按照b本一捆打包,那么b就是除数的角色,经过打包后共打包了c 捆,那么这个c就是商,最后还剩余d本,这个d就是余数。
这个图能够让学生清晰的明白带余除法算式中4个量的关系。
并且可以看出余数一定要比除数小。
二、三大余数定理:1.余数的加法定理a与b的和除以c的余数,等于a,b分别除以c的余数之和,或这个和除以c的余数。
例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即两个余数的和3+1.当余数的和比除数大时,所求的余数等于余数之和再除以c的余数。
例如:23,19除以5的余数分别是3和4,故23+19=42除以5的余数等于3+4=7除以5的余数,即2.2.余数的乘法定理a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数。
例如:23,16除以5的余数分别是3和1,所以23×16除以5的余数等于3×1=3。
当余数的和比除数大时,所求的余数等于余数之积再除以c的余数。
小学奥数—同余问题

数论之同余问题余数问题是数论知识板块中另一个内容丰富,题目难度较大的知识体系,也是各大杯赛小升初考试必考的奥数知识点,所以学好本讲对于学生来说非常重要。
许多孩子都接触过余数的有关问题,并有不少孩子说“遇到余数的问题就基本晕菜了!”余数问题主要包括了带余除法的定义,三大余数定理(加法余数定理,乘法余数定理,和同余定理),及中国剩余定理和有关弃九法原理的应用。
知识点拨:一、带余除法的定义及性质:一般地,如果a是整数,b是整数(b≠0),若有a÷b=q……r,也就是a=b×q+r,0≤r<b;我们称上面的除法算式为一个带余除法算式。
这里:r=时:我们称a可以被b整除,q称为a除以b的商或完全商(1)当0r≠时:我们称a不可以被b整除,q称为a除以b的商或不完全商(2)当0一个完美的带余除法讲解模型:如图,这是一堆书,共有a本,这个a就可以理解为被除数,现在要求按照b本一捆打包,那么b就是除数的角色,经过打包后共打包了c捆,那么这个c就是商,最后还剩余d本,这个d就是余数。
这个图能够让学生清晰的明白带余除法算式中4个量的关系。
并且可以看出余数一定要比除数小。
二、三大余数定理:1.余数的加法定理a与b的和除以c的余数,等于a,b分别除以c的余数之和,或这个和除以c的余数。
例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即两个余数的和3+1.当余数的和比除数大时,所求的余数等于余数之和再除以c的余数。
例如:23,19除以5的余数分别是3和4,故23+19=42除以5的余数等于3+4=7除以5的余数,即2.2.余数的乘法定理a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数。
例如:23,16除以5的余数分别是3和1,所以23×16除以5的余数等于3×1=3。
当余数的和比除数大时,所求的余数等于余数之积再除以c的余数。
同余问题的奥数题

同余问题的奥数题同余问题是一个数学中的问题,它涉及到整数除以某个数后的余数的性质和关系。
具体来说,给定一个整数n和一个正整数m,同余问题就是研究关于a 的同余方程a ≡b (mod m) 的性质和解的情况。
其中,a是被除数,b是余数,"≡"表示同余关系,即a除以m的余数等于b,而mod表示取模运算。
这个问题可以进一步扩展为求解满足特定条件的整数解的数量或者找到所有满足条件的整数解等。
以下是一些常见的同余问题奥数题:1. 一个数除以5的余数是4,除以6的余数是3,除以7的余数是2,求这个数是多少?解答:我们可以使用中国剩余定理来解决这个问题。
首先,我们设这个数为x,则有x ≡4 (mod 5),x ≡3 (mod 6) 和x ≡2 (mod 7)。
根据中国剩余定理,我们有:x = 5 * k1 + 6 * k2 + 7 * k3,其中k1、k2、k3是整数。
由于5、6和7互质,所以可以分别求解得到:k1 = (4 - 2) / 5 = 0k2 = (3 - 0) / 6 = 1/2k3 = (2 - 0) / 7 = 2/7将k1、k2和k3代入x的表达式中,得到x = 5 * 0 + 6 * (1/2) + 7 * (2/7) = 19。
所以这个数是19。
2. 求方程x^2 - y^2 = 1999的所有正整数解。
解答:我们可以使用费马小定理来解决这个问题。
根据费马小定理,如果p 是一个素数且a是模p的一个原根,那么a^(p-1) ≡1 (mod p)。
在本题中,我们考虑模p=n,即要求满足x^2 - y^2 = n的正整数解的数量。
根据费马小定理,有:当n是完全平方数时,若n的质因数分解形式为p^2,且存在整数a使得a^((p-1)/2) ≡±1 (mod p),则n有一个非平凡的正整数解;当n不是完全平方数时,不存在满足条件的正整数解。
对于本题中的n=1999,它是一个完全平方数,因为1999 = 13 * 153。
五年级奥数同余问题

1.两数相除商37余73,求被除数的最小值。
解析:28812.两数相除,商4余8,被除数、除数、商和余数的和为415,则被除数是多少?解析:被除数是424,除数是79.3.小明在做题的时候由于马虎,错把被除数360看做390,商比原来大了3,求原来的除数。
解析:除数是10.4.小明在做题的时候由于马虎,错把被除数360看做390,商比原来大了3,余数也比原来大了3.求原来的除数。
解析:除数是9.5.求算式3218+26-757除以9的余数。
解析:3.6.求413除以5的余数。
解析:1.7. 2461×135×6047÷11的余数是多少?解析:5.8. 19992000÷7的余数是多少?解析:0.9.求123456789101112……199200除以9的余数是________;解析:3.10. 数11…1(2007个1),被13除余多少?解析:711.已知一个两位数除1477,余数是49.那么,满足那样条件的所有两位数是 .解析:1477-49=1428是这两位数的倍数,又1428=2×2×3×7×17=51×28=68×21=84×17,因此所求的两位数51或68或84.12.有苹果,桔子各一筐,苹果有240个,桔子有313个,把这两筐水果分给一些小朋友,已知苹果等分到最后余2个不够分,桔子分到最后还余7个桔子不够再分,求最多有多少个小朋友参加分水果?解析:此题是一道求除数的问题.原题就是说,已知一个数除240余2,除313余7,求这个数最大为多少,我们可以根据带余除法的性质把它转化成整除的情况,从而使问题简化,因为240被这个数除余2,意味着240-2=238恰被这个数整除,而313被这个数除余7,意味着这313—7=306恰为这个数的倍数,我们只需求238和306的最大公约数便可求出小朋友最多有多少个了.240—2=238(个) ,313—7=306(个) ,(238,306)=34(人) .---精心整理,希望对您有所帮助。
小学五年级奥数 同余问题(一)

⑴ 一般地,A÷B=c…d ⑵ 变整除:A-d,可以被B,或c整除. 2. 余数的三大性质, ⑴ 余数的和、差、积. ⑵ 大数变小数,转化求解. 3. 同余问题: ⑴ A、B对C同余,则A、B差值可以被C整除 ⑵ C为差值的约数.(检验)
【今日讲题】例3,例4,例5 【讲题心得】 ___________________________________________________________________ 【家长评价】 ___________________________________________________________________
【小练习】(★☆) 算式2007×2008+2009×2010除以7的余数是_____.
【例3】(★★☆) 2014年4月13日(星期日)是小学“希望杯”全国数学邀请赛举行复赛的 日子,那么这天以后的第2014+4×13天是星期_____.
版块二:余数三大性质
知识要点屋 5. 同余问题:
若a,b除以c的余数相同,那么, (a-b)能被c整除 称a,b对于模c同余
【例1】(★★☆) 算式2008÷a=b…6,a、b均为自然数. a有____种不同的取值.
知识要点屋
3. 整除判断
余数判断
⑴ 尾数系,(2,5)(4,25)(8,125)
⑵ 和系,数字和能否整除,(3,9)
⑶ 差系,末三位与其余位的差,7、11、13
11:奇数位的数字之和与偶数位的数字之和的差值能否被11整除.
用“同余式”表示为a≡b(modc) 例如,23、13除以5的余数都是3
那么,(23-13)可以被5整除.
2
【例4】(★★★) 学校新买来118个乒乓球,67个乒乓球拍和33个乒乓球网,如果将这三 种物品平分给每个班级,那么这三种物品剩下的数量相同. 请问学校共 有多少个班?
小学奥数题库《数论》余数问题中国剩余定理2星题(含解析)全国通用版

数论-余数问题-中国剩余定理-2星题课程目标知识提要中国剩余定理•概述中国剩余定理即我们常说的“物不知数”,是利用同余式组来求解的一类问题。
A、一个数分别除以两个数余数相同的时候,将原数减去这个余数之后可以整除那两个数B、上述情况下的余数虽有不同,但与各自对应的除数的差相同,将原数加上这个差之后便可以整除C、其他情况下,凑出相同余数之后,运用第一种情况的方法.精选例题中国剩余定理1. 5年级3班同学上体育课,排成3行少1人,排成4行多3人,排成5行少1人,排成6排多5人,问上体育课的同学最少人.【答案】59.【分析】分析题意知,这个班的人数除以3余2,除以4余3,除以5余4,除以6余5,凑缺相同,这个班人数为[3、4、5、6]−1=59(人).2. 一个数,除以11余7,除以13余9,除以19余15,问满足条件的最小自然数是.【答案】2713.【分析】我们发现两个算式除数与余数的差都相等,所以把他们都处理成都缺4能被整除,这样得[11、13、19]−4=2713.3. 一个大于10的数,除以5余3,除以7余1,问满足条件的最小自然数为.【答案】43.【分析】根据总结,我们发现两个数的除数与余数的和都是5+3=7+1=8,这样我们可以把余数都处理成都余8,所以[5、7]=35,所以这个数就是35+8=43.4. 一个大于10的数,除以5余3,除以7余1,除以9余8,问满足条件的最小自然数为.【答案】323.【分析】根据总结,我们发现三个数中两个数的除数与余数的和都是5+3=7+1=8,这样我们可以把余数都处理成都余8,所以[5、7、9]=315,所以这个数就是315+8=323.5. 一个大于100的数,除以9余3,除以11余1,问满足条件的最小自然数为.【答案】111.【分析】据题意,我们发现两个数的除数与余数的和都是9+3=11+1=12,这样我们可以把余数都处理成都余12,所以[9、11]=99,所以这个数就是99+12=111.6. 一个大于2000数,除以11余5,除以13余3,除以17余16,问满足条件的最小自然数为.【答案】2447.【分析】根据题意,我们发现三个算式中两个数的除数与余数的和都是11+5=13+3= 16,这样我们可以把余数都处理成都余16,所以[11、13、17]=2431,所以这个数就是2431+16=2447.7. 有一堆水果糖,如果按8块一份来分,最后剩下2块;如果按9块一份来分,最后剩3块;如果按10块一份来分,最后剩下4块.这堆糖至少有块.【答案】354【分析】这堆水果糖的总数被8除余2,被9除余3,被10除余4,如果增加6块就刚好是8、9、10的公倍数,又8、、9、10的最小公倍数是360.所以这堆水果糖至少有360−6=354(块).8. 某个自然数除以2余1,除以3余2,除以4余1,除以5也余1,则这个数最小是.【答案】41【分析】这个自然数除以2、4、5都余1,[2,4,5]=20,所以这个数应满足1+20n,同时除以3余2,所以最小是41.9. 有一筐苹果,甲班分,每人3个还剩11个;乙班分,每人4个还剩10个;丙班分,每人5个还剩12个.那么这筐苹果至少个.【答案】62【分析】设有x个苹果.因为11除以3余2,所以x除以3余2;因为10除以4余2,所以x除以4余2;因为12除以5余2,所以x除以5余2.又因为x大于12,x=[3,4,5]+2=60+2=62(个).10. 一个自然数能被11整除,除以13余12;除以15余13;这个数最小为.【答案】1078.【分析】n除以15余13:最小为13,通式为13+15k1;n除以13余12:k1最小为6,则有13+15×6=103,通式为103+[15,13]k2=103+ 195k2.n除以11余0:k2最小为5,则有103+195×5=1078.11. 一个大于3的数,除以7余4,除以9余6,除以11余8,问满足条件的最小自然数是.【答案】690.【分析】我们发现两个算式除数与余数的差都相等,所以把他们都处理成都缺3能被整除,这样得[7、9、11]−3=690.12. 一个大于2的数,除以3余1,除以5余3,除以7余5,问满足条件的最小自然数是.【答案】103.【分析】我们发现两个算式除数与余数的差都相等,所以把他们都处理成都缺2能被整除,这样得[3、5、7]−2=103.13. 小明心里想了一个正整数.并且求出了它分别被14和21除后所得的余数,已知这两个余数的和是33,则该整数被42除的余数是.【答案】41【分析】该整数除以14的余数不大于13,除以21余数不大于20,所以这两个余数的和不大于33,而由题有这两个余数的和恰好是33,所以该整数除以14余数是13,除以21余数是20.这个数加上1就是14和21的倍数,而[14,21]=42,所以这个数可以表示成42k−1的形式,被42除的余数是41.14. 智慧老人到小明的年级访问,小明说他们年级共一百多名同学,老人请同学们按三人一行排队,结果多出一人,按五人一行排队,结果多出二人,按七人一行排队,结果多出一人,老人说我知道你们年级人数应该是人.【答案】127【分析】根据条件,该数除以3余1,除以5余2,除以7余1,逐级满足法,令该数为a,则a÷3⋯⋯1 ①a÷5⋯⋯2 ②a÷7⋯⋯1 ③符合条件①的有1,4,7,10,13,16,⋯.同时满足①、②的最小值为7,以后a=7+15m均满足①、②;现在来看(7+15m)除以7余1,则15m除以7余1,则m最小取1,符合,最小的符合的数为a=22.以后每隔[3,5,7]=105即符合.由于该年级有100多名学生,为22+105= 127.15. 某个两位数是2的倍数,加1是3的倍数,加2是4的倍数,加3是5的倍数,那么这个两位数是.【答案】62【分析】由题可知,此数是一个2的倍数,并且除以3、4、5都余2的数,这样的数最小是2,因为这个数是两位数,2+[3、4、5]=62.16. 某数除以11余8,除以13余10,除以17余12,那么这个数的最小可能值是.【答案】998【分析】观察到11−8=13−10=3,因此除以11余8,除以13余10的最小自然数为11×13−3=140,设某数为a,则a=143m−3m为非零自然数,只需143m−3除以17余12,而143÷17=8⋯7,只需(7m−3)÷17=n⋯12,即7m−15是17的倍数所以,m=7,所以a=143×7−3=998.17. —个自然数被3除余2,被5除余4,并且这个数大于100且小于125,那么这个数是.【答案】104或119【分析】被3除余2,被5除余4,求出3和5的最小公倍数15,估算15的哪一个倍数大于100小于125,经计算可知,105和120介于100到125之间,再用105和120分别减1即可,这个自然数是104或119.18. 我国南宋数学家杨辉在其《续古摘奇算法》上记载了这样一个问题:“二数余一,五数余二,七数余三,九数余四,问本数.”用现代语言表述就是:“有一个数用2除余1,用5除余2,用7除余3,用9除余4,问这个数是多少?”请将满足条件的最小的自然数写在这里.【答案】157【分析】(解法一)先考虑除以5余2,除以7余3,除以9余4;用剩余定理得5×7×5+5×9×1+7×9×4=472[5,7,9]=315,故472±315k都符合除以5余2,除以7余3,除以9余4最小是472−315=157,且也符合除以2余1.(解法二)除以2余1的数有:1,3,5,7,9,11,13,15,17,⋯;除以5余2的数有:2,7,12,17⋯;除以7余3的数有:3,10,17⋯;所以满足“用2除余1,用5除余2,用7除余3”的数的形式为[2,5,7]n+17=70n+17(n为自然数)此时只需要找一个最小的n,满足除以9余4即可.当n=2时,满足除以9余4,所以满足条件的最小的自然数为70⋯2+17=15719. 一个大于10的自然数,除以5余3,除以7余1,除以9余8,那么满足条件的自然数最小为.【答案】323【分析】根据总结,我们发现三个数中前两个数的除数与余数的和都是5+3=7+1=8这样我们可以把余数都处理成8,即一个数除以5余3相当于除以5余8,除以7余1相当于除以7余8,所以可以看成这个数除以5、7、9的余数都是8,那么它减去8之后是5、7、9的公倍数.而[5,7,9]=315所以这个数最小为315+8=323.20. 红星小学组织学生划船.若乘坐大船,除1条船坐6人外,其余每船均坐17人;若乘小船,则除1条船坐2人外,其余每船均坐10人.如果学生的人数超过100、不到200,那么学生共有人.【答案】142【分析】除1条船坐6人外,其余每船均坐17人,说明总人数可以表示成17m+6的形式;除1条船坐2人外,其余每船均坐10人,说明总人数可以表示成10n+2的形式;那么有17m+6=10n+2,化简得17m+4=10n,经分析m的个位只能是8.又学生的人数超过100、不到200,所以m=8,学生的人数是17×8+6=142.21. 一个大于10的自然数,除以5余3,除以7余1,除以9余4,那么满足条件的自然数最小为.【答案】148【分析】观察发现三个数中前两个数的除数与余数的和都是5+3=7+1=8,这样我们可以把余数都处理成8,即一个数除以5余3相当于除以5余8,除以7余1相当于除以7余8,所以满足前两个条件的自然数为a=35m+8,下一步只需要a除以9余4,35÷9=3⋯8,只需8+8m除以9余4,只需8m除以9余5,最小的m=4,因此满足所有条件的最小自然数为8+35×4=148.22. 有一个自然数用7除余3,用9除余4,请按照从小到大的顺序,将满足条件的前两个自然数写在这里.【答案】31,94【分析】除以7余3的数有:3,10,17,24,31⋯;除以9余4的数有:4,13,22,31⋯;所以满足“除以7余3,除以9余4”的数的形式为[7,9]n+31=63n+31(n为自然数)按照从小到大的顺序,将满足条件的前两个自然数为31,94.23. 在1到100这100个数中,被2,3,5除都有非零的余数,且余数彼此不等的数有个.【答案】6【分析】根据余数不能比除数大.一个数除以2,余数只能是1.而要求余数彼此不等,所以,这些数除以3,余数只能是2.满足以上两个条件的数为6的倍数少1.有:5、11、17、23、29、35、41、47、53、59、65、71、77、83、89、95.再满足被5除有余数,且余数不为1和2,(个位不能为5、1、7).符合条件的数只有:23、29、53、59、83、89,共6个数.24. 一个数除以2、3、5、7、11的余数分别是1、2、3、4、5,求符合条件的最小的奇数.【答案】1523.【分析】本题实际上就是求被3、5、7、11除的余数分别是2、3、4、5的最小奇数,符合条件的最小偶数是368,只要将368加上3×5×7×11就能求得符合条件的最小奇数,这个数是368+3×5×7×11=1523.25. 有一个自然数,除以2余1,除以3余2,除以4余3,除以5余4,除以6余5,除以7余6,则这个数最小是.【答案】419.【分析】分析题意知,这个数加1就能被2,3,4,5,6,7整除,所以这个数为[2、3、4、5、6、7]−1=420−1=419.26. 一个数除以3余2,除以5余3,除以7余2,求适合此条件的最小数.【答案】23.【分析】由中国剩余定理得这个数为23.27. (1)一个自然数除以4余3,除以5也余3,这个自然数最小是多少?(2)一个自然数除以5余1,除以7余3,这个自然数最小是多少?【答案】(1)3;(2)31【分析】(1)这个自然数减去3以后是4和5的公倍数,所以最小是3.(2)这个自然数加上4以后是5和7的公倍数,所以最小是31.28. 今有物不知其数,三三数之剩二,五五数之剩四,七七数之剩三,问物几何?【答案】59【分析】70×2+21×4+15×3=269;269−105−105=59;29. 小朋友们做游戏,若7人分成一组,则最后余下5人;若9人分成一组,则最后余下5人;若11人分成一组,则最后余下5人.那么一起做游戏的小朋友至少有人.【答案】698【分析】分析题意知,小朋友的人数是7,9,11的公倍数减5,所以做游戏的小朋友的人至少有[7、9、11]+5=698(人)30. 有一批图书总数在1000本以内,若按24本书包成一捆,则最后一捆差2本;若按28本书包成一捆,最后一捆还是差2本书;若按32本包一捆,则最后一捆是30本.那么这批图书共有本.【答案】670.【分析】由题意知,这批数的总数除以24余22,除以28余26,除以32余30,[24、28、32]=672,所以这批书的数量为672k−2,又因为这批图书总数在1000本以内,所以k=1,这本书为670.31. 已知自然数A除以11余5,除以9余7,除以13余3,这个数最小是多少?【答案】1303【分析】本题属于“物不知数”问题,可以运用中国剩余定理,但需要先要找出11与9的公倍数中除以13余1的数、11与13的公倍数中除以9余1的数以及9与13的公倍数中除以11余1的数.比较麻烦.实际上,观察可知11+5=9+7=13+3=16,也就是说这个数减去16后是11、9、13的公倍数,那么这个数最小就是11、9、13的最小公倍数加上16,为11×9×13+16=1303.32. 有一个自然数,用它分别去除61、90、130都有余数,3个余数的和是26,这3个余数中最大的一个是多少?【答案】11【分析】.简答:61、90和130的和减去26得到255,255的约数中验证得满足条件的只有17,所以这个自然数是17,所以余数中最大的是130除以17的余数1133. —个盒子中装有棒棒糖100多个,如果每次取5个最后剩4个,如果每次取4个最后剩3个,如果每次取3个最后剩2个.那么如果每次取12个,最后剩多少个?【答案】11【分析】简答:除以5余4,除以4余3,除以3余2的数最小是59,满足上述条件的100以上的数是59加上若干个60,如119、179等,这些数除以12余11.34. (1)一个数除以7余2,除以11余1.这个数最小是多少?(2)有一队解放军战士,人数在150人到200人之间,从第一个开始依次按1,2,3,⋯,9的顺序报数,最后一名战士报的数是3;如果按1,2,⋯,7的顺序报数,最后一名战士报的数是4.请问:一共有多少名战士?【答案】(1)23;(2)165【分析】(1)采用逐步满足条件法.满足条件第二个条件的数位1、12、23、⋯发现23同时满足第一个条件,因此这个数最小是23.(2)战士的人数除以9余3,除以7余4,满足这两个条件最小的数是39,不断加63,直到满足限制条件,最后得到165.35. 一个自然数在1000和1200之间,且被3除余1,被5除余2,被7除余3,求符合条件的数.(使用中国剩余定理求解)【答案】1102【分析】70+21×2+15×3=70+42+45=157,157+105n在1000到1200之间.可以先写成52+105n,105×10+1050,1050+52=1102.36. 已知两个连续的两位数除以5的余数之和是5,除以6的余数之和是5,除以7的余数之和是1.求这两个两位数.【答案】77和78【分析】两个连续的两位数除以5的余数之和是5,则可以判断出第一个数除以5余2.除以6的余数之和是5,则可以判断出第一个数除以6余2或余5.除以7的余数之和是1,则可以判断出第一个数除以7余0.满足第一、三两个条件的数有7、42、77,再考虑第二个条件,只有77满足.因此这两个数为77和78.37. 一个三位数除以4余3,除以6也余3.这个三位数最大是多少?【答案】999【分析】这是一道余同的问题.满足条件的数可以表示为[4,6]×n+3,其中n为自然数.要求满足条件的最大三位数,应令n为83,即[4,6]×83+3=999.38. 一个小于200的数,它除以11余8,除以13余10,这个数是几?【答案】140.【分析】分析题意,我们发现这两个算式除数与余数的差都等于11−8=13−10=3,观察发现这个数加上3后就能同时被11和13整除,所以[11、13]=143,所以这个数是143−3=140.39. 被2,3,5除余1且不等于1的最小整数是几?【答案】31【分析】除1以外,被2除余1的所有整数是:3,5,7,9,11,⋯,27,29,31,33,⋯被3除余1的所有整数是:4,7,10,13,16,19,22,25,28,31,⋯被5除余1的所有整数是:6,11,16,21,26,31,36,⋯上面三列数中,第一个同时出现的数是31,所以31是同时满足被2,3,5除均余1且不等于1的最小数.40. 有5000多根牙签,可按6种规格分成小包.如果10根一包,那么最后还剩9根.如果9根一包,那么最后还剩8根.第三、四、五、六种的规格是,分别以8,7,6,5根为一包,那么最后也分别剩7,6,5,4根.原来一共有牙签多少根?【答案】5039【分析】设这包牙签有n根,那么加上1根后为n+1根此时有n+1根牙签即可以分成10根一包,又可以分成9根一包,还可以分成8、7、6、5根一包.所以,n+1是10、9、8、7、6、5的倍数,即它们的公倍数.[10,9,8,7,6,51=23×32×5×7=2520,即n+1是2520的倍数,在满足题下只能是2520×2=5040,所以n=5039.即原来一共有牙签5039根.41. 炒饭老师非常喜欢吃炒饭.有一天,炒饭老师给自己炒了一桶的炒饭.他算了一下,如果他每天吃3碗,最后剩下2碗;如果每天吃4碗,最后剩下2碗;如果每天吃5碗,最后剩下2碗.问炒饭老师炒了至少多少碗炒饭?【答案】62【分析】炒饭老师炒的饭的碗数减去2是3,4,5的公倍数,所以老师炒的饭的最小值为[3,4,5]+2=60+2=62(碗).42. 被3,5除余2的最小两位数是几?【答案】2【分析】被5除余2的所有整数是:2,7,12,17,22,27,32,37⋯被3除余2的所有整数是:2,5,8,11,14,17⋯所以,被3,5除余2的最小两位数是2.43. 韩信点兵:有兵四五百,五五数之余三,七七数之余四,九九数之余五.那么这队兵有多少人?【答案】473【分析】先列出除以9余5的数,从中找除以7余4的数,再从剩下的数中找除以5余3的数.44. 刘叔叔养了400多只兔子,如果每3只兔子关在一个笼子里,那么最后一个笼子里有2只;如果每5只兔子关在一个笼子里,那么最后一个笼子里也有2只;如果每7只兔子关在一个笼子里,那么最后一个笼子里有5只.请问:刘叔叔一共养了多少只兔子?【答案】467【分析】兔子数除以3余2,除以5余2,除以7余5.所有满足前两个条件的数为2+ [3,5]×n,其中n为自然数,即2、17、32、47、⋯其中47同时满足第三个条件.所有满足条件的数为47+[3,5,7]×m,其中m为自然数.m取4时满足条件,为467.45. 一个两位数分别除以7、8、9,所得的余数的和为20.问:这个两位数是多少?【答案】62【分析】余数的和为20,则这个两位数除以7、8、9的余数分别为6、7、7或6、6、8或5、7、8.其中只有6、6、8的情况存在满足条件的两位数为62.46. 有一个自然数,用它去除25,38,43所得到的3个余数之和是18,那么这个自然数是多少?【答案】11【分析】设这个数为x,由题意可得:① $\left\{\begin{gathered}25 \div x = a \cdots {r_1} \hfill \\38 \div x = b \cdots {r_2} \hfill \\43 \div x = c \cdots {r_3} \hfill \\\end{gathered} \right. \Rightarrow 25 + 38 + 43 - 18 = 88$ 为x的倍数;②88=2×2×2×11③枚举验证⇒x=11.47. 一个数除以3余2,除以5余3,除以7余4,问满足条件的最小自然数.【答案】53.【分析】分析题目,我们发现前面两种都不符合,所以我们只能用最普遍的“中国剩余定理”:3、5的公倍数 3、7的公倍数 5、7的公倍数15 21 3530 42 7045 63 10560 84 140… … …找出除以7余4的 除以5余3 除以3余2.可以找出分别是:60 63 35可见60+63+35=158满足我们的条件,但不是最小的自然数,处理方法就是减去最小公倍数的若干倍,使结果在最小公倍数之内.所以答案为:158−105=53.48. (1)一个三位数除以6余2,除以8余2,那么这个三位数最小是多少?(2)—个数除以3余2,除以5余4,除以7余6,那么这个数最小是多少?(3)—个数除以6余2,除以11余1,那么这个数最小是多少?【答案】(1)122;(2)104;(3)5649. 有一个整数,用它去除63,90,130所得到的3个余数之和是25,那么这3个余数中最大的一个是多少?【答案】20【分析】设这个数为x,由题意可得:① $\left\{\begin{gathered}63 \div x = a \cdots {r_1} \hfill \\90 \div x = b \cdots {r_2} \hfill \\130 \div x = c \cdots {r_3} \hfill \\\end{gathered} \right. \Rightarrow 63 + 90 + 130 - 25 =258$ 为x的倍数;②258=2×3×43③枚举验证⇒x=43.所以 $\left\{ \begin{gathered}63 \div 43 \cdots 20 \hfill \\90 \div 43 \cdots 4 \hfill \\130 \div 43 \cdots 1 \hfill \\\end{gathered} \right.$,显然这3个余数中最大的一个是20.50. 一个自然数除以7余3,除以27余5,这个自然数最小是多少?【答案】59【分析】除以27余5的数有5、32、59、⋯,其中除以7余3的最小的数是59.51. 一个数除以3余2,除以5余3,除以7余4,问这个数是多少?【答案】53【分析】如果用剩余定理相信大家会做了,接下来看逐步满足法.第一个条件,除以3余2,最小是2;先记下2.第二个条件,除以5余3,原来已经有了2,要保持满足第一个条件不变,那么在2的基础上增加3的倍数,这样除以3余2不会变.2+3n的形式.这个数要满足第二个条件,除以5余3.在2+3n中,2已经余2了,3n需要余1,所以n=2即可.这样满足前两个条件的最小的数是8.第三个条件,除以7余4.8+3×5n的形式.3×5n=15n除以7要余4−1=3,15除以7余1,所以n最小是3,这个数是8+45=53满足题意.52. 有一个数,除以3余2,除以4余1,问这个数除以12余几?【答案】5【分析】方法一:除以3余2的数有:2,5,8,11,14,17,20,23,⋯;它们除以12的余数是:2,5,8,11,2,5,8,11,⋯;除以4余1的数有:1,5,9,13,17,21,25,29,⋯;它们除以12的余数是:1,5,9,1,5,9,⋯;一个数除以12的余数是唯一的.上面两行余数中,只有5是共同的,因此这个数除以12的余数是5.方法二:一个数,除以3余2,除以4余1,可以理解为除以3余3+2,除以4余4+1,所以这个数减去5后,既能被3整除,又能被4整除,设这个数为a,则a=12m+5,(m为自然数)所以这个数除以12余5.53. (1)一个数除以21余17,除以20也余17.这个数最小是多少?第二小是多少?(2)—个数除以11余7,除以10余6.这个数最小是多少?第二小是多少?【答案】(1)17;437(2)106;216【分析】(1)这是一道余同的问题.这个数最小是17,第二小是[21,10]+17=437.(2)这是一道缺同的问题.这个自然数加上4即可被11和10整除,[11,10]=110,因此这个数最小为110−4=106.第二小的是110×2−4=216.54. 一个自然数在1000和1200之间,且被3除余1,被5除余2,被7除余3,求符合条件的数.(使用逐步满足法)【答案】1102【分析】方法1(比较法):我们先找出被3除余1的数:1,4,7,10,13,16,19,22,25,28,31,34,37,40,43,46,49,52,⋯;被5除余2的数:2,7,12,17,22,27,32,37,42,47,52,57,⋯;被7除余3的数:3,10,17,24,31,38,45,52,⋯;三个条件都符合的最小的数是52,其后的是一次加上3、5、7的最小公倍数,直到加到1000和1200之间.结果是105×10+52=1102.方法2(逐步满足的比较法):先列出除以3余1的数:1,4,7,10,13,16,⋯;再列出除以5余2的数:2,7,12,17,22,27,⋯;这两列数中,首先出现的公共数是7.3与5的最小公倍数是15.两个条件合并成一个就是7+15×整数,列出这一串数是7,22,37,52,⋯;再列出除以7余3的数:3,10,17,24,31,38,45,52,⋯;就得出符合题目条件的最小数是52.事实上,我们已把题目中三个条件合并成一个:被105除余52.那么这个数在1000和1200之间,应该是105×10+52=1102.方法3(逐步满足法):设这个自然数为a,被3除余1,被5除余2,可以理解为被3除余3×2+1,被5除与5+2,所以满足前面两个条件的a=15m+7(m为自然数),只需15m+7除以7余3,即15m除以7余3,而15÷7=2⋯⋯1,只需m除以7余3,m最小为3,所以满足三个条件的最小自然数为3×15+7=52,那么这个数在1000和1200之间,应该是105×10+52=1102.55. 今有物不知其数,三三数之剩一,四四数之剩三,五五数之剩二,问物几何?【答案】7【分析】40×1+45×3+36×2=247,3×4×5=60,247÷60=4⋯⋯7,最少是7.56. 今有一堆石子,三个三个数余2个,五个五个数余2个,七个七个数余4个,这堆石子最少有多少个?【答案】32【分析】70×2+21×2+15×4=242;244−105−105=32;57. 有一个正整数除以7、8、9的余数分别为1、5、4,求这个数至少是多少?【答案】85【分析】除以7余1的数至少是1,为满足这一特点每次要加7,加了4个7后首次满足除以8余5;然后每次加56,加了一个后满足除以9余4,此时这个数是85.58. 一个大于10的数,除以3余1,除以5余2,除以11余7,问满足条件的最小自然数是多少?【答案】172【分析】法一:仔细分析可以发现3×2+1=5+2=7,所以这个数可以看成被3、5、11除余7,由于[3,5,11]=165,所以这个数最小是165+7=172.法二:事实上,如果没有“大于10”这个条件,7即可符合条件,所以只需要在7的基础上加上3、5、11的最小公倍数,得到172即为所求的数.59. 一个自然数除以8、9、11后分别余2、7、3,而所得的三个商的和是622,这个数是多少?【答案】1906.【分析】设这个数为x.x除以8余2:最小为2,通式为2+8k1;x除以9余7:k1最小为4,则有2+8×4=34,通式为34+[8,9]k2=34+72k2.x除以11余3:k2最小为4,则有34+72×4=322.则x=322+[8,9,11]n=322+792n.322+792n−28+322+792n−79+322+792n−311=622 40+99n+35+88n+29+72n=622259n=518n=2x=322+792×2=1906.60. 有一个整数,用它去除53,89,127所得到的3个余数之和是23,那么这个整数是多少?【答案】41【分析】设这个数为x,由题意可得:① $\left\{\begin{gathered}53 \div x = a \cdots {r_1} \hfill \\89 \div x = b \cdots {r_2} \hfill \\127 \div x = c \cdots {r_3} \hfill \\\end{gathered} \right. \Rightarrow 53 + 89 + 127 - 23 =246$ 为x的倍数;②246=2×3×41③枚举验证⇒x=41.61. 一个数除以5余3,除以6余4,除以7余1,求满足条件的最小的自然数?【答案】148.【分析】设这个数为n.n除以5余3:最小为3,通式为3+5k1;n除以6余4:k1最小为5,则有3+5×5=28,通式为28+[5,6]k2=28+30k2.n除以7余1:k2最小为4,则有n=28+30×4=148.62. 有三个连续自然数,其中最小的能被15整除,中间的能被17整除,最大的能被19整除,请写出一组这样的三个连续自然数.【答案】2430,2431,2432.【分析】设三个连续自然数中最小的一个为n,则其余两个自然数分别为n+1,n+2.依题意可知:15∣n,17∣(n+1),19∣(n+2),根据整除的性质对这三个算式进行变换:15∣n 17∣(n +1)19∣(n +2)→→→15∣2n 17∣(2n +2)19∣(2n +4)→→→15∣(2n −15)17∣(2n −15)19∣(2n −15)}⇒[15,17,19]∣(2n −15)从上面可以发现 2n −15 应为 15、17、19 的公倍数.由于 [15,17,19]=4845,所以 2n −15=4845(2k −1)(因为 2n −15 是奇数),可得 n =4845k −2415.当 k =1 时 n =2430,n +1=2431,n +2=2432,所以其中的一组自然数为 2430、2431、2432.63. 有一个数,除以 3 余数是 2,除以 4 余数是 1.问这个数除以 12 余数是几?【答案】 5【分析】 满足条件的最小值是 5,那么所有满足条件的数肯定具有 [3,4]k +5=12k +5 的形 式,除以 12 —定是余 5 的.64. (1)一个三位数除以 8 余 3,除以 12 也余 3.这个三位数最小是多少?(2)—个三位数除以 6 余 1,除以 10 余 5.这个三位数最小是多少?【答案】 (1)123;(2)115【分析】 (1)这是一道余同的问题.满足条件的数可表示为 [8,12]×n +3,其中 n 为自然数.要求满足条件的最小三位数,应令 n 为 5,即 [8,12]×5+3=123.(2)这是一道缺同的问题.满足条件的数可表示为 [6,10]×n −5,其中 n 为自然数.要求满足条件的最小三位数,应令 n 为 4,即 [6,10]×4−5=115.65. 一个布袋中装有 5000 多个小球,如果 10 个一包,最后还剩 9 个,如果 9 个一包,最后还剩 8 个 ⋯⋯ 如果 5 个一包,最后还剩 4 个,那么如果 13 个一包,最后还剩多少个?【答案】 8 个【分析】 简答:布袋中的小球数除以 10 余 9,除以 9 余 8,除以 8 余 7⋅⋯,除以 5 余 4,[5,6,7,8,9,10]=[5,7,8,9]=5×7×8×9=2520,所以,布袋中球数是 2520−1+2520=5039,5039÷13 余 8.66. (1)—个三位数除以 4 余 2,除以 6 余 2,那么这个三位数最小是多少?(2)—个三位数除以 3 余 1,除以 4 余 2,除以 6 余 4,那么这个三位数最小是多少?(3)—个数除以 9 余 2,除以 12 余 5,那么这个数最小是多少?【答案】 (1)110;(2)106;(3)29【分析】 简答:(1)[4,6]=12,14+12×8=110;(2)按“差同”计算;(3)按“差同”计算.67. 一个数被5除余3,被7除余4,被9除余5,这个数最小是几?【答案】158【分析】7和9的公倍数9和5的公倍数5和7的公倍数6345351269070135105180140225175210245280⋯⋯⋯在7和9的公倍数中,除以5余1的最小数是126;在5和9的公倍数中,除以7余1的最小数是225;在5和7的公倍数中,除以9余1的最小数是280;那么126×3+225×4+280×5=2678.[5,7,9]=315.所以,最小的数为2678−315×8=158.68. 一个自然数在1000和1200之间,且被3除余1,被5除余2,被7除余3,求符合条件的数.【答案】1102【分析】方法1:先列出除以3余1的数:1,4,7,10,13,16,⋯;再列出除以5余2的数:2,7,12,17,22,27,⋯;这两列数中,首先出现的公共数是7.3与5的最小公倍数是15.两个条件合并成一个就是7+15×整数,列出这一串数是7,22,37,52,⋯;再列出除以7余3的数:3,10,17,24,31,38,45,52,⋯;就得出符合题目条件的最小数是52.事实上,我们已把题目中三个条件合并成一个:被105除余52.那么这个数在1000和1200之间,应该是105×10+52=1102.方法2:我们先找出被3除余1的数:1,4,7,10,13,16,19,22,25,28,31,34,37,40,43,46,49,52,⋯;被5除余2的数:2,7,12,17,22,27,32,37,42,47,52,57,⋯;被7除余3的数:3,10,17,24,31,38,45,52,⋯;三个条件都符合的最小的数是52,其后的是一次加上3、5、7的最小公倍数,直到加到1000和1200之间.结果是105×10+52=1102.方法3:设这个自然数为a,被3除余1,被5除余2,可以理解为被3除余3×2+1,被5除与5+2,所以满足前面两个条件的a=15m+7(m为自然数),只需15m+7除以7余3,即15m除以7余3,而15÷7=2⋯1,只需m除以7余3,m最小为3,所以满足三个条件的最小自然数为3×15+7=52,那么这个数在1000和1200之间,应该是105×10+52=1102.69. 一个数除以3、5、7、11的余数分别是2、3、4、5,求符合条件的最小的数:【答案】368.【分析】将3、5、7、11这4个数3个3个分别计算公倍数,如表:5、7、11公倍数3、7、11公倍数3、5、11公倍数3、5、7公倍数3852311651057704623302101155693495315……………………除3余2的最小数是770除5余3的最小值是693除7余4的最小值是165 3、5、7公倍数中被11除余5的数不太好找,但注意到210除以11余1,所以210×5=1050被11除余5,由此可知770+693+165+1050=2678是符合条件的一个值,又3、5、7、11的最小公倍数是1155,所以2678−1155×2=368是符合条件的最小值.70. 有一个自然数,用它分别去除63,90,130都有余数,3个余数的和是25.这3个余数中最大的一个是多少?【答案】20【分析】设这个除数为M,设它除63,90,130所得的余数依次为a,b,c,商依次为A,B,C.63÷M=A⋯⋯aa+b+c=25,则(63+90+130)−(a+b+c)=(A+B+C)×M,即283−25=258=(A+B+C)×M.所以M是258的约数.258=2×3×43显然当除数M为2、3、6时,3个余数的和最大为3×(2−1)=3,3×(3−1)=6,3×(6−1)=15所以均不满足.而当除数M为43×2,43×3,43×2×3时,它除63的余数均是63,所以也不满足.那么除数M只能是43,它除63,90,130的余数依次为20,4,1,余数的和为25,满足.显然这3个余数中最大的为20.71. 有一个整数,用它分别去除157、234和324,得到的三个余数之和是100,这个整数是多少?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 学习同余的性质2. 利用整除性质判别余数同余定理 1、定义:若两个整数a 、b 被自然数m 除有相同的余数,那么称a 、b 对于模m 同余,用式子表示为:a ≡b ( mod m ),左边的式子叫做同余式。
同余式读作:a 同余于b ,模m 。
2、重要性质及推论:(1)若两个数a ,b 除以同一个数m 得到的余数相同,则a ,b 的差一定能被m 整除例如:17与11除以3的余数都是2,所以1711 ()能被3整除. (2)用式子表示为:如果有a ≡b ( mod m ),那么一定有a -b =mk ,k 是整数,即m |(a -b )3、余数判别法当一个数不能被另一个数整除时,虽然可以用长除法去求得余数,但当被除位数较多时,计算是很麻烦的.建立余数判别法的基本思想是:为了求出“N 被m 除的余数”,我们希望找到一个较简单的数R ,使得:N 与R 对于除数m 同余.由于R 是一个较简单的数,所以可以通过计算R 被m 除的余数来求得N 被m 除的余数.⑴ 整数N 被2或5除的余数等于N 的个位数被2或5除的余数;⑵ 整数N 被4或25除的余数等于N 的末两位数被4或25除的余数;⑶ 整数N 被8或125除的余数等于N 的末三位数被8或125除的余数;⑷ 整数N 被3或9除的余数等于其各位数字之和被3或9除的余数;知识点拨教学目标5-5-3.同余问题⑸整数N被11除的余数等于N的奇数位数之和与偶数位数之和的差被11除的余数;(不够减的话先适当加11的倍数再减);⑹整数N被7,11或13除的余数等于先将整数N从个位起从右往左每三位分一节,奇数节的数之和与偶数节的数之和的差被7,11或13除的余数就是原数被7,11或13除的余数.例题精讲模块一、两个数的同余问题【例 1】有一个整数,除39,51,147所得的余数都是3,求这个数.【考点】两个数的同余问题【难度】1星【题型】解答【解析】(法1) 39336-=,51-3=48,1473144-=,(36,144)12=,12的约数是1,2,3,4,6,12,因为余数为3要小于除数,这个数是4,6,12;(法2)由于所得的余数相同,得到这个数一定能整除这三个数中的任意两数的差,也就是说它是任意两数差的公约数.513912-=,14739108-=,(12,108)12=,所以这个数是4,6,12.【答案】4,6,12【例 2】某个两位数加上3后被3除余1,加上4后被4除余1,加上5后被5除余1,这个两位数是______. 【考点】两个数的同余问题【难度】2星【题型】填空【关键词】人大附中,分班考试【解析】“加上3后被3除余1”其实原数还是余1,同理这个两位数除以4、5都余1,这样,这个数就是[3、4、5]+1=60+1=61。
【答案】61【例 3】有一个自然数,除345和543所得的余数相同,且商相差33.求这个数是多少?【考点】两个数的同余问题【难度】3星【题型】解答【解析】由于这个数除345和543的余数相同,那么它可能整除543-345,并且得到的商为33.所以所求的数为(543345)336-÷=.【答案】6【例 4】一个大于10的自然数去除90、164后所得的两个余数的和等于这个自然数去除220后所得的余数,则这个自然数是多少?【考点】两个数的同余问题 【难度】3星 【题型】解答【解析】 这个自然数去除90、164后所得的两个余数的和等于这个自然数去除90164254+=后所得的余数,所以254和220除以这个自然数后所得的余数相同,因此这个自然数是25422034-=的约数,又大于10,这个自然数只能是17或者是34.如果这个数是34,那么它去除90、164、220后所得的余数分别是22、28、16,不符合题目条件;如果这个数是17,那么它去除90、164、220后所得的余数分别是5、11、16,符合题目条件,所以这个自然数是17.【答案】17【例 5】 两位自然数ab 与ba 除以7都余1,并且a b >,求ab ba ⨯.【考点】两个数的同余问题 【难度】3星 【题型】解答【解析】 ab ba -能被7整除,即(10)10)9a b b a a b +-+=⨯-(()能被7整除.所以只能有7a b -=,那么ab 可能为92和81,验算可得当92ab =时,29 ba =满足题目要求,92292668ab ba ⨯=⨯=【答案】2668【例 6】 现有糖果254粒,饼干210块和桔子186个.某幼儿园大班人数超过40.每人分得一样多的糖果,一样多的饼干,也分得一样多的桔子。
余下的糖果、饼干和桔子的数量的比是:1:3:2,这个大班有_____名小朋友,每人分得糖果_____粒,饼干_____块,桔子_____个。
【考点】两个数的同余问题 【难度】3星 【题型】解答【关键词】南京市,兴趣杯【解析】 设大班共有a 名小朋友。
由于余下的糖果、饼干和桔子的数量之比是1:3:2,所以余下的糖果、桔子数目的和正好等于余下的饼干数,从而254+186-210一定是a 的倍数,即254+186-210=230=1×230=10×23=2×5×23是a 的倍数。
同样,2×254-186=322=23×14=23×14=23×2×7也一定是a 的倍数。
所以,a 只能是23×2的因数。
但a ﹥40,所以a =46。
此时254=46×5+24,210=46×3+72,186=46×3+48。
故大班有小朋友46名,每人分得糖果5粒,饼干3块,桔子3个。
【答案】小朋友46名,每人分得糖果5粒,饼干3块,桔子3个模块二、三个数的同余问题【例 7】 有一个大于1的整数,除45,59,101所得的余数相同,求这个数.【考点】三个数的同余问题 【难度】3星 【题型】解答【解析】 这个题没有告诉我们,这三个数除以这个数的余数分别是多少,但是由于所得的余数相同,根据同余定理,我们可以得到:这个数一定能整除这三个数中的任意两数的差,也就是说它是任意两数差的公约数.1014556-=,594514-=,(56,14)14=,14的约数有1,2,7,14,所以这个数可能为2,7,14。
【答案】2,7,14【巩固】 有一个整数,除300、262、205得到相同的余数。
问这个整数是几?【考点】三个数的同余问题 【难度】3星 【题型】填空【关键词】华杯赛,初赛,第9题【解析】 这个数除300、262,得到相同的余数,所以这个数整除300-262=38,同理,这个数整除262-205=57,因此,它是38、57的公约数19。
【答案】19【巩固】 在除13511,13903及14589时能剩下相同余数的最大整数是_________.【考点】三个数的同余问题 【难度】3星 【题型】填空【关键词】小学数学奥林匹克【解析】 因为1390313511392-=, 1458913903686-=,由于13511,13903,14589要被同一个数除时,余数相同,那么,它们两两之差必能被同一个数整除.(392,686)98=,所以所求的最大整数是98.【答案】98【巩固】 140,225,293被某大于1的自然数除,所得余数都相同。
2002除以这个自然数的余数是 .【考点】三个数的同余问题 【难度】3星 【题型】填空【关键词】三帆中学,入学测试【解析】 这样我们用总结的知识点可知:任意两数的差肯定余0。
那么这个自然数是293-225=68的约数,又是225-140=85的约数,因此就是68、85的公约数,所以这个自然数是17。
所以2002除以17余13。
【答案】13【巩固】 三个数:23,51,72,各除以大于1的同一个自然数,得到同一个余数,则这个除数是 。
【考点】三个数的同余问题 【难度】3星 【题型】填空【关键词】希望杯,五年级,初赛,第4题,6分【解析】 512328-=,725121-=,(28,21)=7,所以这个除数是7。
【答案】7【例 8】 学校新买来118个乒乓球,67个乒乓球拍和33个乒乓球网,如果将这三种物品平分给每个班级,那么这三种物品剩下的数量相同.请问学校共有多少个班?【考点】三个数的同余问题 【难度】3星 【题型】解答【解析】 所求班级数是除以118,67,33余数相同的数.那么可知该数应该为1186751-=和673334-=的公约数,所求答案为17.【答案】17【例 9】若2836,4582,5164,6522四个自然数都被同一个自然数相除,所得余数相同且为两位数,除数和余数的和为_______.【考点】三个数的同余问题【难度】3星【题型】填空【关键词】小学数学奥林匹克【解析】设除数为A.因为2836,4582,5164,6522除以A的余数相同,所以他们两两之差必能被A整除.又因为余数是两位数,所以A至少是两位数.4582-2836=1746,51644582582-=,-=,652251641358因为(582,1358)194=,所以A是194的大于10的约数.194的大于10的约数只有97和194.如果A=,经检验,余数都是÷=,余数不是两位数,与题意不符.如果97A=,23861941412019423,除数+余数9723120=+=.【答案】120【例 10】一个大于1的数去除290,235,200时,得余数分别为a,2a+,则这个自然数是多少?a+,5【考点】三个数的同余问题【难度】4星【题型】解答【解析】根据题意可知,这个自然数去除290,233,195时,得到相同的余数(都为a).既然余数相同,我们可以利用余数定理,可知其中任意两数的差除以这个数肯定余0.那么这个自然数是29023357-=的约数,因此就是57和38的公约数,因为57和38 -=的约数,又是23319538的公约数只有19和1,而这个数大于1,所以这个自然数是19.【答案】19【巩固】有3个吉利数888,518,666,用它们分别除以同一个自然数,所得的余数依次为a,a+7,a+10,则这个自然数是_____.【考点】三个数的同余问题【难度】4星【题型】填空【关键词】清华附中,入学测试【解析】处理成余数相同的,则888、518-7、666-10的余数相同,这样我们可以转化成同余问题。
这样我们用总结的知识点可知:任意两数的差肯定余0。
那么这个自然数是888-656=232的约数,也是656-511=145的约数,因此就是232、145的公约数,所以这个自然数是29。
【答案】29【例 11】 一个自然数除429、791、500所得的余数分别是5a +、2a 、a ,求这个自然数和a 的值.【考点】三个数的同余问题 【难度】4星 【题型】解答【解析】 将这些数转化成被该自然数除后余数为2a 的数:()42952848-⨯=,791、50021000⨯=,这样这些数被这个自然数除所得的余数都是2a ,故同余.将这三个数相减,得到84879157-=、1000848152-=,所求的自然数一定是57和152的公约数,而()57,15219=,所以这个自然数是19的约数,显然1是不符合条件的,那么只能是19.经过验证,当这个自然数是19时,除429、791、500所得的余数分别为11、12、6,6a =时成立,所以这个自然数是19,6a =.【答案】6【例 12】 甲、乙、丙三数分别为603,939,393.某数A 除甲数所得余数是A 除乙数所得余数的2倍,A 除乙数所得余数是A 除丙数所得余数的2倍.求A 等于多少?【考点】三个数的同余问题 【难度】4星 【题型】解答【解析】 根据题意,这三个数除以A 都有余数,则可以用带余除法的形式将它们表示出来:11603A K r ÷= ,22939A K r ÷=,33393A K r ÷=由于122r r =,232r r =,要消去余数1r ,2r , 3r ,我们只能先把余数处理成相同的,再两数相减.这样我们先把第二个式子乘以2,使得被除数和余数都扩大2倍,同理,第三个式子乘以4.于是我们可以得到下面的式子:11603A K r ÷= ()22939222A K r ⨯÷= ()33393424A K r ⨯÷=这样余数就处理成相同的.最后两两相减消去余数,意味着能被A 整除.93926031275⨯-=,3934603969⨯-=,()1275,96951317==⨯.51的约数有1、3、17、51,其中1、3显然不满足,检验17和51可知17满足,所以A 等于17.【答案】17【例 13】 已知60,154,200被某自然数除所得的余数分别是1a -,2a ,31a -,求该自然数的值.【考点】三个数的同余问题 【难度】5星 【题型】解答【解析】 根据题意可知,自然数61,154,201被该数除所得余数分别是a ,2a ,3a .由于2a a a =⨯,所以自然数2613721=与154同余;由于32a a a =⨯,所以611549394⨯=与201同余,所以除数是37211543567-=和93942019193-=的公约数,运用辗转相除法可得到(3567,9193)29=,该除数为29.经检验成立.【答案】29【例 14】 有一个自然数,它除以15、17、19所得到的商(>1)与余数(>0)之和都相等,这样的数最小可能是多少.【考点】三个数的同余问题 【难度】5星 【题型】解答【解析】15......151417......171619......1918a b c A a X X a A a X a a X A b X X b A b X b b X A c X X c A c X c c X ÷==-⇒=+-=+⎧⎪÷==-⇒=+-=+⎨⎪÷==-⇒=+-=+⎩()()()()()() 14161872|a b c a a ==⇒⇒至少为72,1515721080a a a A a X X X =+=⨯+=+14161863|a b c b b ==⇒⇒至少为63,1717631071b b b A b X X X =+=⨯+=+14161856|a b c c c ==⇒⇒至少为56,1919561064c c c A c X X X =+=⨯+=+最小为1081.【答案】1081【例 15】 三个不同的自然数的和为2001,它们分别除以19,23,31所得的商相同,所得的余数也相同,这三个数是_______,_______,_______。