再生器反应器讲义讲解
反应器(化工设备操作维护课件)

上一内容 下一内容 回主目录
2023/10/13
表 釜式反应器常见故障与处理方法
故障 搅拌轴转数降 低或停止转动
搪瓷搅拌器脱 落 出料不畅
产生原因 皮带打滑 皮带损坏 电机故障 被介质腐蚀
出料管堵塞 压料管损坏
处理方法
调整皮带 更换皮带 修理或更换电机 更换搪瓷轴或修 补 清理出料管 修理或更换配管
2、特点:反应过程伴有传热、传质和反应物的流动过程。 物理与化学过程相互渗透影响,反应过程复杂化。
上一内容 下一内容 回主目录
2023/10/13
§1-2 反应器的类型
• 反应器的类型: 釜式反应器 管式反应器
操作方式 材料 操作压力 绝热管式
换热管式
上一内容 下一内容 回主目录
2023/10/13
2023/10/13
b. 机械密封
机械密封 结构较复 杂,但密 封效果甚 佳。
上一内容 下一内容 回主目录
2023/10/13
4、换热装置
换热装置是用来加热或冷却反应物料,使之符合工艺 要求的温度条件的设备。
其结构型式主要有夹套式、蛇管式、列管式、外部循 环式等,也可用回流冷凝式、直接火焰或电感加热。
上一内容 下一内容 回主目录
2023/10/13
第六章 反应器
第二节 釜式反应器
上一内容 下一内容 回主目录
2023/10/13
§2-1 反应釜基本结构
(一)基本结构:
壳体 密封装置 换热装置 传动装置
上一内容 下一内容 回主目录
2023/10/13
1、搅拌釜式反应器的壳体结构
壳体结构:一般为碳钢材 料,筒体皆为圆筒型。釜 式反应器壳体部分的结构 包括筒体、底、盖(或称 封头)、手孔或人孔、视 镜、安全装置及各种工艺 接管口等。
反应器结构及工作原理图解

反应器结构及工作原理图解小7:这里给大家介绍一下常用的反应器设备,主要有以下类型:①管式反应器。
由长径比较大的空管或填充管构成,可用于实现气相反应和液相反应。
②釜式反应器。
由长径比较小的圆筒形容器构成,常装有机械搅拌或气流搅拌装置,可用于液相单相反应过程和液液相、气液相、气液固相等多相反应过程。
用于气液相反应过程的称为鼓泡搅拌釜(见鼓泡反应器);用于气液固相反应过程的称为搅拌釜式浆态反应器。
③有固体颗粒床层的反应器。
气体或(和)液体通过固定的或运动的固体颗粒床层以实现多相反应过程,包括固定床反应器、流化床反应器、移动床反应器、涓流床反应器等。
④塔式反应器。
用于实现气液相或液液相反应过程的塔式设备,包括填充塔、板式塔、鼓泡塔等(见彩图)。
一、管式反应器一种呈管状、长径比很大的连续操作反应器。
这种反应器可以很长,如丙烯二聚的反应器管长以公里计。
反应器的结构可以是单管,也可以是多管并联;可以是空管,如管式裂解炉,也可以是在管内填充颗粒状催化剂的填充管,以进行多相催化反应,如列管式固定床反应器。
通常,反应物流处于湍流状态时,空管的长径比大于50;填充段长与粒径之比大于100(气体)或200(液体),物料的流动可近似地视为平推流。
分类:1、水平管式反应器由无缝钢管与U形管连接而成。
这种结构易于加工制造和检修。
高压反应管道的连接采用标准槽对焊钢法兰,可承受1600-10000kPa压力。
如用透镜面钢法兰,承受压力可达10000—20000kPa。
2、立管式反应器立管式反应器被应用于液相氨化反应、液相加氢反应、液相氧化反应等工艺中。
3、盘管式反应器将管式反应器做成盘管的形式,设备紧凑,节省空间。
但检修和清刷管道比较困难.4、U形管式反应器U形管式反应器的管内设有多孔挡板或搅拌装置,以强化传热与传质过程。
U形管的直径大,物料停留时间增长,可应用于反应速率较慢的反应。
5、多管并联管式反应器多管并联结构的管式反应器一般用于气固相反应,例如气相氯化氢和乙炔在多管并联装有固相催化剂的反应器中反应制氯乙烯,气相氮和氢混合物在多管并联装有固相铁催化剂的反应器中合成氨.性能特点:1、由于反应物的分子在反应器内停留时间相等,所以在反应器内任何一点上的反应物浓度和化学反应速度都不随时间而变化,只随管长变化。
再生器反应器讲义讲解

1.烧焦段
上述各反应对除焦是必要的,但对催化 剂容易造成损害。它导致催化剂表面温度 上升,而高温则极大地增加了催化剂永久 性损害的危险。所以烧焦要控制好,这是 通过控制燃烧过程的氧含量来完成的。 氧含量过高造成温度过高,但氧含量过低 则燃烧不足。正常操作时,氧含量保持在 0.6~1.0摩尔%之间,这是使烧焦速度达到 最快,烧焦温度相对最低的最佳范围。
谢谢
催化剂入口
第一反应器原料入口 第一反应器流出物出口
催化剂 转移管 反应器原料 入口 反应物流出口
出物出口
第一反应器 第二反应器原料入口 第二反应器原料出口
二反应器流出物出口
中心管
第二反应器 最后反应器原料入口 最后反应器流出物出口 扇形筒
催化剂出口
零部件
2、扇形筒
一般由壁厚3mm的不锈钢板制成,外 表面上开有很长的长条孔,各开孔的圆角 处都不准有尖锐的棱角,制造要求精度很 高,每个扇形筒都紧贴在反应器壁上,采 用膨胀圈固定,但固定的紧密度很严格, 即要使扇形筒不能移动,保证其不会变形; 又要考虑在操作状态下扇形筒的热膨胀需 要的间隙;
3.干燥段
催化剂在进入铂重整反应器之前越干燥,那么它 的总体性能越好。高温和干燥时间长及足够的干 燥气体流速,有利于本步骤完成。足够的干燥气 体流速,能确保气体分布良好,热量充足;
4.冷却段
冷却区有两大作用:冷却去下游待处理的催
化剂,预热部分去干燥区的空气。 冷却的催化剂降低了下游催化剂输送设备的 材质方面的要求。 预热的干燥空气降低了空气加热器负荷,这 样可节约公用工程开支。
催化剂连续再生必须经历五个工艺过程, 既催化剂的烧焦﹑氧氯化﹑干燥﹑冷却﹑ 还原。其中四个过程是在再生器中完成的, 还原是在再生器外完成的。因此再生器的 结构要按能够完成四个工艺过程来设计, 必须满足催化剂连续再生工艺的要求。
第六节催化裂化反应再生系统资料

2020/10/11
19
c.快速床(循环流化床)再生 ➢气相转化成连续相,催化剂颗粒变为分散相,从而强化 了烧碳过程 ➢随着气速的提高,返混程度减小,中、上部接近于平推 流,也有利于烧碳强度的提高 ➢在快速流化床区域,必须有较大的固体循环量才能保持 较高的床层密度 ➢催化裂化装置的烧焦罐再生就是属于循环流化床的一种 再生方式
➢再生温度对烧碳反应速率的影响十分显著,提高再生温 度是提高烧碳速率的有效手段,在单段再生时,密相创层 的温度一般不超过730℃
➢工业上一般采用的空气线速为0.6~0.7m/s ➢工业装置采用的再生器压力在0.25~0.4MPa(绝)之间 ➢单段再生的主要问题是再生温度的提高受到限制和密相 床层的有效催化剂含炭量低
9
分段反应
➢不同的馏分需要不同的反应条件,理想选择是不同的 馏分在不同的场所和条件下进行反应 ➢两段提升管(Ⅰ型)催化裂化:
★第一段提升管只进新鲜原料,段间抽出柴油出装置 ★第二段提升管单独进循环油,显著改善产品分布 ★第二段提升管底部回炼汽油,降低汽油烯烃含量 ➢分段进料避免了新鲜原料和油浆的相互干扰
2020/10/11
18
b.两段再生 ➢两段再生是把烧碳过程分为两个阶段进行 ➢与单段相比,两段再生的主要优点是:
①对于全混床反应器,第一段出口的半再生剂的含碳量 高于再生剂的含碳量,从而提高了烧碳速率;
②在第二段再生时可以用新鲜空气和更高的温度,提高 了烧碳速率;
③第二段内的水气分压可以很低,减轻了催化剂的水热 老化;且第二段的催化剂藏量比单段再生器的催化剂藏量低, 停留时间较短。因此,第二段可采用较高的再生温度。
2020/10/11
20
2020/10/11
21
反再系统讲解课件(总)

二、沉降器内构件介绍 沉降器的内构件主要有4组旋风分离器、 七层汽提挡板、四组汽提蒸汽环、顶集气 室。另外其内部还设有防焦蒸汽环,待生斜 口入口装有防焦格栅。
• 反应油气、水蒸汽、催化剂先经提升管出口 四组粗旋分分离器分出大部分催化剂后,由 粗旋出口进入沉降器顶部,再经四组单级旋 风分离器分出催化剂,催化剂从旋分料腿进 入沉降器汽提段,反应生成物、惰性物质、 蒸汽、连同微量的催化剂细粒进入沉降器集 气室后,从集气室顶大油气管线进入催化分 馏塔底部。
沉降器集气室
油气 进大 油气 管线 上筒节 衬里挡板 升 气 管 无折边球形封头 下 筒 节
旋 分 入 口 旋分
沉降器防焦蒸汽环
上环现保留管嘴13个,管嘴 方向斜向下,斜对集气室外壁
• 一再内构件介绍 一再内构件主要有6组二级内旋风分离 器、一再顶集气室、一再底部主风大、小分 布环。
一再床层料位由半再生滑 阀来控制,床层料位应维 持在使待生催化剂分布器 不被盖住,且使旋风分离 器料腿有合适的料封 。
第2、4、6层汽提挡板
第1、3、5、7层汽提挡板
• 汽提蒸汽环上、中、下环分别位于第1、4、6层汽 提挡板下部,汽提蒸汽底环位于沉降器汽提段锅底 (待生斜管防焦格栅下部)。 • 以汽提蒸汽上环为例,汽提蒸汽环主要由环管、三 通、弯头、接管组成,环管上、下安装有管嘴162 个及排水管3个。 • 环管外焊有Y型保温钉并衬有AA级高耐磨刚玉衬 里。 • 汽提段底部2002年改造时在底部堆积有C0级隔热 耐磨单层衬里,由于堆积后防焦格栅离锅底较近, 格栅焦块堆积使待生斜管下料不畅,2005年大检 修时已将原堆积衬里挖除。
• 喷嘴的安装要求 喷嘴在安装时,其中心线的延长线应 与提升管中心线相交于同一点,中心轴线 与提升管中心轴线的夹角为 30°±0.5°(其中油浆回炼喷嘴的35°), 喷嘴与套管的缝隙中填充有陶纤,以防结 焦,影响检修时喷嘴的拆装。
催化裂化再生系统

1再生动力学1.1催化剂上的焦炭1)焦炭的化学组成催化剂上的焦炭来源于四个方面:⑴在酸性中心上由催化裂化反应生成的焦炭;⑵由原料中高沸点、高碱性化合物在催化剂表面吸附,经过缩合反应生成的焦炭;⑶因汽提段汽提不完全而残留在催化剂上的重质烃类,是一种富氢焦炭;⑷由于镍、钒等重金属沉积在催化剂表面上造成催化剂中毒,促使脱氢和缩合反应的加剧,而产生的次生焦炭;或者是由于催化剂的活性中心被堵塞和中和,所导致的过度热裂化反应所生成的焦炭。
上述四种来源的焦炭通常被分别称为催化焦、附加焦(也称为原料焦)、剂油比焦(也称为可汽提焦)和污染焦。
实际上,这四种来源的焦炭在催化剂上是无法辩认的。
所谓“焦炭”并不是具有严格的固定组成和结构的物质。
它不是纯碳,一般主要由碳和氢组成,是高度缩合的碳氢化合物,但碳和氢的比例受多种因素的影响,有相当大的变化范围。
影响H/C的因素主要有:催化剂、原料、反应温度、反应时间及汽提条件等。
对一定的催化剂和原料,影响焦炭H/C的主要因素是反应温度和反应时间(或结焦量)。
普遍认为,反应温度越高,焦炭的H/C越小,即焦炭中氢含量越低。
反应时间加长也有同样的影响。
在硅酸铝催化剂上用多种单体烃和轻瓦斯油进行催化裂化反应试验,结果表明所得焦炭的H/C不相同,而在0.4~0.9之间变化。
除碳和氢外,焦炭中还可能含有硫、氮、氧等杂原子,这主要决定于原料的杂原子化合物的含量。
应该指出,焦炭的化学组成,是焦炭的一个重要性质,尤其是C/H,对再生器的操作,特别是对装置的热平衡具有重要意义。
但很遗憾,焦炭的C/H很难测定准确,主要是氢含量很难测准,因为一般用燃烧法测定生成的水量,而水量难以测准,而且在燃烧过程中催化剂结构本身也可能放出一部分水,因而造成实验误差。
在生产装置上,一般还是以测定烟气中CO、CO2和O2的组成,利用焦炭在空气中燃烧时的元素平衡等计算焦炭中的C/H比。
2)焦炭的结构前面谈到焦炭的化学组成是不均匀的,而焦炭的结构与其组成密切相关,可以想象,焦炭的结构也是不均匀的,实际研究结果也证明了这一点,而且结构问题比组成更为复杂。
催化裂化装置反应器和再生器的技术改造

催化裂化装置反应器和再生器的技术改造摘要:延长石油集团公司某炼油厂使用洛阳石油化工公司生产的催化裂化反应再生装置。
针对目前装置存在的生产和安全问题,对系统装置做了进一步的改造,主要是对反应器和再生器的改造。
通过技改生产能力由原来80万t/a扩大到120万t/a。
关键词:催化裂化装置反应再生改造概述目前催化裂化是石油加工的主要手段之一,它在炼油工业生产中占有重要的地位。
一般原油经常减压蒸馏生产的汽油、煤油、柴油等轻质油品仅有10~40%,如果要得到更多轻质产品,须对重油馏分及渣油进行二次加工,使之生成汽油、柴油、气体等轻质产品。
国内外常用的二次加工手段主要有热裂化、焦化、催化裂化和加氢裂化等。
在我国车用汽油的组成最主要是催化裂化汽油,要提高汽油的产量,就要有良好的催化裂化反应和再生装置。
一、催化裂化反应再生的原理催化裂化反应是在催化剂表面上进行的,分解反应生成的气体、汽油、柴油等分子较小的产物离开催化剂进入产品回收系统,而缩合反应生成的焦炭,则沉积在催化剂的表面上,使其活性降低,为了使反应不断进行,就必需烧去催化剂表面上的沉积炭使之恢复活性,这一过程称之为“再生”,可见催化裂化包括“反应”和“再生”两个过程。
二、反应器的改造1. 反应器改造目的针对提升管、汽提段、沉降器的改造,使催化裂化装置能适应各种原料,例如,蜡油、脱沥青、各种馏分油和渣油的范围;提高目的产物“汽油和柴油”产率而降低副产品“气体和焦炭”的产率。
2.反应器改造的过程2.1提升管底部结构更新,增设了两个粗汽油回炼喷嘴。
这样可使粗汽油进提升管回炼,因粗汽油中芳烃含量高,难以裂化,为使它和新鲜原料在不同反应操作条件下进行反应,达到多产液化石油气的目的。
2.2提升管设两层原料喷嘴,以适应不同原料加工量,并根据市场需要调整产品分布,增加了装置操作的灵活性。
2.3提升管出口粗旋风分离器改为挡板汽提式粗旋风分离器,将反应油气和催化剂快速分离,同时尽可能地汽提掉催化剂上携带的油气,减少了二次反应,增加了轻质油收率。
《生物反应器》课件

通过本课件,我们将深入探讨生物反应器的全貌。从定义,分类,结构和原 理,应用领域,优点和挑战,以及未来的发展趋势,让我们一起探索这个令 人着迷的领域。
什么是生物反应器?
生物反应器是一种用于控制和维持特定生物反应过程的装置。它提供了理想的环境条件,以促进 生物反应的进行。
1 定义
生物制药
环境修复
生物反应器在生产生物药物和医 疗相关产品方面发挥着重要作用。
通过利用生物反应器来处理和净 化废水和废气等环境污染物。
生物燃料
生物反应器可用于生产可再生能 源,如生物柴油和生物乙醇。
生物反应器的优点和挑战
优点
生物反应器具有高效、环保、可控性强等优点, 适用于多种生物反应过程。
挑战
生物反应器的设计和操作需要专业知识和精细 调控,同时面临成本和规模扩展的挑战。
生物反应器是指能够维持生物反应过程的操作设备。
2 分类
根据反应器操作方式和反应类型,生物反应器可以分为不同的类别。
生物反应器的结构和原理
结构
生物反应器通常由反应容器、搅拌装置、进出料口 和传感器等组成。
原理
生物反应器的原理基于对生物过程中必要因素的控 制,如温度、氧气供应、营养物质和pH值。
生物反应器的应用领域
生物反应器的发展趋势
1
自动化与智能化
生物反应器将趋向自动化操作,并结合人工智能技术实现更智能的反应器将更加注重资源的有效利用和环境的可持续性。
3
多功能和定制化
生物反应器将能够满足不同反应过程的需求,实现定制化设计。
总结和展望
生物反应器作为一种核心技术,将不断推动生物科学和工程的进步。我们期 待未来的创新和发展,以应对全球的挑战。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重整反应器
结构形式分类:
1、轴向反应器: 结构形式最为简单,筒体内装入催
化剂,油气自上而下垂直穿过催化剂床 层进行反应,反应器本身设有油气出入 口和催化剂卸料口。 2、径向反应器: 重整反应器 R-2201-2204
零部件
1、中心管 内层圆筒的外表面按照圆周方向均匀的开若干 小孔(孔径约5-6mm),开孔率是工艺设计的 关键,合理的开孔率能够使油气在整个流通面 积上达到均匀分布。开孔面积过大,气体通过 床层的组立降低,会造成沿中心管顶底界面上 的气量分布不均。 外圆筒外部的筛网具有光滑的接触面和最大的 流通面积等优点。筛网孔间隙小,固体催化剂 不会被镶嵌在筛网的缝隙内,所以保证了催化 剂的顺利流动和反应。
反应器结构(锥形区域)
常见故障
结焦: 中心管的外筛网的筛面被挤破,四周的 扇形管大部分被挤压破裂、变形,底封 头上堆积着厚厚的催化剂粉末和焦炭, 膨胀圈被严重扭曲、变形脱落。 大量的模拟实验表明:烃类操作温度越 高,反应进行越快,产生膨胀力能迅速 把扇形筒底端推向各个不同方位,造成 内构件大量损坏,从而造成巨额的经济 损失,因此要尽量避免结焦事故的发生。
零部件
3、密封板
密封板的装配精度更严格,它是根据 设备操作温度、材质、床层高度在其 温度下的膨胀系数计算而得,不同反 应器的密封板与扇形筒的间隙值是不 同的,因此安装重叠式反应器内的扇 形筒时,该间隙值被确定为反应器安 装是否符合要求,能否满足仅有的一 个重要条件,也是验收是否符合要求 的一个重要参数。
? CO遇02则有可能进一步氧化: 2CO + O2 —→2CO2 + 热量
? 上述各反应对除焦是必要的,但对催化 剂容易造成损害。它导致催化剂表面温度 上升,而高温则极大地增加了催化剂永久 性损害的危险。所以烧焦要控制好,这是 通过控制燃烧过程的氧含量来完成的。
? 氧含量过高造成温度过高,但氧含量过低 则燃烧不足。正常操作时,氧含量保持在 0.6~1.0摩尔%之间,这是使烧焦速度达到 最快,烧焦温度相对最低的最佳范围。
? 氧化反应和重新分散(更新)反应可归纳如下: 金属 + O2 —→金属氧化物(分散)
? 金属在催化剂表面分布得越均匀,催化剂 的金属功能就越好。分散的条件是:氧含 量高,停留时间长,氯含量适当。有助于 金属氧化和重新分布。
3.干燥段
? 干燥,是去除催化剂上的多余水份。催化剂上多 余水分来自烧焦步骤。采用高温干燥气体流过催 化剂,以达到烘干的目的。
再生器反应器讲义
再生设备
? 由于反应系统与再生系统间操作压力和介质 环境不同,所以要保证催化剂在两系统间的 安全循环,必须做到: ①再生部分的高﹑低压设备不能有物流互 串的现象。 ②反应部分的氢气与烃类不能与含氧的再 生部分互串。
再生器
? 重整催化剂再生的“四步法工艺”是指: ? 第一步:烧焦,即催化剂上炭的烧除。 ? 第二步:氯化/氧化,又叫氯化更新,即一方面调
? CYCIEMAX再生器中央的约翰逊筛网设计成倒锥 体形作用:
? 中央的筛网为倒锥体形,有两个目的:
? (1)提高烧焦区域的催化剂流速,该催化剂暴露在 高温和高水分、低氧含量的气体中,可使催化剂 比表面积减小。
? (2)停留时间十分重要,降低烧焦区域后的催化剂 流速,保证催化剂上的焦碳燃烧充分,防止含碳 催化剂进入氧氯化区,引起超温。
催化剂 转移管
中心管
扇形筒
催化剂入口
第一反应器原料入口 第一反应器流出物出口
第一反应器
第二反应器原料入Байду номын сангаас 第二反应器原料出口
二反应器流出物出口
第二反应器
最后反应器原料入口 最后反应器流出物出口
催化剂出口
反应器原料 入口
反应物流出口
出物出口
零部件
2、扇形筒
一般由壁厚3mm的不锈钢板制成,外 表面上开有很长的长条孔,各开孔的圆角 处都不准有尖锐的棱角,制造要求精度很 高,每个扇形筒都紧贴在反应器壁上,采 用膨胀圈固定,但固定的紧密度很严格, 即要使扇形筒不能移动,保证其不会变形; 又要考虑在操作状态下扇形筒的热膨胀需 要的间隙;
? 干燥步骤也可理解为在催化剂载体上置换水分: 载体—H2O + 干燥气体—→载体 + 气体 + H20
? 催化剂在进入铂重整反应器之前越干燥,那么它 的总体性能越好。高温和干燥时间长及足够的干 燥气体流速,有利于本步骤完成。足够的干燥气 体流速,能确保气体分布良好,热量充足;
4.冷却段
? 冷却区有两大作用:冷却去下游待处理的催 化剂,预热部分去干燥区的空气。
2.氧氯化段
? 氯化/氧化,是调节氯化物含量,氧化和 分散催化剂表面的金属(即金属铂)。这些反 应的特点是有氧和有机氯化物参与的复杂 反应,所以反应需要氧和氯化物。
? 氯化反应主要归纳为:
氯化物 + O2 —→HCl + CO2 + H2O
HCL + O2 —→CI2 + H20(迪肯平衡
载体—OH + HCL —→载体—CL + H2O
1.烧焦段
? 烧焦,是有氧气存在下的燃烧反应,炭中主要的 化学元素为 C和H。
? 在空气量充足的情况下,通常的燃烧反应为: C + O2 —→CO2 + 热量
? 但如果空气量不足,可能发生不完全反应: 2C + O2 —→2CO + 热量
? 炭中的H与O2反应速度要远远快于烧碳的反应: 2H2 + O2 —→2H2O + 热量
? 冷却的催化剂降低了下游催化剂输送设备的 材质方面的要求。 预热的干燥空气降低了空气加热器负荷,这 样可节约公用工程开支。
? CYCLEMAX再生器内圆柱体分布器上均布 的气体通道的作用:
? 再生器内圆柱分布器上的气体通道均布 贯通到四个位置。这些通道使得由分布器 封住的区域与分布器外侧的区域之间便于 进行气体传递,保持内外的压力平衡。这 种传递对确保气体均匀分布穿越干燥区的 园柱体床层是很重要的。否则可能由于压 力不平衡而使气体的分布形成偏流,向压 力低的区域多流动,这样无论对氯化、干 燥还是冷却都不利,因此在此三个区内均 设置了气体通道。
节催化剂上的氯含量,另一方面氧化和分散催化剂 表面的金属。 ? 第三步:干燥,即去除催化剂上烧焦产生的多余水 份。 ? 第四步:还原,即将催化剂上的金属由氧化态转化 为还原态
? 催化剂连续再生必须经历五个工艺过程, 既催化剂的烧焦﹑氧氯化﹑干燥﹑冷却﹑ 还原。其中四个过程是在再生器中完成的, 还原是在再生器外完成的。因此再生器的 结构要按能够完成四个工艺过程来设计, 必须满足催化剂连续再生工艺的要求。