中考数学专题复习圆与相似的综合题附答案解析

中考数学专题复习圆与相似的综合题附答案解析
中考数学专题复习圆与相似的综合题附答案解析

中考数学专题复习圆与相似的综合题附答案解析

一、相似

1.如图,在□ABCD中,对角线AC、BD相交于点O,点E、F是AD上的点,且AE=EF=FD.

连结BE、BF。使它们分别与AO相交于点G、H

(1)求EG :BG的值

(2)求证:AG=OG

(3)设AG =a ,GH =b,HO =c,求a : b : c的值

【答案】(1)解:∵四边形ABCD是平行四边形,

∴AO= AC,AD=BC,AD∥BC,

∴△AEG∽△CBG,

∴ = = .

∵AE=EF=FD,

∴BC=AD=3AE,

∴GC=3AG,GB=3EG,

∴EG:BG=1:3

(2)解:∵GC=3AG(已证),

∴AC=4AG,

∴AO= AC=2AG,

∴GO=AO﹣AG=AG

(3)解:∵AE=EF=FD,

∴BC=AD=3AE,AF=2AE.

∵AD∥BC,

∴△AFH∽△CBH,

∴ = = = ,

∴ = ,即AH= AC.

∵AC=4AG,

∴a=AG= AC,

b=AH﹣AG= AC﹣ AC= AC,

c=AO﹣AH= AC﹣ AC= AC,

∴a:b:c= :: =5:3:2

【解析】【分析】(1)根据平行四边形的性质可得AO=AC,AD=BC,AD∥BC,从而可证得△AEG∽△CBG,得出对应边成比例,由AE=EF=FD可得BC=3AE,就可证得GB=3EG,即可求出EG:BG的值。

(2)根据相似三角形的性质可得GC=3AG,就可证得AC=4AG,从而可得AO=2AG,即可证得结论。

(3)根据平行可证得三角形相似,再根据相似三角形的性质可得AG=AC,AH=AC,结合

AO=AC,即可得到用含AC的代数式分别表示出a、b、c,就可得到a:b:c的值。2.已知线段a,b,c满足,且a+2b+c=26.

(1)判断a,2b,c,b2是否成比例;

(2)若实数x为a,b的比例中项,求x的值.

【答案】(1)解:设,

则a=3k,b=2k,c=6k,

又∵a+2b+c=26,

∴3k+2×2k+6k=26,解得k=2,

∴a=6,b=4,c=12;

∴2b=8,b2=16

∵a=6,2b=8,c=12,b2=16

∴2bc=96,ab2=6×16=96

∴2bc=ab2

a,2b,c,b2是成比例的线段。

(2)解:∵x是a、b的比例中项,

∴x2=6ab,

∴x2=6×4×6,

∴x=12.

【解析】【分析】(1)设已知比例式的值为k,可得出a=3k,b=2k,c=6k,再代入a+2b+c=26,建立关于k的方程,求出kl的值,再求出2b、b2,然后利用成比例线段的定义,可判断a,2b,c,b2是否成比例。

(2)根据实数x为a,b的比例中项,可得出x2=ab,建立关于x的方程,求出x的值。

3.如图,已知:在Rt△ABC中,斜边AB=10,sinA= ,点P为边AB上一动点(不与A,B重合),

PQ平分∠CPB交边BC于点Q,QM⊥AB于M,QN⊥CP于N.

(1)当AP=CP时,求QP;

(2)若四边形PMQN为菱形,求CQ;

(3)探究:AP为何值时,四边形PMQN与△BPQ的面积相等?

【答案】(1)解:∵AB=10,sinA= ,

∴BC=8,

则AC= =6,

∵PA=PC.

∴∠PAC=∠PCA,

∵PQ平分∠CPB,

∴∠BPC=2∠BPQ=2∠A,

∴∠BPQ=∠A,

∴PQ∥AC,

∴PQ⊥BC,又PQ平分∠CPB,

∴∠PCQ=∠PBQ,

∴PB=PC,

∴P是AB的中点,

∴PQ= AC=3

(2)解:∵四边形PMQN为菱形,

∴MQ∥PC,

∴∠APC=90°,

∴ ×AB×CP= ×AC×BC,

则PC=4.8,

由勾股定理得,PB=6.4,

∵MQ∥PC,

∴ = = = ,即 = ,

解得,CQ=

(3)解:∵PQ平分∠CPB,QM⊥AB,QN⊥CP,

∴QM=QN,PM=PN,

∴S△PMQ=S△PNQ,

∵四边形PMQN与△BPQ的面积相等,

∴PB=2PM,

∴QM是线段PB的垂直平分线,

∴∠B=∠BPQ,

∴∠B=∠CPQ,

∴△CPQ∽△CBP,

∴ = = ,

∴ = ,

∴CP=4× =4× =5,

∴CQ= ,

∴BQ=8﹣ = ,

∴BM= × = ,

∴AP=AB﹣PB=AB﹣2BM=

【解析】【分析】(1)当AP=CP时,由锐角三角函数可知AC=6,BC=8,因为PQ平分∠CPB,所以PQ//AC,可知PB=PC,所以点P是AB的中点,所以PQ是△ABC的中位线,PQ =3;

(2)当四边形PMQN为菱形时,因为∠APC=,所以四边形PMQN为正方形,可得

PC=4.8,PB=3.6,因为MQ//PC,所以,可得;

(3)当QM垂直平分PB 时,四边形PMQN的面积与△BPQ的面积相等,此时△CPQ∽△CBP,对应边成比例,可得,所以,因为AP=AB-2BM,所以AP=.

4.如果三角形的两个内角与满足=90°,那么我们称这样的三角形为“准互余三角形”.

(1)若△ABC是“准互余三角形”,∠C>90°,∠A=60°,则∠B=________°;

(2)如图①,在Rt△ABC中,∠ACB=90°,AC=4,BC=5,若AD是∠BAC的平分线,不难证明△ABD是“准互余三角形”.试问在边BC上是否存在点E(异于点D),使得△ABE也是“准互余三角形”?若存在,请求出BE的长;若不存在,请说明理由.

(3)如图②,在四边形ABCD中,AB=7,CD=12,BD⊥CD,∠ABD=2∠BCD,且△ABC 是“准互余三角形”.求对角线AC的长.

【答案】(1)15°

(2)解:存在,

如图①,连结AE,

在Rt△ABC中,

∴∠B+∠BAC=90°,

∵AD是∠BAC的平分线,

∴∠BAC=2∠BAD,

∴∠B+2∠BAD=90°,

∴△ABD是“准互余三角形”,

又∵△ABE也是“准互余三角形”,

∴∠B+2∠BAE=90°,

∵∠B+∠BAE+∠EAC=90°,

∴∠EAC=∠B,

又∵∠C=∠C,

∴△CAE∽△CBA,

∴ ,

即CA2=CB·CE,

∵AC=4,BC=5,

∴CE= .

∴BE=BC-CE=5- = .

(3)解:如图②,

将△BCD沿BC翻折得到△BCF,

∵CD=12,

∴CF=CD=12,∠BCF=∠BCD,∠CBD=∠CBF,又∵BD⊥CD,∠ABD=2∠BCD,

∴∠CBD+∠BCD=90°,

∴2∠CBD+2∠BCD=180°,

即∠ABD+∠CBD+∠CBF=180°,

∴A、B、F三点共线,

在Rt△AFC中,

∴∠CAB+∠ACF=90°,

即∠CAB+∠ACB+∠BCF=90°,

∴∠CAB+2∠ACB≠90°,

∵△ABC是“准互余三角形”,

∴2∠CAB+∠ACB=90°,

∴∠CAB=∠BCF,

∵∠F=∠F,

∴△FCB∽△FAC,

∴ ,

即FC2=FA·FB,

设BF=x,

∵AB=7,

∴FA=x+7,

∴x(x+7)=122,

解得:x1=9,x2=-16(舍去)

∴AF=7+9=16.

在Rt△AFC中,

∴AC= = =20.

【解析】【解答】(1)解:∵△ABC是“准互余三角形”,∠C>90°,∠A=60°,∴2∠B+∠A=90°,

∴2∠B+60°=90°,

∴∠B=15°.

故答案为:15°

【分析】(1)根据“准互余三角形”,的定义,结合题意得2∠B+∠A=90°,代入数值即可求出∠B度数.

(2)存在,根据直角三角形两内角互余和角平分线定义得∠B+2∠BAD=90°,根据“准互余三角形”,定义即可得△ABD是“准互余三角形”;根据△ABE是“准互余三角形”,以及直角三角形两内角互余可得∠EAC=∠B,根据相似三角形判定“AA”可得△CAE∽△CBA,再由相似

三角形性质得 ,由此求出CE= .从而得BE长.

(3)如图②,将△BCD沿BC翻折得到△BCF,根据翻折性质、直角三角形性质、“准互余三

角形”定义可得到△FCB∽△FAC,再由相似三角形性质可得 ,设BF=x,代入数值即可求出x值,从而求出AF值,在Rt△AFC中,根据勾股定理即可求得AC长.

5.如图:在中,BC=2,AB=AC,点D为AC上的动点,且 .

(1)求AB的长度;

(2)求AD·AE的值;

(3)过A点作AH⊥BD,求证:BH=CD+DH. 【答案】(1)解:作AM⊥BC,

∵AB=AC,BC=2,AM⊥BC,

∴BM=CM= BC=1,

在Rt△AMB中,

∵cosB= ,BM=1,

∴AB=BM÷cosB=1÷ = .

(2)解:连接CD,

∵AB=AC,

∴∠ACB=∠ABC,

∵四边形ABCD内接于圆O,

∴∠ADC+∠ABC=180°,

又∵∠ACE+∠ACB=180°,

∴∠ADC=∠ACE,

∵∠CAE=∠CAD,

∴△EAC∽△CAD,

∴ ,

∴AD·AE=AC2=AB2=()2=10.

(3)证明:在BD上取一点N,使得BN=CD,

在△ABN和△ACD中

∴△ABN≌△ACD(SAS),

∴AN=AD,

∵AH⊥BD,AN=AD,

∴NH=DH,

又∵BN=CD,NH=DH,

∴BH=BN+NH=CD+DH.

【解析】【分析】(1)作AM⊥BC,由等腰三角形三线合一的性质得BM=CM= BC=1,在

Rt△AMB中,根据余弦定义得cosB= ,由此求出AB.

(2)连接CD,根据等腰三角形性质等边对等角得∠ACB=∠ABC,再由圆内接四边形性质和等角的补角相等得∠ADC=∠ACE;由相似三角形的判定得△EAC∽△CAD,根据相似三角形的性质得

;从而得AD·AE=AC2=AB2.

(3)在BD上取一点N,使得BN=CD,根据SAS得△ABN≌△ACD,再由全等三角形的性质得AN=AD,根据等腰三角形三线合一的性质得NH=DH,从而得BH=BN+NH=CD+DH.

6.如图,半径为4且以坐标原点为圆心的圆O交x轴,y轴于点B、D、A、C,过圆上的动点不与A重合作,且在AP右侧.

(1)当P与C重合时,求出E点坐标;

(2)连接PC,当时,求点P的坐标;

(3)连接OE,直接写出线段OE的取值范围.

【答案】(1)解:当P与C重合时,

,的半径为4,且在AP右侧,

点坐标为;

(2)解:如图,作于点F,

为的直径,

∽,

,,

点P的坐标为或;

(3)解:如图,连结OP,OE,AB,BE,AE,

,都为等腰直角三角形,

,,

∽,

【解析】【分析】当P与C重合时,因为,的半径为4,且在AP右侧,所以,所以E点坐标为;作

于点F,证明∽,可求得CF长,在中求得PF的长,进而得出点P的坐标;连结OP,OE,AB,BE,AE,证明∽,可得,根据,即可得出OE的取值范围.

7.如图,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm.动点M从点B出发,在BA边上以每秒3cm的速度向定点A运动,同时动点N从点C出发,在CB边上以每秒2cm的速

度向点B运动,运动时间为t秒,连接MN.

(1)若△BMN与△ABC相似,求t的值;

(2)连接AN,CM,若AN⊥CM,求t的值.

【答案】(1)解:∵∠ACB=90°,AC=6cm,BC=8cm,∴BA==10(cm).

由题意得BM=3tcm,CN=2tcm,∴BN=(8-2t)cm.

当△BMN∽△BAC时,,∴=,解得t=;

当△BMN∽△BCA时,=,∴=,解得t= .

综上所述,△BMN与△ABC相似时,t的值为或

(2)解:如图,过点M作MD⊥CB于点D,

∴∠BDM=∠ACB=90°,又∵∠B=∠B,∴△BDM∽△BCA,

∴== . ∵AC=6cm,BC=8cm,BA=10cm,BM=3tcm,

∴DM= tcm,BD= tcm,∴CD= cm.

∵AN⊥CM,∠ACB=90°,∴∠CAN+∠ACM=90°,∠MCD+∠ACM=90°,

∴∠CAN=∠MCD. ∵MD⊥CB,∴∠MDC=∠ACB=90°,∴△CAN∽△DCM,

∴=,∴=,解得t=.

【解析】【分析】(1)在直角三角形ABC中,由已知条件用勾股定理可求得AB的长,再根据路程=速度时间可将BM、CN用含t的代数式表示出来,则BN=BC-CN也可用含t 的代数式表示出来,因为△BMN与△ABC相似,由题意可分两种情况,①当

△BMN∽△BAC时,由相似三角形的性质可得比例式:,将已知的线段代入计算

即可求解;②当△BMN∽△BCA时,由相似三角形的性质可得比例式:,将已知的线段代入计算即可求解;

(2)过点M作MD⊥CB于点D,根据有两个角对应相等的两个三角形相似可得

△BDM∽△BCA,于是可得比例式,将已知的线段代入计算即可用含t的代数式表示DM、BD的长,则CD=CB-BD也可用含t的代数式表示出来,同理易证

△CAN∽△DCM,可得比例式,将已表示的线段代入计算即可求得t的值。

8.已知,如图1,抛物线y=ax2+bx+3与x轴交于点B、C,与y轴交于点A,且AO=CO,BC=4.

(1)求抛物线解析式;

(2)如图2,点P是抛物线第一象限上一点,连接PB交y轴于点Q,设点P的横坐标为t,线段OQ长为d,求d与t之间的函数关系式;

(3)在(2)的条件下,过点Q作直线l⊥y轴,在l上取一点M(点M在第二象限),连接AM,使AM=PQ,连接CP并延长CP交y轴于点K,过点P作PN⊥l于点N,连接KN、CN、CM.若∠MCN+∠NKQ=45°时,求t值.

【答案】(1)解:如图1,

当x=0时,y=3,

∴A(0,3),

∴OA=OC=3,

∵BC=4,

∴OB=1,

∴B(﹣1,0),C(3,0),

把B(﹣1,0),C(3,0)代入抛物线y=ax2+bx+3中得:,

解得:,

∴抛物线的解析式为:y=﹣x2+2x+3;

(2)解:如图2,

设P(t,﹣t2+2t+3)(0<t<3),

过P作PG⊥x轴于G,

∵OQ∥PG,

∴△BOQ∽△BGP,

∴,

∴,

∴d=

d=﹣t+3(0<t<3)

(3)解:如图3,连接AN,延长PN交x轴于G,

由(2)知:OQ=3﹣t,OA=3,

∴AQ=OA﹣OQ=3﹣(3﹣t)=t,

∴QN=OG=AQ=t,

∴△AQN是等腰直角三角形,

∴∠QAN=45°,AN= t,

∵PG∥OK,

∴,

∴,

OK=3t+3,

AK=3t,

∵∠QAN=∠NKQ+∠ANK,。

∴∠NKQ+∠ANK=45°,

∵∠MCN+∠NKQ=45°,

∴∠ANK=∠MCN,

∵NG=CG=3﹣t,

∴△NGC是等腰直角三角形,

∴NC= (3﹣t),∠GNC=45°,

∴∠CNH=∠NCM+∠NMC=45°,

∴∠NKQ=∠NMC,

∴△AKN∽△NMC,

∴,

∵AQ=QN=t,AM=PQ,

∴Rt△AQM≌△Rt△QNP(HL),

∴MQ=PN=﹣t2+2t+3﹣(3﹣t)=﹣t2+3t,

∴,

t2﹣7t+9=0,

t1= >3,t2= ,

∵0<t<3,

∴t1>3,不符合题意,舍去,

∴t= .

【解析】【分析】(1)根据函数图像与坐标轴交点的坐标特点,得出A点的坐标,再根据点到坐标轴的距离得出OA=OC=3,又BC=4,从而得出OB的距离,进而得出B,C两点的坐标,再将B,C两点的坐标代入抛物线y=ax2+bx+3中得出一个关于a,b的二元一次方程组,求解得出a,b的值,从而得出抛物线的解析式;

(2)过P作PG⊥x轴于G,根据P点的横坐标得出P点坐标设P(t,﹣t2+2t+3)(0<t<3),根据平行于三角形一边的直线截其它两边,所截得的三角形与原三角形相似,得出

△BOQ∽△BGP,根据相似三角形对应边成比例得出OQ∶PG=OB∶BG,从而得出d关于t的函数关系式;

(3)连接AN,延长PN交x轴于G,由(2)知:OQ=3﹣t,OA=3,从而得AQ=OA﹣OQ=3﹣(3﹣t)=t,进而得QN=OG=AQ=t,从而判断出△AQN是等腰直角三角形,根据等腰直角三角形的性质得出∠QAN=45°,AN= t,根据平行线分线段成比例得出PG∶OK=CG∶OC,故OK=3t+3,AK=3t,根据等式的性质得出∠ANK=∠MCN,判断出△NGC 是等腰直角三角形,根据等腰直角三角形的性质得出NC= (3﹣t),∠GNC=45°,再判断出△AKN∽△NMC,根据相似三角形对应边成比例得出 A K ∶M N = A N ∶N C ,再利用HL判断出Rt△AQM≌△Rt△QNP,故MQ=PN=﹣t2+2t+3﹣(3﹣t)=﹣t2+3t,从而得出关于t的方程,求解并检验即可得出答案

二、圆的综合

9.如图1,直角梯形OABC中,BC∥OA,OA=6,BC=2,∠BAO=45°.

(1)OC的长为;

(2)D是OA上一点,以BD为直径作⊙M,⊙M交AB于点Q.当⊙M与y轴相切时,sin∠BOQ=;

(3)如图2,动点P以每秒1个单位长度的速度,从点O沿线段OA向点A运动;同时动点D以相同的速度,从点B沿折线B﹣C﹣O向点O运动.当点P到达点A时,两点同时停止运动.过点P作直线PE∥OC,与折线O﹣B﹣A交于点E.设点P运动的时间为t (秒).求当以B、D、E为顶点的三角形是直角三角形时点E的坐标.

【答案】(1)4;(2)3

5

;(3)点E的坐标为(1,2)、(

5

3

10

3

)、(4,2).

【解析】

分析:(1)过点B作BH⊥OA于H,如图1(1),易证四边形OCBH是矩形,从而有OC=BH,只需在△AHB中运用三角函数求出BH即可.

(2)过点B作BH⊥OA于H,过点G作GF⊥OA于F,过点B作BR⊥OG于R,连接MN、DG,如图1(2),则有OH=2,BH=4,MN⊥OC.设圆的半径为r,则

MN=MB=MD=r.在Rt△BHD中运用勾股定理可求出r=2,从而得到点D与点H重合.易证△AFG∽△ADB,从而可求出AF、GF、OF、OG、OB、AB、BG.设OR=x,利用BR2=OB2﹣OR2=BG2﹣RG2可求出x,进而可求出BR.在Rt△ORB中运用三角函数就可解决问题.(3)由于△BDE的直角不确定,故需分情况讨论,可分三种情况(①∠BDE=90°,

②∠BED=90°,③∠DBE=90°)讨论,然后运用相似三角形的性质及三角函数等知识建立

关于t 的方程就可解决问题.

详解:(1)过点B 作BH ⊥OA 于H ,如图1(1),则有∠BHA =90°=∠COA ,∴OC ∥BH . ∵BC ∥OA ,∴四边形OCBH 是矩形,∴OC =BH ,BC =OH . ∵OA =6,BC =2,∴AH =0A ﹣OH =OA ﹣BC =6﹣2=4. ∵∠BHA =90°,∠BAO =45°,

∴tan ∠BAH =

BH

HA

=1,∴BH =HA =4,∴OC =BH =4. 故答案为4.

(2)过点B 作BH ⊥OA 于H ,过点G 作GF ⊥OA 于F ,过点B 作BR ⊥OG 于R ,连接MN 、DG ,如图1(2). 由(1)得:OH =2,BH =4. ∵OC 与⊙M 相切于N ,∴MN ⊥OC . 设圆的半径为r ,则MN =MB =MD =r . ∵BC ⊥OC ,OA ⊥OC ,∴BC ∥MN ∥OA . ∵BM =DM ,∴CN =ON ,∴MN =1

2

(BC +OD ),∴OD =2r ﹣2,∴DH =OD OH -=24r -.

在Rt △BHD 中,∵∠BHD =90°,∴BD 2=BH 2+DH 2,∴(2r )2=42+(2r ﹣4)2. 解得:r =2,∴DH =0,即点D 与点H 重合,∴BD ⊥0A ,BD =AD . ∵BD 是⊙M 的直径,∴∠BGD =90°,即DG ⊥AB ,∴BG =AG . ∵GF ⊥OA ,BD ⊥OA ,∴GF ∥BD ,∴△AFG ∽△ADB , ∴

AF AD =GF BD =AG AB =12,∴AF =12AD =2,GF =1

2

BD =2,∴OF =4,

∴OG

同理可得:OB AB ,∴BG =1

2

AB .

设OR =x ,则RG x .

∵BR ⊥OG ,∴∠BRO =∠BRG =90°,∴BR 2=OB 2﹣OR 2=BG 2﹣RG 2, ∴

2﹣x 2=()2﹣(x )2.

解得:x ,∴BR 2=OB 2﹣OR 2=(2)2=365,∴BR

在Rt △ORB 中,sin ∠BOR =BR OB

3

5

故答案为

35

. (3)①当∠BDE =90°时,点D 在直线PE 上,如图2.

此时DP =OC =4,BD +OP =BD +CD =BC =2,BD =t ,OP =t . 则有2t =2.

解得:t =1.则OP =CD =DB =1. ∵DE ∥OC ,∴△BDE ∽△BCO ,∴DE OC =BD BC =1

2

,∴DE =2,∴EP =2, ∴点E 的坐标为(1,2). ②当∠BED =90°时,如图3.

∵∠DBE =OBC ,∠DEB =∠BCO =90°,∴△DBE ∽△OBC ,

BE

BC =2DB BE OB ∴,∴BE . ∵PE ∥OC ,∴∠OEP =∠BOC .

∵∠OPE =∠BCO =90°,∴△OPE ∽△BCO , ∴

OE

OB

=OP

BC ,2t ,∴OE .

∵OE +BE =OB +5

t

解得:t =

53,∴OP =53,OE ,∴PE =103, ∴点E 的坐标为(510

33

,). ③当∠DBE =90°时,如图4.

此时PE =PA =6﹣t ,OD =OC +BC ﹣t =6﹣t .

则有OD =PE ,EA (6﹣t ), ∴BE =BA ﹣EA

t )t ﹣. ∵PE ∥OD ,OD =PE ,∠DOP =90°,∴四边形ODEP 是矩形, ∴DE =OP =t ,DE ∥OP ,∴∠BED =∠BAO =45°.

在Rt △DBE 中,cos ∠BED =

BE DE =2

,∴DE , ∴t

﹣)=2t ﹣4.

解得:t =4,∴OP =4,PE =6﹣4=2,∴点E 的坐标为(4,2).

综上所述:当以B 、D 、E 为顶点的三角形是直角三角形时点E 的坐标为(1,2)、(51033

,)、(4,2).

点睛:本题考查了圆周角定理、切线的性质、相似三角形的判定与性质、三角函数的定义、平行线分线段成比例、矩形的判定与性质、勾股定理等知识,还考查了分类讨论的数学思想,有一定的综合性.

10.如图,⊙O的半径为6cm,经过⊙O上一点C作⊙O的切线交半径OA的延长于点B,作∠ACO的平分线交⊙O于点D,交OA于点F,延长DA交BC于点E.

(1)求证:AC∥OD;

(2)如果DE⊥BC,求?AC的长度.

【答案】(1)证明见解析;(2)2π.

【解析】

试题分析:(1)由OC=OD,CD平分∠ACO,易证得∠ACD=∠ODC,即可证得AC∥OD;(2)BC切⊙O于点C,DE⊥BC,易证得平行四边形ADOC是菱形,继而可证得△AOC是等边三角形,则可得:∠AOC=60°,继而求得弧AC的长度.

试题解析:(1)证明:∵OC=OD,∴∠OCD=∠ODC.∵CD平分∠ACO,

∴∠OCD=∠ACD,∴∠ACD=∠ODC,∴AC∥OD;

(2)∵BC切⊙O于点C,∴BC⊥OC.∵DE⊥BC,∴OC∥DE.∵AC∥OD,∴四边形ADOC 是平行四边形.∵OC=OD,∴平行四边形ADOC是菱形,∴OC=AC=OA,∴△AOC是等边三

角形,∴∠AOC =60°,∴弧AC 的长度=

606

180

π?=2π. 点睛:本题考查了切线的性质、等腰三角形的判定与性质、菱形的判定与性质以及弧长公式.此题难度适中,注意掌握数形结合思想的应用.

11.(1)如图1,在矩形ABCD 中,点O 在边AB 上,∠AOC =∠BOD ,求证:AO =OB ; (2)如图2,AB 是⊙O 的直径,PA 与⊙O 相切于点A ,OP 与⊙O 相交于点C ,连接CB ,∠OPA =40°,求∠ABC 的度数.

【答案】(1)证明见解析;(2)25°. 【解析】

试题分析: (1)根据等量代换可求得∠AOD=∠BOC ,根据矩形的对边相等,每个角都是直角,可知∠A=∠B=90°,AD=BC ,根据三角形全等的判定AAS 证得△AOD ≌△BOC ,从而得证结论.

(2)利用切线的性质和直角三角形的两个锐角互余的性质得到圆心角∠POA 的度数,然后利用圆周角定理来求∠ABC 的度数. 试题解析:(1)∵∠AOC=∠BOD ∴∠AOC -∠COD=∠BOD-∠COD 即∠AOD=∠BOC ∵四边形ABCD 是矩形 ∴∠A=∠B=90°,AD=BC ∴AOD BOC ??? ∴AO=OB

(2)解:∵AB 是O e 的直径,PA 与O e 相切于点A , ∴PA ⊥AB , ∴∠A=90°. 又∵∠OPA=40°, ∴∠AOP=50°, ∵OB=OC , ∴∠B=∠OCB. 又∵∠AOP=∠B+∠OCB , ∴1

252

B OCB AOP ∠=∠=

∠=?.

12.如图,已知Rt △ABC 中,C=90°,O 在AC 上,以OC 为半径作⊙O ,切AB 于D 点,且

中考数学专题复习圆的综合的综合题

一、圆的综合真题与模拟题分类汇编(难题易错题) 1.如图,点P在⊙O的直径AB的延长线上,PC为⊙O的切线,点C为切点,连接AC,过点A作PC的垂线,点D为垂足,AD交⊙O于点E. (1)如图1,求证:∠DAC=∠PAC; (2)如图2,点F(与点C位于直径AB两侧)在⊙O上,BF FA =,连接EF,过点F作AD 的平行线交PC于点G,求证:FG=DE+DG; (3)在(2)的条件下,如图3,若AE=2 3 DG,PO=5,求EF的长. 【答案】(1)证明见解析;(2)证明见解析;(3)EF=32. 【解析】 【分析】 (1)连接OC,求出OC∥AD,求出OC⊥PC,根据切线的判定推出即可; (2)连接BE交GF于H,连接OH,求出四边形HGDE是矩形,求出DE=HG,FH=EH,即可得出答案; (3)设OC交HE于M,连接OE、OF,求出∠FHO=∠EHO=45°,根据矩形的性质得出 EH∥DG,求出OM=1 2 AE,设OM=a,则HM=a,AE=2a,AE= 2 3 DG,DG=3a, 求出ME=CD=2a,BM=2a,解直角三角形得出tan∠MBO= 1 2 MO BM =,tanP= 1 2 CO PO =,设 OC=k,则PC=2k,根据OP=5k=5求出k=5,根据勾股定理求出a,即可求出答案.【详解】 (1)证明:连接OC, ∵PC为⊙O的切线,

∴OC⊥PC, ∵AD⊥PC, ∴OC∥AD, ∴∠OCA=∠DAC, ∵OC=OA, ∴∠PAC=∠OCA, ∴∠DAC=∠PAC; (2)证明:连接BE交GF于H,连接OH, ∵FG∥AD, ∴∠FGD+∠D=180°, ∵∠D=90°, ∴∠FGD=90°, ∵AB为⊙O的直径, ∴∠BEA=90°, ∴∠BED=90°, ∴∠D=∠HGD=∠BED=90°, ∴四边形HGDE是矩形, ∴DE=GH,DG=HE,∠GHE=90°, ∵BF AF =, ∴∠HEF=∠FEA=1 2 ∠BEA=190 2 o ?=45°, ∴∠HFE=90°﹣∠HEF=45°, ∴∠HEF=∠HFE, ∴FH=EH, ∴FG=FH+GH=DE+DG; (3)解:设OC交HE于M,连接OE、OF, ∵EH=HF,OE=OF,HO=HO, ∴△FHO≌△EHO, ∴∠FHO=∠EHO=45°,

相似三角形与圆综合题

相似三角形与圆综合 第一部分:例题分析 例1、已知:如图,BC为半圆O的直径,AD⊥BC,垂足为D,过点B作弦BF交AD于点E,交半圆O于点F,弦A C与BF交于点H,且AE=BE.求证:(1)错误!=错误!;(2)AH·BC=2AB·BE. 例2、如图,PA为圆的切线,A为切点,PBC为割线,∠APC的平分线交AB于点D,交AC于点E,求证:(1)AD=A E;(2)AB·AE=AC·DB. 例3、AB是⊙O的直径,点C在⊙O上,∠BAC=60°,P是OB上一点,过P作AB的垂线与AC的延长线交于点Q,连结OC,过点C作CD⊥OC交PQ于点D. (1)求证:△CDQ是等腰三角形; (2)如果△CDQ≌△COB,求BP∶PO的值. 例4、△ABC内接于圆O,∠BAC的平分线交⊙O于D点,交⊙O的切线BE于F,连结BD,CD. 求证:(1)BD平分∠CBE;(2)AB·BF=AF·DC. 例3、⊙O内两弦AB,CD的延长线相交于圆外一点E,由E引AD的平行线与直线BC交于F,作切线FG,G为切点,求证:EF=FG. 第二部分:当堂练习 1.如图,AB是⊙O直径,ED⊥AB于D,交⊙O于G,EA交⊙O于C,CB交ED于F,求证:DG2=DE?DF 2.如图,弦EF⊥直径MN于H,弦MC延长线交EF的反向延长线于A,求证:MA?MC=MB?MD

D C B A O M N E H 3.如图,AB 、AC 分别是⊙O的直径和弦,点D为劣弧AC 上一点,弦E D分别交⊙O于点E ,交A B于点H,交AC 于点F ,过点C的切线交ED 的延长线于点P. (1)若PC =P F,求证:AB ⊥ED ; (2)点D 在劣弧AC 的什么位置时,才能使AD 2 =D E·DF ,为什么? 4.如图(1),AD 是△ABC 的高,AE 是△ABC 的外接圆直径,则有结论:AB · AC =AE · A D成立,请证明.如果把图(1)中的∠ABC 变为钝角,其它条件不变,如图(2),则上述结论是否仍然成立? 5.如图,AD 是△A BC的角平分线,延长AD 交△A BC 的外接圆O 于点E ,过点C 、D 、E 三点的⊙O 1与AC 的延长线交于点F ,连结E F、DF . (1)求证:△A EF ∽△F ED ; (2)若AD =8,DE =4,求EF 的长. 6.如图,PC 与⊙O 交于B ,点A 在⊙O 上,且∠PCA =∠B AP. (1)求证:P A 是⊙O 的切线. (2)△ABP 和△CAP 相似吗?为什么? (3)若PB :BC =2:3,且P C=20,求PA 的长. D C B A O E 7.已知:如图, AD 是⊙O 的弦,OB ⊥A D于点E,交⊙O 于点C ,OE =1,BE =8,A E:A B=1:3. (1)求证:AB 是⊙O 的切线; (2)点F 是A CD 上的一点,当∠AOF =2∠B时,求AF 的长. 8.如图,⊿AB C内接于⊙O ,且BC 是⊙O 的直径,AD ⊥B C于D ,F是弧BC 中点,且AF 交BC 于E ,A B=6,AC =8,求CD ,DE ,及EF 的长. 9. 已知:如图,在Rt ABC △中,90ACB ∠=,4AC =,43BC =,以AC 为直径的O 交AB 于点D ,点E 是BC 的中点,连结OD ,OB 、DE 交于点F. A C P E D H F O

2015中考数学分类汇编圆综合题学生版

2015中考数学真题分类汇编圆综合题 一.解答题(共30小题) 1.(2015?大连)如图,AB是⊙O的直径,点C,D在⊙O上,且AD平分∠CAB,过点D作AC的垂线,与AC的延长线相交于点E,与AB的延长线相交于点F. (1)求证:EF与⊙O相切; (2)若AB=6,AD=4,求EF的长. 2.(2015?潍坊)如图,在△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,交AB于点E,过点D作DF⊥AB,垂足为F,连接DE. (1)求证:直线DF与⊙O相切; (2)若AE=7,BC=6,求AC的长. 3.(2015?枣庄)如图,在△ABC中,∠ABC=90°,以AB的中点O为圆心、OA为半径的圆交AC于点D,E是BC的中点,连接DE,OE. (1)判断DE与⊙O的位置关系,并说明理由; (2)求证:BC2=CD?2OE; (3)若cos∠BAD=,BE=6,求OE的长. 4.(2015?西宁)如图,已知BC为⊙O的直径,BA平分∠FBC交⊙O于点A,D是射线BF上的一点,且满足=,过点O作OM⊥AC于点E,交⊙O于点M,连接BM, AM. (1)求证:AD是⊙O的切线;

(2)若sin∠ABM=,AM=6,求⊙O的半径. 5.(2015?广元)如图,AB是⊙O的弦,D为半径OA的中点,过D作CD⊥OA交弦于点E,交⊙O于点F,且CE=CB. (1)求证:BC是⊙O的切线; (2)连接AF、BF,求∠ABF的度数; (3)如果CD=15,BE=10,sinA=,求⊙O的半径. 6.(2015?北海)如图,AB、CD为⊙O的直径,弦AE∥CD,连接BE交CD于点F,过点E作直线EP与CD的延长线交于点P,使∠PED=∠C. (1)求证:PE是⊙O的切线; (2)求证:ED平分∠BEP; (3)若⊙O的半径为5,CF=2EF,求PD的长. 7.(2015?莆田)如图,在四边形ABCD中,AB=AD,对角线AC,BD交于点E,点O 在线段AE上,⊙O过B,D两点,若OC=5,OB=3,且cos∠BOE=.求证:CB是⊙O的切线.

中考数学圆与相似综合练习题含详细答案.docx

中考数学圆与相似综合练习题含详细答案 一、相似 1.已知如图 1,抛物线 y=﹣ x2﹣ x+3 与 x 轴交于 A 和 B 两点(点 A 在点 B 的左侧),与 y 轴相 交于点 C,点 D 的坐标是( 0,﹣ 1),连接 BC、 AC (1)求出直线AD 的解析式; (2)如图2,若在直线AC 上方的抛物线上有一点F,当△ ADF 的面积最大时,有一线段 MN=(点 M 在点 N 的左侧)在直线BD 上移动,首尾顺次连接点A、 M、 N、 F 构成四边形 AMNF,请求出四边形AMNF 的周长最小时点N 的横坐标; ( 3 )如图3,将△ DBC 绕点 D 逆时针旋转α°(0<α°<180°),记旋转中的△ DBC为 △DB′,C′若直线 B′与C′直线 AC 交于点 P,直线 B′与C′直线 DC 交于点 Q,当△ CPQ是等腰三角形时,求 CP 的值. 【答案】(1)解:∵抛物线 y=﹣x2﹣x+3 与 x 轴交于 A 和 B 两点, ∴0=﹣ x2﹣ x+3, ∴x=2 或 x=﹣4, ∴A(﹣ 4, 0), B( 2, 0), ∵D( 0,﹣ 1), ∴直线 AD 解析式为y=﹣x﹣ 1 (2)解:如图1,

过点 F 作 FH⊥ x 轴,交 AD 于 H, 设 F(m,﹣m2﹣m+3), H( m,﹣m﹣ 1), ∴FH=﹣m2﹣m+3﹣(﹣m﹣ 1) =﹣m2﹣m+4, △ADF △AFH △DFH DA (﹣m 2﹣ m+4) =﹣m2﹣ m+8=﹣( m+ ∴S=S+S=FH × |x﹣ x |=2FH=2 )2+ , 当 m=﹣时, S△ADF最大, ∴F(﹣,) 如图 2,作点 A 关于直线 BD 的对称点 A1,把 A1沿平行直线 BD 方向平移到 A2,且A A =, 12 连接 A2F,交直线 BD 于点 N,把点 N 沿直线 BD 向左平移得点 M,此时四边形AMNF 的周长最小.. ∵O B=2, OD=1, ∴t an ∠ OBD= , ∵AB=6,

中考数学圆的综合-经典压轴题及答案

中考数学圆的综合-经典压轴题及答案 一、圆的综合 1.如图,点A、B、C分别是⊙O上的点, CD是⊙O的直径,P是CD延长线上的一点,AP=AC. (1)若∠B=60°,求证:AP是⊙O的切线; (2)若点B是弧CD的中点,AB交CD于点E,CD=4,求BE·AB的值. 【答案】(1)证明见解析;(2)8. 【解析】 (1)求出∠ADC的度数,求出∠P、∠ACO、∠OAC度数,求出∠OAP=90°,根据切线判定推出即可; (2)求出BD长,求出△DBE和△ABD相似,得出比例式,代入即可求出答案. 试题解析:连接AD,OA, ∵∠ADC=∠B,∠B=60°, ∴∠ADC=60°, ∵CD是直径, ∴∠DAC=90°, ∴∠ACO=180°-90°-60°=30°, ∵AP=AC,OA=OC, ∴∠OAC=∠ACD=30°,∠P=∠ACD=30°, ∴∠OAP=180°-30°-30°-30°=90°, 即OA⊥AP, ∵OA为半径, ∴AP是⊙O切线. (2)连接AD,BD,

∵CD是直径, ∴∠DBC=90°, ∵CD=4,B为弧CD中点, ∴BD=BC=, ∴∠BDC=∠BCD=45°, ∴∠DAB=∠DCB=45°, 即∠BDE=∠DAB, ∵∠DBE=∠DBA, ∴△DBE∽△ABD, ∴, ∴BE?AB=BD?BD=. 考点:1.切线的判定;2.相似三角形的判定与性质. 2.如图,已知△ABC内接于⊙O,BC交直径AD于点E,过点C作AD的垂线交AB的延长线于点G,垂足为F.连接OC. (1)若∠G=48°,求∠ACB的度数; (2)若AB=AE,求证:∠BAD=∠COF; (3)在(2)的条件下,连接OB,设△AOB的面积为S1,△ACF的面积为S2.若 tan∠CAF= 1 2,求1 2 S S的值. 【答案】(1)48°(2)证明见解析(3)3 4

中考数学压轴题专题圆与相似的经典综合题及答案.doc

中考数学压轴题专题圆与相似的经典综合题及答案 一、相似 1.如图所示,△ ABC 中, AB=AC,∠ BAC=90°, AD⊥ BC, DE⊥ AC,△ CDE 沿直线 BC 翻折到△ CDF,连结 AF 交 BE、 DE、 DC分别于点 G、 H、I. (1)求证: AF⊥ BE; (2)求证: AD=3DI. 【答案】(1)证明:∵在△ ABC中, AB=AC,∠ BAC=90°, D 是 BC 的中点, ∴AD=BD=CD,∠ ACB=45 ,° ∵在△ ADC中, AD=DC,DE⊥ AC, ∴A E=CE, ∵△ CDE沿直线 BC 翻折到△ CDF, ∴△ CDE≌ △CDF, ∴C F=CE,∠ DCF=∠ACB=45 ,° ∴C F=AE,∠ ACF=∠DCF+∠ACB=90 ,° 在△ ABE 与△ ACF中, , ∴△ ABE≌ △ ACF(SAS), ∴∠ ABE=∠ FAC, ∵∠ BAG+∠ CAF=90 ,° ∴∠ BAG+∠ ABE=90 ,° ∴∠ AGB=90 ,° ∴AF⊥BE (2)证明:作IC 的中点 M,连接 EM,由( 1)∠ DEC=∠ECF=∠ CFD=90°

∴四边形 DECF是正方形, ∴EC∥ DF, EC=DF, ∴∠ EAH=∠ HFD, AE=DF, 在△ AEH 与△FDH 中 , ∴△ AEH≌ △FDH( AAS), ∴EH=DH, ∵∠ BAG+∠ CAF=90 ,° ∴∠ BAG+∠ ABE=90 ,° ∴∠ AGB=90 ,° ∴AF⊥BE, ∵M 是 IC 的中点, E 是 AC 的中点, ∴EM∥AI, ∴, ∴DI=IM , ∴CD=DI+IM+MC=3DI, ∴AD=3DI 【解析】【分析】( 1)根据翻折的性质和SAS 证明△ ABE≌ △ ACF,利用全等三角形的性 质得出∠ ABE=∠ FAC,再证明∠ AGB=90°,可证得结论。 (2)作IC 的中点M ,结合正方形的性质,可证得∠ EAH=∠HFD,AE=DF,利用AAS 证明△AEH 与△ FDH全等,再利用全等三角形的性质和中位线的性质解答即可。 2.已知:如图,在△ABC 中, AB=BC=10,以 AB 为直径作⊙ O 分别交 AC, BC 于点 D,E,连接 DE 和 DB,过点 E 作 EF⊥ AB,垂足为 F,交 BD 于点 P.

中考数学圆综合题汇编

25题汇编 1. 如图,AB 是⊙O 的直径,BC 是⊙O 的切线,切点为B ,AD 为弦,OC ∥AD 。 (1)求证:DC 是⊙O 的切线; (2)若OA=2,求OC AD 的值。 2. 如图,⊙O 是△ABC 的外接圆,∠B=60°,CD 是⊙O 的直径,P 是CD 延长线上的一点,且AP=AC (1)求证:直线AP 是⊙O 的切线; (2)若AC=3,求PD 的长。 D C B A O C B

3. 如图,已知AB 是⊙O 的直径,AM 和BN 是⊙O 的两条切线,点E 是⊙O 上一点,点D 是AM 上一点,连接DE 并延长交BN 于点C ,连接OD 、BE ,且OD ∥BE 。 (1)求证:DE 是⊙O 的切线; (2)若AD=1,BC=4,求直径AB 的长。 4. 如图,△ABC 内接于⊙O ,弦AD ⊥AB 交BC 于点E ,过点B 作⊙O 的切线交DA 的延长线于点F ,且∠ABF=∠ABC 。 (1)求证:AB=AC ; (2)若EF=4,2 3 tan F ,求DE 的长。 M N E D C B A O

5. 在△ABC 中,AB=AC ,以AB 为直径作⊙O ,交BC 于点D ,过点D 作DE ⊥AC ,垂足为E 。 (1)求证:DE 是⊙O 的切线; (2)若AE=1,52=BD ,求AB 的长。 6. 如图,AB 是⊙O 的直径,C 是⊙O 上一点,AD 垂直于过点C 的直线,垂足为D ,且AC 平分 ∠BAD 。 (1)求证:CD 是⊙O 的切线; (2)若62=AC ,AD=4,求AB 的长。 A

中考数学压轴题专题圆与相似的经典综合题附答案解析

中考数学压轴题专题圆与相似的经典综合题附答案解析 一、相似 1.如图,在等腰Rt△ABC中,O为斜边AC的中点,连接BO,以AB为斜边向三角内部作Rt△ABE,且∠AEB=90°,连接EO.求证: (1)∠OAE=∠OBE; (2)AE=BE+ OE. 【答案】(1)证明:在等腰Rt△ABC中,O为斜边AC的中点, ∴OB⊥AC, ∴∠AOB=90°, ∵∠AEB=90°, ∴A,B,E,O四点共圆, ∴∠OAE=∠OBE (2)证明:在AE上截取EF=BE, 则△EFB是等腰直角三角形, ∴,∠FBE=45°, ∵在等腰Rt△ABC中,O为斜边AC的中点, ∴∠ABO=45°, ∴∠ABF=∠OBE, ∵, ∴, ∴△ABF∽△BOE,

∴ = , ∴AF= OE, ∵AE=AF+EF, ∴AE=BE+ OE. 【解析】【分析】(1)利用等腰直角三角形的性质,可证得∠AOB=∠AEB=90°,可得出A,B,E,O四点共圆,再利用同弧所对的圆周角相等,可证得结论。 (2)在AE上截取EF=BE,易证△EFB是等腰直角三角形,可得出BF与BE的比值为,再证明∠ABF=∠OBE,AB与BO的比值为,就可证得AB、BO、BF、BE四条线段成比例,然后利用两组对应边成比例且夹角相等的两三角形相似,可证得△ABF∽△BOE,可证得AF= OE,由AE=AF+EF,可证得结论。 2.如图1,在矩形ABCD中,AB=6cm,BC=8cm,E、F分别是AB、BD的中点,连接EF,点P从点E出发,沿EF方向匀速运动,速度为1cm/s,同时,点Q从点D出发,沿DB方向匀速运动,速度为2cm/s,当点P停止运动时,点Q也停止运动.连接PQ,设运动时间为t(0<t<4)s,解答下列问题: (1)求证:△BEF∽△DCB; (2)当点Q在线段DF上运动时,若△PQF的面积为0.6cm2,求t的值; (3)如图2过点Q作QG⊥AB,垂足为G,当t为何值时,四边形EPQG为矩形,请说明理由; (4)当t为何值时,△PQF为等腰三角形?试说明理由. 【答案】(1)解:证明:∵四边形是矩形, 在中, 分别是的中点,

中考数学综合题专题【圆】专题训练含答案

中考数学综合题专题【圆】专题训练含答案 一、选择题 1.(北京市西城区)如图,BC 是⊙O 的直径,P 是CB 延长线上一点,PA 切⊙O 于点A ,如果PA =3,PB =1,那么∠APC 等于 ( ) (A ) 15 (B ) 30 (C ) 45 (D ) 60 2.(北京市西城区)如果圆柱的高为20厘米,底面半径是高的 41,那么这个圆柱的侧面积是 ( ) (A )100π平方厘米 (B )200π平方厘米 (C )500π平方厘米 (D )200平方厘米 3.(北京市西城区)“圆材埋壁”是我国古代著名的数学菱《九章算术》中的一个问题,“今在圆材,埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”用 现在的数学语言表述是:“如图,CD 为⊙O 的直径,弦AB ⊥CD ,垂足为E ,CE =1寸,AB =寸,求直径CD 的长”.依题意,CD 长为 ( ) (A )2 25寸 (B )13寸 (C )25寸 (D )26寸 4.(北京市朝阳区)已知:如图,⊙O 半径为5,PC 切⊙O 于点C ,PO 交⊙O 于点A ,PA =4,那么PC 的长等于 ( ) (A )6 (B )25 (C )210 (D )214 5.(北京市朝阳区)如果圆锥的侧面积为20π平方厘米,它的母线长为5厘 米,那么此圆锥的底面半径的长等于 ( ) (A )2厘米 (B )22厘米 (C )4厘米 (D )8厘米 6.(天津市)相交两圆的公共弦长为16厘米,若两圆的半径长分别为10厘 米和17厘米,则这两圆的圆心距为 ( ) (A )7厘米 (B )16厘米 (C )21厘米 (D )27厘米 7.(重庆市)如图,⊙O 为△ABC 的内切圆,∠C = 90,AO 的延长线交BC 于点D ,AC =4,DC =1,,则⊙O 的半径等于 ( )

中考数学圆的综合综合经典题及详细答案

中考数学圆的综合综合经典题及详细答案 一、圆的综合 1.如图,四边形OABC 是平行四边形,以O 为圆心,OA 为半径的圆交AB 于D ,延长AO 交O 于E ,连接CD ,CE ,若CE 是⊙O 的切线,解答下列问题: (1)求证:CD 是⊙O 的切线; (2)若BC=4,CD=6,求平行四边形OABC 的面积. 【答案】(1)证明见解析(2)24 【解析】 试题分析:(1)连接OD ,求出∠EOC=∠DOC ,根据SAS 推出△EOC ≌△DOC ,推出∠ODC=∠OEC=90°,根据切线的判定推出即可; (2)根据切线长定理求出CE=CD=4,根据平行四边形性质求出OA=OD=4,根据平行四边形的面积公式=2△COD 的面积即可求解. 试题解析:(1)证明:连接OD , ∵OD=OA , ∴∠ODA=∠A , ∵四边形OABC 是平行四边形, ∴OC ∥AB , ∴∠EOC=∠A ,∠COD=∠ODA , ∴∠EOC=∠DOC , 在△EOC 和△DOC 中, OE OD EOC DOC OC OC =?? ∠=∠??=? ∴△EOC ≌△DOC (SAS ), ∴∠ODC=∠OEC=90°, 即OD ⊥DC , ∴CD 是⊙O 的切线; (2)由(1)知CD 是圆O 的切线, ∴△CDO 为直角三角形, ∵S △CDO = 1 2 CD?OD , 又∵OA=BC=OD=4,

∴S△CDO=1 2 ×6×4=12, ∴平行四边形OABC的面积S=2S△CDO=24. 2.如图,⊙M交x轴于B、C两点,交y轴于A,点M的纵坐标为2.B(﹣33,O),C(3,O). (1)求⊙M的半径; (2)若CE⊥AB于H,交y轴于F,求证:EH=FH. (3)在(2)的条件下求AF的长. 【答案】(1)4;(2)见解析;(3)4. 【解析】 【分析】 (1)过M作MT⊥BC于T连BM,由垂径定理可求出BT的长,再由勾股定理即可求出BM的长; (2)连接AE,由圆周角定理可得出∠AEC=∠ABC,再由AAS定理得出△AEH≌△AFH,进而可得出结论; (3)先由(1)中△BMT的边长确定出∠BMT的度数,再由直角三角形的性质可求出CG 的长,由平行四边形的判定定理判断出四边形AFCG为平行四边形,进而可求出答案.【详解】 (1)如图(一),过M作MT⊥BC于T连BM, ∵BC是⊙O的一条弦,MT是垂直于BC的直径, ∴BT=TC=1 2 3 ∴124 ; (2)如图(二),连接AE,则∠AEC=∠ABC,∵CE⊥AB, ∴∠HBC+∠BCH=90°

圆的相似综合题

相似与圆综合题目练习 2.(2013?湛江)如图,已知AB是⊙O的直径,P为⊙O外一点,且OP∥BC,∠P=∠BAC. (1)求证:PA为⊙O的切线; (2)若OB=5,OP=,求AC的长. 3.(2013?营口)如图,点C是以AB为直径的⊙O上的一点,AD与过点C的切线互相垂直,垂足为点D.(1)求证:AC平分∠BAD; (2)若CD=1,AC=,求⊙O的半径长.

4.(2013?西宁)如图,⊙O是△ABC的外接圆,BC为⊙O直径,作∠CAD=∠B,且点D在BC的延长线上,CE⊥AD 于点E. (1)求证:AD是⊙O的切线; (2)若⊙O的半径为8,CE=2,求CD的长. 6.(2013?宁夏)在Rt△ABC中,∠ACB=90°,D是AB边上的一点,以BD为直径作⊙O交AC于点E,连结DE并延长,与BC的延长线交于点F.且BD=BF. (1)求证:AC与⊙O相切. (2)若BC=6,AB=12,求⊙O的面积.

7.(2013?黄冈)如图,AB为⊙O的直径,C为⊙O上一点,AD和过C点的直线互相垂直,垂足为D,且AC平分∠DAB. (1)求证:DC为⊙O的切线; (2)若⊙O的半径为3,AD=4,求AC的长. 9.(2013?朝阳)如图,直线AB与⊙O相切于点A,直径DC的延长线交AB于点B,AB=8,OB=10 (1)求⊙O的半径. (2)点E在⊙O上,连接AE,AC,EC,并且AE=AC,判断直线EC与AB有怎样的位置关系?并证明你的结论.(3)求弦EC的长.

11.(2013?巴中)如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B (1)求证:△ADF∽△DEC; (2)若AB=8,AD=6,AF=4,求AE的长. 12.(2012?岳阳)如图所示,在⊙O中,=,弦AB与弦AC交于点A,弦CD与AB交于点F,连接BC. (1)求证:AC2=AB?AF; (2)若⊙O的半径长为2cm,∠B=60°,求图中阴影部分面积. 14.(2012?陕西)如图,正三角形ABC的边长为3+. (1)如图①,正方形EFPN的顶点E、F在边AB上,顶点N在边AC上,在正三角形ABC及其内部,以点A为位似中心,作正方形EFPN的位似正方形E′F′P′N′,且使正方形E′F′P′N′的面积最大(不要求写作法); (2)求(1)中作出的正方形E′F′P′N′的边长; (3)如图②,在正三角形ABC中放入正方形DEMN和正方形EFPH,使得DE、EF在边AB上,点P、N分别在边CB、CA上,求这两个正方形面积和的最大值和最小值,并说明理由.

完整版相似三角形与圆综合题

AB 于点D,交AC 于点E ,求证:(1)AD=AE ; C 在O O 上,/ BAC= 60°, P 是OB 上一点,过 P 作AB 的垂线与 AC 的延长线交于点 Q 连结OC 过点C 作CD L OC 交PQ 于点D. (1)求证:△ CDQi 等腰三角形; (2) 如果△ CDQ^A COB 求BP : PO 的值. 第一部分:例题分析 相似三角形与圆综合 △ ABC 内接于圆O, / BAC 勺平分线交O O 于D 点,交O O 的切线BE 于F ,连结 BD CD 求证:(1) BD 平分/ 例4、 例3、 O O 内两弦 E E AB CD 的延长线相交于圆外一点 E ,由E 引AD 的平行线与直线 BC 交于F ,作切线FG G 为切点, 求证: EF = FG 例3、AB 是O O 的直径,点 (2)AB ? AE=AC ? DB. BE. 例1、已知:如图,BC 为半圆O 的直径,ADI BC,垂足为D,过点B 作弦BF 交AD 于点E ,交半圆O 于点F ,弦AC

第二部分:当堂练习 1.如图,AB是O O直径,ED丄AB于D,交O O于G , EA交O O于C, CB交ED于F,求证:DG2= DE?DF

(1)若 PC=PF ,求证:AB 丄 ED ; ⑵点D 在劣弧AC 的什么位置时,才能使 AD 2 =DE DF ,为什么? 2 . 3. 如图,AB 、AC 分别是O O 的直径和弦,点 D 为劣弧AC 上一点, 弦ED 分别交O O 于点 E ,交AB 于点H ,交 AC 于点F ,过点C 的切线交ED 的延长线于点 P . 如图,弦EF 丄直径

专题3 圆与相似综合压轴题解析

专题三圆压轴题 一、核心讲练 1.如图,在⊙O的内接四边形ACDB中,AB为直径,AC:BC=1:2,点D为弧AB的中点,BE⊥CD垂足为E. (1)求∠BCE的度数; (2)求证:D为CE的中点; (3)连接OE交BC于点F,若AB OE的长度.

2.如图,半圆O中,将一块含60°的直角三角板的60°角顶点与圆心O重合,角的两条边分别与半圆圆弧交于C,D两点(点C在∠AOD内部),AD与BC交于点E,AD与OC交于点F. (1)求∠CED的度数; (2)若C是弧AD的中点,求AF:ED的值; (3)若AF=2,DE=4,求EF的长.

3.如图,已知⊙O是△ABC的外接圆,AD是⊙O的直径,且BD=BC.延长AD到E,使得∠EBD=∠CAB. (1)如图1,若BD AC=6.①求证:BE是⊙O的切线;②求DE的长; (2)如图2,连结CD,交AB于点F,若BD CF=3,求⊙O的半径.

4.如图,在Rt△ABC中,∠A=30°,AC=8,以C为圆心,4为半径作⊙C. (1)试判断⊙C与AB的位置关系,并说明理由; (2)点F是⊙C上一动点,点D在AC上且CD=2,试说明△FCD~△ACF; (3)点E是AB边上任意一点,在(2)的情况下,试求出EF+1 2 F A的最小值.

二、满分突破 5.如图,已知△ABC 内接于⊙O ,点E 在弧BC 上,AE 交BC 于点D ,EB 2=ED ?EA 经过B 、C 两点的圆弧交AE 于I . (1)求证:△ABE ∽△BDE ; (2)如果BI 平分∠ABC ,求证=AB AE BD EI ; (3)设O 的半径为5,BC =8,∠BDE =45°,求AD 的长.

中考数学圆的综合提高练习题压轴题训练附详细答案

中考数学圆的综合提高练习题压轴题训练附详细答案 一、圆的综合 1.如图,点P在⊙O的直径AB的延长线上,PC为⊙O的切线,点C为切点,连接AC,过点A作PC的垂线,点D为垂足,AD交⊙O于点E. (1)如图1,求证:∠DAC=∠PAC; (2)如图2,点F(与点C位于直径AB两侧)在⊙O上,?? BF FA =,连接EF,过点F作AD 的平行线交PC于点G,求证:FG=DE+DG; (3)在(2)的条件下,如图3,若AE=2 3 DG,PO=5,求EF的长. 【答案】(1)证明见解析;(2)证明见解析;(3)EF=32. 【解析】 【分析】 (1)连接OC,求出OC∥AD,求出OC⊥PC,根据切线的判定推出即可; (2)连接BE交GF于H,连接OH,求出四边形HGDE是矩形,求出DE=HG,FH=EH,即可得出答案; (3)设OC交HE于M,连接OE、OF,求出∠FHO=∠EHO=45°,根据矩形的性质得出 EH∥DG,求出OM=1 2 AE,设OM=a,则HM=a,AE=2a,AE= 2 3 DG,DG=3a, 求出ME=CD=2a,BM=2a,解直角三角形得出tan∠MBO= 1 2 MO BM =,tanP= 1 2 CO PO =,设 OC=k,则PC=2k,根据OP=5k=5求出k=5,根据勾股定理求出a,即可求出答案.【详解】 (1)证明:连接OC, ∵PC为⊙O的切线,

∴OC⊥PC, ∵AD⊥PC, ∴OC∥AD, ∴∠OCA=∠DAC, ∵OC=OA, ∴∠PAC=∠OCA, ∴∠DAC=∠PAC; (2)证明:连接BE交GF于H,连接OH, ∵FG∥AD, ∴∠FGD+∠D=180°, ∵∠D=90°, ∴∠FGD=90°, ∵AB为⊙O的直径, ∴∠BEA=90°, ∴∠BED=90°, ∴∠D=∠HGD=∠BED=90°, ∴四边形HGDE是矩形, ∴DE=GH,DG=HE,∠GHE=90°, ∵?? BF AF =, ∴∠HEF=∠FEA=1 2 ∠BEA=190 2 o ?=45°, ∴∠HFE=90°﹣∠HEF=45°, ∴∠HEF=∠HFE, ∴FH=EH, ∴FG=FH+GH=DE+DG; (3)解:设OC交HE于M,连接OE、OF, ∵EH=HF,OE=OF,HO=HO, ∴△FHO≌△EHO, ∴∠FHO=∠EHO=45°,

中考数学圆的综合-经典压轴题附答案解析

中考数学圆的综合-经典压轴题附答案解析 一、圆的综合 1.如图,点A、B、C分别是⊙O上的点, CD是⊙O的直径,P是CD延长线上的一点,AP=AC. (1)若∠B=60°,求证:AP是⊙O的切线; (2)若点B是弧CD的中点,AB交CD于点E,CD=4,求BE·AB的值. 【答案】(1)证明见解析;(2)8. 【解析】 (1)求出∠ADC的度数,求出∠P、∠ACO、∠OAC度数,求出∠OAP=90°,根据切线判定推出即可; (2)求出BD长,求出△DBE和△ABD相似,得出比例式,代入即可求出答案. 试题解析:连接AD,OA, ∵∠ADC=∠B,∠B=60°, ∴∠ADC=60°, ∵CD是直径, ∴∠DAC=90°, ∴∠ACO=180°-90°-60°=30°, ∵AP=AC,OA=OC, ∴∠OAC=∠ACD=30°,∠P=∠ACD=30°, ∴∠OAP=180°-30°-30°-30°=90°, 即OA⊥AP, ∵OA为半径, ∴AP是⊙O切线. (2)连接AD,BD,

∵CD 是直径, ∴∠DBC=90°, ∵CD=4,B 为弧CD 中点, ∴BD=BC= , ∴∠BDC=∠BCD=45°, ∴∠DAB=∠DCB=45°, 即∠BDE=∠DAB , ∵∠DBE=∠DBA , ∴△DBE ∽△ABD , ∴ , ∴BE?AB=BD?BD= . 考点:1.切线的判定;2.相似三角形的判定与性质. 2.如图,△ABC 是⊙O 的内接三角形,点D 在BC uuu r 上,点E 在弦AB 上(E 不与A 重 合),且四边形BDCE 为菱形. (1)求证:AC=CE ; (2)求证:BC 2﹣AC 2=AB?AC ; (3)已知⊙O 的半径为3. ①若AB AC =5 3 ,求BC 的长; ②当 AB AC 为何值时,AB?AC 的值最大? 【答案】(1)证明见解析;(2)证明见解析;(3)2;② 32

中考数学压轴题专题圆与相似的经典综合题及详细答案

中考数学压轴题专题圆与相似的经典综合题及详细答案 一、相似 1.如图,正方形ABCD、等腰Rt△BPQ的顶点P在对角线AC上(点P与A、C不重合),QP与BC交于E,QP延长线与AD交于点F,连接CQ. (1)①求证:AP=CQ;②求证:PA2=AF?AD; (2)若AP:PC=1:3,求tan∠CBQ. 【答案】(1)证明:①∵四边形ABCD是正方形,∴AB=CB,∠ABC=90°,∴∠ABP+∠PBC=90°, ∵△BPQ是等腰直角三角形,∴BP=BQ,∠PBQ=90°,∴∠PBC+∠CBQ=90° ∴∠ABP=∠CBQ,∴△ABP≌△CBQ,∴AP=CQ; ②∵四边形ABCD是正方形,∴∠DAC=∠BAC=∠ACB=45°, ∵∠PQB=45°,∠CEP=∠QEB,∴∠CBQ=∠CPQ, 由①得△ABP≌△CBQ,∠ABP=∠CBQ ∵∠CPQ=∠APF,∴∠APF=∠ABP,∴△APF∽△ABP, (本题也可以连接PD,证△APF∽△ADP) (2)证明:由①得△ABP≌△CBQ,∴∠BCQ=∠BAC=45°, ∵∠ACB=45°,∴∠PCQ=45°+45°=90° ∴tan∠CPQ= , 由①得AP=CQ, 又AP:PC=1:3,∴tan∠CPQ= , 由②得∠CBQ=∠CPQ, ∴tan∠CBQ=tan∠CPQ= . 【解析】【分析】(1)①利用正方形的性质和等腰直角三角形的性质易证△ABP≌△CBQ,可得AP=CQ;②利用正方形的性质可证得∠CBQ=∠CPQ,再由△ABP≌△CBQ可证得∠APF=∠ABP,从而证出△APF∽△ABP,由相似三角形的性质得证;(2)由△ABP≌△CBQ可得∠BCQ=∠BAC=45°,可得∠PCQ=45°+45°=90°,再由三角函数可 得tan∠CPQ=,由AP:PC=1:3,AP=CQ,可得tan∠CPQ=,再由∠CBQ=∠CPQ可求出答

中考数学圆与相似综合题汇编含答案

中考数学圆与相似综合题汇编含答案 一、相似 1.如图,在□ABCD中,对角线AC、BD相交于点O,点E、F是AD上的点,且AE=EF=FD. 连结BE、BF。使它们分别与AO相交于点G、H (1)求EG :BG的值 (2)求证:AG=OG (3)设AG =a ,GH =b,HO =c,求a : b : c的值 【答案】(1)解:∵四边形ABCD是平行四边形, ∴AO= AC,AD=BC,AD∥BC, ∴△AEG∽△CBG, ∴ = = . ∵AE=EF=FD, ∴BC=AD=3AE, ∴GC=3AG,GB=3EG, ∴EG:BG=1:3 (2)解:∵GC=3AG(已证), ∴AC=4AG, ∴AO= AC=2AG, ∴GO=AO﹣AG=AG (3)解:∵AE=EF=FD, ∴BC=AD=3AE,AF=2AE. ∵AD∥BC, ∴△AFH∽△CBH, ∴ = = = , ∴ = ,即AH= AC. ∵AC=4AG, ∴a=AG= AC,

b=AH﹣AG= AC﹣ AC= AC, c=AO﹣AH= AC﹣ AC= AC, ∴a:b:c= :: =5:3:2 【解析】【分析】(1)根据平行四边形的性质可得AO=AC,AD=BC,AD∥BC,从而可证得△AEG∽△CBG,得出对应边成比例,由AE=EF=FD可得BC=3AE,就可证得GB=3EG,即可求出EG:BG的值。 (2)根据相似三角形的性质可得GC=3AG,就可证得AC=4AG,从而可得AO=2AG,即可证得结论。 (3)根据平行可证得三角形相似,再根据相似三角形的性质可得AG=AC,AH=AC,结合 AO=AC,即可得到用含AC的代数式分别表示出a、b、c,就可得到a:b:c的值。2.如图,在平面直角坐标系中,直线y=﹣ x+ 与x轴、y轴分别交于点B、A,与直线 y= 相交于点C.动点P从O出发在x轴上以每秒5个单位长度的速度向B匀速运动,点Q从C出发在OC上以每秒4个单位长度的速度,向O匀速运动,运动时间为t秒(0<t<2). (1)直接写出点C坐标及OC、BC长; (2)连接PQ,若△OPQ与△OBC相似,求t的值; (3)连接CP、BQ,若CP⊥BQ,直接写出点P坐标. 【答案】(1)解:对于直线y=﹣ x+ ,令x=0,得到y= ,

中考数学圆综合题(含答案)

一.圆地概念 集合形式地概念:1. 圆可以看作是到定点地距离等于定长地点地集合; 2.圆地外部:可以看作是到定点地距离大于定长地点地集合; 3.圆地内部:可以看作是到定点地距离小于定长地点地集合 轨迹形式地概念: 1.圆:到定点地距离等于定长地点地轨迹就是以定点为圆心,定长为半径地圆; (补充)2.垂直平分线:到线段两端距离相等地点地轨迹是这条线段地垂直平分线(也叫中垂线); 3.角地平分线:到角两边距离相等地点地轨迹是这个角地平分线; 4.到直线地距离相等地点地轨迹是:平行于这条直线且到这条直线地距离等于定长地两条直线; 5.到两条平行线距离相等地点地轨迹是:平行于这两条平行线且到两条直线距离都相等地一条直线. 二.点与圆地位置关系 1.点在圆内?d r?点A在圆外; 三.直线与圆地位置关系 1.直线与圆相离?d r>?无交点; 2.直线与圆相切?d r=?有一个交点; 3.直线与圆相交?d r+; A

外切(图2)? 有一个交点 ? d R r =+; 相交(图3)? 有两个交点 ? R r d R r -<<+; 内切(图4)? 有一个交点 ? d R r =-; 内含(图5)? 无交点 ? d R r <-; 图1 五.垂径定理 垂径定理:垂直于弦地直径平分弦且平分弦所对地弧. 推论1:(1)平分弦(不是直径)地直径垂直于弦,并且平分弦所对地两条弧; (2)弦地垂直平分线经过圆心,并且平分弦所对地两条弧; (3)平分弦所对地一条弧地直径,垂直平分弦,并且平分弦所对地另一条弧 以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即: ①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 中任意2个条件推出其他3个结论. 推论2:圆地两条平行弦所夹地弧相等. 即:在⊙O 中,∵AB ∥CD ∴弧AC =弧BD 六.圆心角定理 图2 图4 图5 B D

中考数学圆综合练习题含答案

数学中考圆综合题附参考答案 1.如图,△ABC 中,以BC 为直径的圆交AB 于点D ,∠ACD =∠ABC . (1)求证:CA 是圆的切线; (2)若点E 是BC 上一点,已知BE =6,tan ∠ABC = 32,tan ∠AEC =3 5 ,求圆的直径. 2. 如图右,已知直线PA 交⊙0于A 、B 两点,AE 是⊙0的直径.点C 为⊙0上一点,且AC 平分∠PAE ,过C 作CD ⊥PA ,垂足为D 。 (1)求证:CD 为⊙0的切线; (2)若DC+DA=6,⊙0的直径为l0,求AB 的长度. 1. (1)证明:连接OC, ∵点C 在⊙0上,0A=OC,∴∠OCA=∠OAC ,∵CD ⊥PA ,∴∠CDA=90°, 有∠CAD+∠DCA=90°,∵AC 平分∠PAE ,∴∠DAC=∠CAO 。 ∴∠DC0=∠DCA+∠ACO=∠DCA+∠CAO=∠DCA+∠DAC=90°。 又∵点C 在⊙O 上,OC 为⊙0的半径,∴CD 为⊙0的切线. (2)解:过0作0F ⊥AB ,垂足为F ,∴∠OCA=∠CDA=∠OFD=90°, ∴四边形OCDF 为矩形,∴0C=FD ,OF=CD. ∵DC+DA=6,设AD=x ,则OF=CD=6-x ,∵⊙O 的直径为10,∴DF=OC=5,∴AF=5-x , 在Rt △AOF 中,由勾股定理得222AF +OF =OA .即22(5)(6)25x x -+-=,化简得:211180x x -+= 解得2x =或9x =。由AD

中考数学圆与相似综合经典题附详细答案

中考数学圆与相似综合经典题附详细答案 一、相似 1.如图所示,将二次函数y=x2+2x+1的图象沿x轴翻折,然后向右平移1个单位,再向上平移4个单位,得到二次函数y=ax2+bx+c的图象.函数y=x2+2x+1的图象的顶点为点A.函数y=ax2+bx+c的图象的顶点为点B,和x轴的交点为点C,D(点D位于点C的左侧). (1)求函数y=ax2+bx+c的解析式; (2)从点A,C,D三个点中任取两个点和点B构造三角形,求构造的三角形是等腰三角形的概率; (3)若点M是线段BC上的动点,点N是△ABC三边上的动点,是否存在以AM为斜边的 Rt△AMN,使△AMN的面积为△ABC面积的?若存在,求tan∠MAN的值;若不存在,请说明理由. 【答案】(1)解:y=x2+2x+1=(x+1)2的图象沿x轴翻折,得y=﹣(x+1)2, 把y=﹣(x+1)2向右平移1个单位,再向上平移4个单位,得y=﹣x2+4, ∴所求的函数y=ax2+bx+c的解析式为y=﹣x2+4 (2)解:∵y=x2+2x+1=(x+1)2, ∴A(﹣1,0), 当y=0时,﹣x2+4=0,解得x=±2,则D(﹣2,0),C(2,0); 当x=0时,y=﹣x2+4=4,则B(0,4), 从点A,C,D三个点中任取两个点和点B构造三角形的有:△ACB,△ADB,△CDB, ∵AC=3,AD=1,CD=4,AB= ,BC=2 ,BD=2 , ∴△BCD为等腰三角形, ∴构造的三角形是等腰三角形的概率=

(3)解:存在, 易得BC的解析是为y=﹣2x+4,S△ABC= AC?OB= ×3×4=6, M点的坐标为(m,﹣2m+4)(0≤m≤2), ①当N点在AC上,如图1, ∴△AMN的面积为△ABC面积的, ∴(m+1)(﹣2m+4)=2,解得m1=0,m2=1, 当m=0时,M点的坐标为(0,4),N(0,0),则AN=1,MN=4, ∴tan∠MAC= =4; 当m=1时,M点的坐标为(1,2),N(1,0),则AN=2,MN=2, ∴tan∠MAC= =1; ②当N点在BC上,如图2, BC= =2 , ∵BC?AN= AC?BC,解得AN= , ∵S△AMN= AN?MN=2,

相关文档
最新文档