建立函数模型解决实际问题

建立函数模型解决实际问题
建立函数模型解决实际问题

专题四建立函数模型解决实际问题

1.某汽车在刹车后行驶的距离s(单位:米)与时间t(单位:秒)之间的关系得部分数据如下表:

时间t(秒)00.20.40.60.8 1.0 1.2…行驶距离s(米)0 2.8 5.27.28.81010.8…(1)根据这些数据在给出的坐标系中画出相应的点;

(2)选择适当的函数表示s与t之间的关系,求出相应的函数解析式;

(3)①刹车后汽车行驶了多长距离才停止?②当t分别为t1,t2(t1<t2)时,对应s的

值分别为s1,s2,请比较

1

1

s

t

2

2

s

t

的大小,并解释比较结果的实际意义.

2.某经销商销售一种产品,这种产品的成本价为10元/千克,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于18元/千克,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)之间的函数关系如图所示:(1)求y与x之间的函数关系式,并写出自变量x的取值范围;

(2)求每天的销售利润W(元)与销售价x(元/千克)之间的函数关系式.当销售价为多少时,每天的销售利润最大?最大利润是多少?

(3)该经销商想要每天获得150元的销售利润,销售价应定为多少?

3.实验数据显示,一般成人喝半斤低度白酒后,1.5小时内其血液中酒精含量y (毫克/百毫升)与时间x(时)的关系可近似地用二次函数y=﹣200x2+400x刻画;1.5小时后(包括1.5小时)y与x可近似地用反比例函数y=(k>0)刻画(如图所示).

(1)根据上述数学模型计算:①喝酒后几时血液中的酒精含量达到最大值?最

大值为多少?②当x=5时,y=45,求k的值.(2)按国家规定,车辆驾驶人员血

液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路.参照上述数学模型,假设某驾驶员晚上20:00在家喝完半斤低度白酒,第

二天早上7:00能否驾车去上班?请说明理由.

4、九年级某班数学兴趣小组经过市场调查整理出某种商品在第x天(1≤x≤90,且x为整数)的售价与销售量的相关信息如下.已知商品的进价为30元/件,设

该商品的售价为y(单位:元/件),每天的销售量为p(单位:件),每天的销售

利润为w(单位:元).

时间x(天)1306090每天销售量p(件)1981408020(1)求出w与x的函数关系式;

(2)问销售该商品第几天时,当天的销售利润最大?并求出最大利润;

(3)该商品在销售过程中,共有多少天每天的销售利润不低于5600元?请直接

写出结果.

数学建模是使用数学模型解决实际问题

数学建模是使用数学模型解决实际问题。 对数学的要求其实不高。 我上大一的时候,连高等数学都没学就去参赛,就能得奖。 可见数学是必需的,但最重要的是文字表达能力 回答者:抉择415 - 童生一级 3-13 14:48 数学模型 数学模型是对于现实世界的一个特定对象,一个特定目的,根据特有的内在规律,做出一些必要的假设,运用适当的数学工具,得到一个数学结构。 简单地说:就是系统的某种特征的本质的数学表达式(或是用数学术语对部分现实世界的描述),即用数学式子(如函数、图形、代数方程、微分方程、积分方程、差分方程等)来描述(表述、模拟)所研究的客观对象或系统在某一方面的存在规律。 数学建模 数学建模是利用数学方法解决实际问题的一种实践。即通过抽象、简化、假设、引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解。 数学建模将各种知识综合应用于解决实际问题中,是培养和提高学生应用所学知识分析问题、解决问题的能力的必备手段之一。 数学建模的一般方法和步骤 建立数学模型的方法和步骤并没有一定的模式,但一个理想的模型应能反映系统的全部重要特征:模型的可靠性和模型的使用性。建模的一般方法: 机理分析:根据对现实对象特性的认识,分析其因果关系,找出反映内部机理的规律,所建立的模型常有明确的物理或现实意义。 测试分析方法:将研究对象视为一个“黑箱”系统,内部机理无法直接寻求,通过测量系统的输入输出数据,并以此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个数据拟合得最好的模型。测试分析方法也叫做系统辩识。 将这两种方法结合起来使用,即用机理分析方法建立模型的结构,用系统测试方法来确定模型的参数,也是常用的建模方法。 在实际过程中用那一种方法建模主要是根据我们对研究对象的了解程度和建模目的来决定。机理分析法建模的具体步骤大致如下: 1、实际问题通过抽象、简化、假设,确定变量、参数; 2、建立数学模型并数学、数值地求解、确定参数; 3、用实际问题的实测数据等来检验该数学模型; 4、符合实际,交付使用,从而可产生经济、社会效益;不符合实际,重新建模。 数学模型的分类: 1、按研究方法和对象的数学特征分:初等模型、几何模型、优化模型、微分方程模型、图论模型、逻辑模型、稳定性模型、统计模型等。 2、按研究对象的实际领域(或所属学科)分:人口模型、交通模型、环境模型、生态模型、生理模型、城镇规划模型、水资源模型、污染模型、经济模型、社会模型等。

建立数学模型的方法步骤特点及分类

§16.3 建立数学模型的方法、步骤、特点及分类 [学习目标] 1.能表述建立数学模型的方法、步骤; 2.能表述建立数学模型的逼真性、可行性、渐进性、强健性、可转移性、非预制性、条理 性、技艺性和局限性等特点;; 3.能表述数学建模的分类; 4.会采用灵活的表述方法建立数学模型; 5.培养建模的想象力和洞察力。 一、建立数学模型的方法和步骤 —般说来建立数学模型的方法大体上可分为两大类、一类是机理分析方法,一类是测试分析方法.机理分析是根据对现实对象特性的认识、分析其因果关系,找出反映内部机理的规律,建立的模型常有明确的物理或现实意义.§16.2节的示例都属于机理分析方法。测试分折将研究对象视为一个“黑箱”系统,内部机理无法直接寻求,可以测量系统的输人输出数据、并以此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个与数据拟合得最好的模型。这种方法称为系统辨识(System Identification).将这两种方法结合起来也是常用的建模方法。即用机理分析建立模型的结构,用系统辨识确定模型的参数. 可以看出,用上面的哪一类方法建模主要是根据我们对研究对象的了解程度和建模目的决定的.如果掌握了机理方面的一定知识,模型也要求具有反映内部特性的物理意义。那么应该以机理分析方法为主.当然,若需要模型参数的具体数值,还可以用系统辨识或其他统计方法得到.如果对象的内部机理基本上没掌握,模型也不用于分析内部特性,譬如仅用来做输出预报,则可以系统辩识方法为主.系统辨识是一门专门学科,需要一定的控制理论和随机过程方面的知识.以下所谓建模方法只指机理分析。 建模要经过哪些步骤并没有一定的模式,通常与实际问题的性质、建模的目的等有关,从§16.2节的几个例子也可以看出这点.下面给出建模的—般步骤,如图16-5所示. 图16-5 建模步骤示意图 模型准备首先要了解问题的实际背景,明确建模的目的搜集建模必需的各种信息如现象、数据等,尽量弄清对象的特征,由此初步确定用哪一类模型,总之是做好建模的准备工作.情况明才能方法对,这一步一定不能忽视,碰到问题要虚心向从事实际工作的同志请教,尽量掌握第一手资料. 模型假设根据对象的特征和建模的目的,对问题进行必要的、合理的简化,用精确的语言做出假设,可以说是建模的关键一步.一般地说,一个实际问题不经过简化假设就很难翻译成数学问题,即使可能,也很难求解.不同的简化假设会得到不同的模型.假设作得不合理或过份

一次函数解决问题专项练习

一次函数解决问题专项练习 1.甲、乙两人参加从A地到B地的长跑比赛,两人在比赛时所跑的路程y(米)与时间x (分钟)之间的函数关系如图所示,请你根据图象,回答下列问题: (1)(填“甲”或“乙”)先到达终点;甲的速度是米/分钟; (2)求:甲与乙相遇时,他们离A地多少米? 2.为营造书香家庭,周末小亮和姐姐一起从家出发去图书馆借书,走了6min发现忘带借书证,小亮立即骑路边共享单车返回家中取借书证,姐姐以原来的速度继续向前走,小亮取回借书证后骑单车原路原速前往图书馆,小亮追上姐姐后用单车带着姐姐一起前往图书馆.已知骑车的速度是步行速度的2倍,如图是小亮和姐姐距离家的路程y(m)与出发的时间x(min)的函数图象,根据图象解答下列问题: (1)小亮在家停留了多长时间? (2)求小亮骑车从家出发去图书馆时距家的路程y(m)与出发时间x(min)之间的函数解析式.

3.已知:甲乙两车分别从相距300千米的A、B两地同时出发相向而行,其中甲到达B地后立即返回,如图是甲乙两车离A地的距离y(千米)与行驶时间x(小时)之间的函数图象. (1)求甲车离A地的距离y甲(千米)与行驶时间x(小时)之间的函数关系式,并写出自变量的取值范围; (2)若它们出发第5小时,离各自出发地的距离相等,求乙车离A地的距离y乙(千米)与行驶时间x(小时)之间的函数关系式,并写出自变量的取值范围; (3)在(2)的条件下,求它们在行驶的过程中相遇的时间. 4.有A、B两个港口,水由A流向B,水流的速度是4千米/小时,甲、乙两船同时由A顺流驶向B,各自不停地在A、B之间往返航行,甲在静水中的速度是28千米/小时,乙在静水中的速度是20千米/小时. 设甲行驶的时间为t小时,甲船距B港口的距离为S1千米,乙船距B港口的距离为S2千米,如图为S1(千米)和t(小时)函数关系的部分图象. (1)A、B两港口距离是千米. (2)在图中画出乙船从出发到第一次返回A港口这段时间内,S2(千米)和t(小时)的函数关系的图象. (3)求甲、乙两船第二次(不算开始时甲、乙在A处的那一次)相遇点M位于A、B港口的什么位置?

函数图像应用题专题复习

函数图像应用题专题复习 一.一次函数应用题 1.“利民平价超市”以每件20元的价格进购一批商品,试销一阶段后发现,该商品每天的销 售量y (件)与售价x(元/件)之间的函数关系如右图:(20≤x ≤60): (1)求每天销售量y (件)与售价x(元/件)之间的函数表达式; (2)若该商品每天的利润为w (元),试确定w (元)与售价x (元/件)的函数表达式,并求售价x 为多少时,每天的利润 w 最大?最大利润是多少? 2.一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发, 设慢车行驶的时间为(h)x ,两车之间的距离....... 为(km)y ,图中的折线表示y 与x 之间的函数关系.根据图象进行以下探究: 信息读取:(1)甲、乙两地之间的距离为 km ; (2)请解释图中点B 的实际意义; 图象理解: (3)求慢车和快车的速度; (4)求线段BC 所表示的y 与x 问题解决: (5)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同.在第一列快车与慢车 相遇30分钟后,第二列快车与慢车相遇.求第二列快车比第一列快车晚出发多少小时? 解:(1)900;(2)图中点B 的实际意义是:当慢车行驶4h 时,慢车和快车相遇. (3)由图象可知,慢车12h 行驶的路程为900km ,所以慢车的速度为90075(km /h)12 ; 当慢车行驶4h 时,慢车和快车相遇,两车行驶的路程之和为900km ,所以慢车和快车行驶 y

的速度之和为 900225(km /h)4 =,所以快车的速度为150km/h . (4)根据题意,快车行驶900km 到达乙地,所以快车行驶9006(h)150=到达乙地,此时两车之间的距离为675450(km)?=,所以点C 的坐标为(6450),. 设线段BC 所表示的y 与x 之间的函数关系式为y kx b =+,把(40),,(6450),代入得 044506. k b k b =+??=+?,解得225900.k b =??=-?, ∴线段BC 所表示的y 与x 之间的函数关系式为225900y x =-.(46x ≤≤). (5)慢车与第一列快车相遇30分钟后与第二列快车相遇,此时,慢车的行驶时间是4.5h . 把 4.5x =代入225900y x =-,得112.5y =. 此时,慢车与第一列快车之间的距离等于两列快车之间的距离是112.5km ,所以两列快车出 发的间隔时间是112.51500.75(h)÷=,即第二列快车比第一列快车晚出发0.75h . 3. (2015年浙江)高铁的开通,给衢州市民出行带来了极大的方便. 五一期间,乐乐和颖 颖相约到杭州市的某游乐园游玩,乐乐乘私家车从衢州出发1小时后,颖颖乘高铁从衢州出 发,先到杭州火车东站,然后乘出租车去游乐园(换车时间忽略不计),两人恰好同时到达 游乐园.他们离开衢州的距离(千米)与乘车时间(小时)的关系如下图所示. 请结合图象解决下面问题:(1)高铁的平均速度是每小时多少千米? (2)当颖颖到达杭州火车东站时,乐乐距离游乐园还有多少千米? (3)若乐乐要提前18分钟到达游乐园,问私家车的速度必须达到多少千米/小时? 解:(1)∵, ∴高铁的平均速度是每小时240千米. (2)设乐乐乘私家车路线的解析式为, ∵当时,;当时,, ∴,解得 .∴乐乐乘私家车路线的解析式为.∴当时,. 设颖颖乘高铁路线的解析式为,∴,解得. y t 24024021 =-y kt b =+1t =0y =2t =240y =02240k b k b +=??+=?240240k b =??=-? 240240y t =- 1.5t =120y =1y k t =1120 1.5k =180k =

一次函数图象题(行程问题)提高篇

一次函数图象题(行程问题)提高篇 11.(2012武汉)甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y (米)与乙出发的时间t (秒)之间的关系如图所示,给出以下结论:①a=8;②b=92;③c=123.其中正确的是( ) A . ①②③ B . 仅有①② C . 仅有①③ D . 仅有②③ 考点:一次函数的应用。 解答:解:甲的速度为:8÷2=4米/秒; 乙的速度为:500÷100=5米/秒; b=5×100﹣4×(100+2)=92米; 5a ﹣4×(a+2)=0, 解得a=8, ! c=100+92÷4=123, ∴正确的有①②③. 1、在一次远足活动中,某班学生分成两组,第一组由甲地匀速步行到乙地后原路返回,第二组由甲地匀速步行经乙地继续前行到丙地后原路返回,两组同时出发,设步行的时间为t (h ),两组离乙地的距离分别为S 1(km )和S 2(km),图10中的折线分别表示S 1、S 2与t 之间的函数关系. (1)甲、乙两地之间的距离为 km ,乙、丙两地之间的距离为 km ; (2)求第二组由甲地出发首次到达乙地及由乙地到达丙地所用的时间分别是多少 (3)求图中线段AB 所表示的S 2与t 间的函数关系式,并写出自变量t 的取值范围. 《 2· 4· — 8· S(km) 2 0 t(h) A B

2、一辆客车从甲地开往甲地,一辆出租车从乙地开往甲地,两车同时出发,设 客车离甲地的距离为y1(km),出租车离甲地的距离为y2(km),客车行驶时间为x(h),y1,y2与x的函数关系图象如图12所示: ~ (1)根据图象,直接写出 ....y1,y2关于x的函数关系式。 (2)分别求出当x=3,x=5,x=8时,两车之间的距离。 (3)若设两车间的距离为S(km),请写出S关于x的函数关系式。 (4)甲、乙两地间有A、B两个加油站,相距200km,若客车进入A站加油时,出租车恰好进入B站加油。求A加油站到甲地的距离。 — 3、在一条直线上依次有A、B、C三个港口,甲、乙两船同时分别从A、B港口出发,沿直线匀速驶向C港,最终达到C港.设甲、乙两船行驶x(h)后,与.B. 港的距离 ....分别为1y、2y(km),1y、2y与x的函数关系如图所示. (1)填空:A、C两港口间的距离为km, a; (2)求图中点P的坐标,并解释该点坐标所表示的实际意义; (3)若两船的距离不超过10 km时能够相互望见,求甲、乙两船可以相互望见时x的取值范围. · - O y/km > 30 a P (第3题) x/h

八年级数学上册利用一次函数解决实际问题教案

教学设计 一、内容和内容解析 1.内容 利用一次函数解决实际问题. 2.内容解析 一次函数是最基本的初等函数之一,是学习后续各类函数的基础.一次函数的核心内容是一次函数的概念、图象和性质以及应用.一次函数的图象和性质的核心,是图象“特征”、函数“特征”以及它们之间相互转化关系,这也是一次函数的本质属性所在.一次函数图象和性质,本身就是“数”与“形”的统一体.通过对实际问题图象的研究和分析,可以确定函数本身的性质,体现了数形结合的思想方法. 本节课内容属于《义务教育数学课程标准(2011年版)》中的“数与代数”领域,是在已经学习了一次函数的图象和性质的基础上,由一个贴近学生生活的中国渔政执法视频开始,利用问题串的形式,用一次函数的相关知识来解决实际问题.在具体的探究过程中,先由分析图象开始,并由分析所得的信息解决相关的实际问题,再利用几何画板将图象进行变化,由此分析其操作的实际意义并衍生处两个新的问题,最终利用一次函数的知识解决这两个问题.在解决实际问题的过程中,体会运用一次函数解决实际问题的作用,初步体验建立函数模型的过程和方法. 基于以上分析,确定本节课的教学重点是:分析实际问题的图象,利用一次函数解决具体问题. 二、目标和目标解析 1.目标 (1)掌握并运用一次函数的图象和性质,体会数形结合思想和建立函数模型研究数学问题的基本方法. (2)通过对实际问题图象的分析,进一步加深对一次函数性质的理解. (3)能够从实际问题中抽象出一次函数关系,并运用一次函数及其性质解决实际问题,发展学生的应用意识. 2.目标解析 (1)从复习一次函数的图象和性质开始,不断渗透图象中k、b、交点坐标的实际意义,体会并利用数学结合的思想来解决问题。 (2)对于问题情境中给出的三个问题,以及衍生的两个变式,无一不是通过对函数图象的分析,结合一次函数的性质来解决。在这样的过程中,巩固对性质的理解。

用数学模型思想方法解决实际问题

用数学模型思想方法解决 初中数学实际应用问题 关键词: 数学模型难点策略 随着新课改的进步落实,素质教育全方位、深层次推进,数学学科要求学生具有较高的数学素质、数学意识和较强的数学应用能力。而数学实际应用问题具有这种考查功能。它不仅具有题材贴近生活,题型功能丰富,涉及知识面广等特点,而且其应用性、创造性及开放性的特征明显。新课标把探索培养学生应用数学知识和数学思想方法解决实际问题的能力已落实到各种版本的数学实验教材中去了。今天社会对数学教学提出更高要求,不仅要求培养出一批数学家,更要求培养出一大批善于应用数学知识和数学思想方法解决实际问题的各类人才。初中阶段是探索和培养各类数学人才的黄金时段,而把实际问题转化为数学问题又是绝大多数初中学生的难题,如果在教学中我们有意识地运用数学模型思想帮助学生克服和解决这一难题,那么学生就会摆脱实际应用问题的思想束缚,释放出学习和解决实际应用问题的强大动力,激活创造新思维的火花。 把实际问题转化为一个数学问题,通常称为数学模型。数学模型不同于一般的模型,它是用数学语言模拟现实的一种模型,也就是把一个实际问题中某些事物的主要特征,主要关系抽象成数学语言,近似地反映客观事物的内在联系与变化过程。建立数学模型的过程称为数学建模。它主要有以下三个步骤:①实际问题→数学模型;②数学模型→数学的解;③数学的解→实际问题的解。对初中学生来说,最关键最困惑的是第一步。 一、初中学生解决实际应用问题的难点 1.1、缺乏解决实际问题的信心 与纯数学问题相比,数学实际问题的文字叙述更加语言化,更加贴近现实生活,题目也比较长,数量也比较多,数量关系显得分散隐蔽。因此,面对一大堆非形式化的材料,许多学生常感到很茫然,不知如何下手,产生惧怕数学应用题的心理。具体表现在:在信息的吸收过程中,受应用题中提供信息的次序,过多的干扰语句的影响,许多学生读不懂题意只好放弃;在信息加工过程中,受学生自身阅读分析能力以及数学基础知识掌握程度的影响,许多学生缺乏把握应用题的整体数学结构,并对全立体结构的信息作分层面的线性剖析的能力。即使能读懂题意,也无法解题;在信息提炼过程中,受学生数学语言转换能力的影响,许多学生无法把实际问题与对应的数学模型联系起来,缺乏把实际问题转换成数学问题的转译能力。 数学建模问题是用数学知识和数学分法解决实际生活中各种各样的问题,是一种创造性的劳动,涉及到各种心理活动,心理学研究表明,良好的心理品质是创造性劳动的动力因素和基本条件,它主要包括以下要素:自觉的创新意识;强烈的好奇心和求知欲;积极稳定的情感;顽强的毅力和独立的个性;强烈而明确的价值观;有效的组织知识。许多学生由于不具备以上良好的心理品质因而对解决实际问题缺乏应有的信心。 1.2、对实际问题中一些名词术语感到生疏 由于数学应用题中往往有许多其他知识领域的名词术语,而学生从小到大一直生长在学校,与外界接触较少,对这些名词术语感到很陌生,不知其意,从而就无法读懂题,更无法正确理解题意,比如实际生活中的利率、利润、打折、保险金、保险费、纳税率、折旧率、移动电话的收费标准等概念,这些概念的基本意思都没搞懂。如果涉及到这些概念的实际问题就谈不上如何去理解了,更谈不上解决问题。例如:从2001年2月21日起,中国电信执行新的电话收费标准,其中本地网营业区内通话费是:前3分钟为0.2元(不足3分钟按3分钟计算),以后每分钟加收0.1元(不足1分钟按1分钟计算)。上星期天,一位同学调查了A、B、C、D、E五位同学某天打本地网营业区内电话

函数模型及其应用教案_00002

适用学科
高中数学
适用年级
高一
适用区域 苏教版区域
课时时长(分钟)
2 课时
知识点 几类不同增长的函数模型的特点、用已知函数模型解决实际问题、建立函数模型解决实际
问题
教学目标 利用计算工具,比较指数函数、对数函数以及幂函数增长差异;结合实例体会直线上升、
指数爆炸、对数增长等不同函数类型增长的含义;
了解社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等)的实
例。
教学重点 了解函数模型的广泛应用。
教学难点 了解函数模型的广泛应用。
【知识导图】
教学过程
一、导入
函数应用问题是高考的热点,高考对应用题的考察即考小题又考大题,而且分值呈上升 的趋势。高考中重视对环境保护及数学课外的的综合性应用题等的考察。出于“立意”和创 设情景的需要,函数试题设置问题的角度和方式也不断创新,重视函数思想的考察,加大函 数应用题、探索题、开放题和信息题的考察力度,从而使高考考题显得新颖、生动和灵活。
函数类应用题,是考察的重点,因而要认真准备应用题型、探索型和综合题型,加大训 练力度,重视关于函数的数学建模问题,学会用数学和方法寻求规律找出解题策略。
(1)题型多以大题出现,以实际问题为背景,通过解决数学问题的过程,解释问题; (2)题目涉及的函数多以基本初等函数为载体,通过它们的性质(单调性、极值和最 值等)来解释生活现象,主要涉计经济、环保、能源、健康等社会现象。
二、知识讲解
考点 1 解决实际问题的解题过程第 1 页

建立数学模型方法步骤特点及分类

建立数学模型的方法、步骤、特点及分类 [学习目标] 1.能表述建立数学模型的方法、步骤; 2.能表述建立数学模型的逼真性、可行性、渐进性、强健性、可转移性、非 预制性、条理性、技艺性和局限性等特点;; 3.能表述数学建模的分类; 4.会采用灵活的表述方法建立数学模型; 5.培养建模的想象力和洞察力。 一、建立数学模型的方法和步骤 —般说来建立数学模型的方法大体上可分为两大类、一类是机理分析方法,一类是测试分析方法.机理分析是根据对现实对象特性的认识、分析其因果关系,找出反映内部机理的规律,建立的模型常有明确的物理或现实意义.测试分折将研究对象视为一个“黑箱”系统,内部机理无法直接寻求,可以测量系统的输人输出数据、并以此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个与数据拟合得最好的模型。这种方法称为系统辨识(System Identification).将这两种方法结合起来也是常用的建模方法。即用机理分析建立模型的结构,用系统辨识确定模型的参数. 可以看出,用上面的哪一类方法建模主要是根据我们对研究对象的了解程度和建模目的决定的.如果掌握了机理方面的一定知识,模型也要求具有反映内部特性的物理意义。那么应该以机理分析方法为主.当然,若需要模型参数的具体数值,还可以用系统辨识或其他统计方法得到.如果对象的内部机理基本上没掌握,模型也不用于分析内部特性,譬如仅用来做输出预报,则可以系统辩识方法

为主.系统辨识是一门专门学科,需要一定的控制理论和随机过程方面的知识.以下所谓建模方法只指机理分析。 建模要经过哪些步骤并没有一定的模式,通常与实际问题的性质、建模的目的等有关,从 §16.2节的几个例子也可以看出这点.下面给出建模的—般步骤,如图16-5所示. 图16-5 建模步骤示意图 模型准备首先要了解问题的实际背景,明确建模的目的搜集建模必需的各种信息如现象、数据等,尽量弄清对象的特征,由此初步确定用哪一类模型,总之是做好建模的准备工作.情况明才能方法对,这一步一定不能忽视,碰到问题要虚心向从事实际工作的同志请教,尽量掌握第一手资料. 模型假设根据对象的特征和建模的目的,对问题进行必要的、合理的简化,用精确的语言做出假设,可以说是建模的关键一步.一般地说,一个实际问题不经过简化假设就很难翻译成数学问题,即使可能,也很难求解.不同的简化假设会得到不同的模型.假设作得不合理或过份简单,会导致模型失败或部分失败,于是应该修改和补充假设;假设作得过分详细,试图把复杂对象的各方面因素都考虑进去,可能使你很难甚至无法继续下一步的工作.通常,作假设的依据,一是出于对问题内在规律的认识,二是来自对数据或现象的分析,也可以是二者的综合.作假设时既要运用与问题相关的物理、化学、生物、经济等方面的知识,又要充分发挥想象力、洞察力和判断力,善于辨别问题的主次,果断地抓住主要因素,舍弃次要因素,尽量将问题线性化、均匀化.经验在这里也常起重要作用.写出假设时,语言要精确,就象做习题时写出已知条件那样.

利用两个一次函数的图像解决问题

第四章一次函数 利用两个一次函数的图像解决问题 一、学生起点分析 在前几节课,学生已经分别学习了一次函数,一次函数的图象,一次函数图象的特征,并且了解到一次函数的应用十分广泛.在此基础上,通过生活中的实际问题进一步探讨一次函数图象的应用. 二、教学任务分析 本节课是北师大版义务教育教科书八年级(上)第四章《一次函数》第四节的第3课时,主要是利用两个一次函数的图象解决一些生活中的实际问题.和前一课时一样,教科书注重从函数图象中获取信息从而解决具体问题,关注数形结合思想的揭示,关注形象思维能力的发展,同时,这为今后学习用图象法解二元一次方程组打下基础. 教学目标 1.进一步训练学生的识图能力,能通过函数图象获取信息,解决简单的实际问题; 2.在函数图象信息获取过程中,进一步培养学生的数形结合意识,发展形象思维; 3.在解决实际问题过程中,进一步发展学生的分析问题、解决问题的能力和数学应用意识. 4.在现实问题的解决中,使学生初步认识数学与人类生活的密切联系,从而培养学生学习数学的兴趣. 教学重点 一次函数图象的应用 教学难点 从函数图象中正确读取信息 三、教法学法 1.教学方法:“问题情境—建立模型—应用与拓展” 2.课前准备: 教具:教材,课件,电脑 学具:教材,练习本,铅笔,直尺 四、教学过程: 本节课设计了五个环节:第一环节:情境引入;第二环节:问题解决;第三环节:反馈练习;第四环节:课时小结;第五环节:作业布置. 第一环节:情境引入

内容:一农民带上若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用, 按市场价售出一些后,又降价出售,售出的土豆千克 数与他手中持有的钱数(含备用零钱)的关系,如图所 示,结合图象回答下列问题. (1)农民自带的零钱是多少? (2)试求降价前 y 与 x 之间的关系 (3)由表达式你能求出降价前每千克的土豆价格是多 少? (4)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,试问他一共带了多少千克土豆? 活动目的:通过与上一课时相似的问题,回顾旧知,导入新知学习。 活动效果:由于问题与上一课时问题相近,学生很快明确并解决了问题。 第二环节:问题解决 内容1:例1 小聪和小慧去某风景区游览,约好在“飞瀑”见 面,上午7:00小聪乘电动汽车从“古刹”出发, 沿景区公路去“飞瀑”,车速为 36km /h ,小慧 也于上午7:00从“塔林”出发,骑电动自行车 沿景区公路去“飞瀑”,车速为26km /h . (1)当小聪追上小慧时,他们是否已经过了“草 甸”? (2)当小聪到达“飞瀑”时,小慧离“飞瀑” 还有多少千米? 分析: 当小聪追上小慧时,说明他们两个人的什么量是相同的?是否已经过了“草甸”该用什么量来表示?你会选择用哪种方式来解决?图象法?还是解析法? 解:设经过t 时,小聪与小慧离“古刹”的路程分别为1S 、2S , 由题意得:t S 361=,10262+=t S 将这两个函数解析式画在同一个直角坐标系上,观察图象,得 ⑴两条直线t S 361= ,10262+=t S 的交点坐标为(1,36) 这说明当小聪追上小慧时,1236km S S ==,即离“古刹”36km ,已超过35km ,也就是说,他们已经过了“草甸” ⑵当小聪到达“飞瀑”时,即145km S =,此时242.5km S = . 所以小慧离“飞瀑”还有45-42.5=2.5(km )

利用一次函数图象解决实际问题专项训练(含答案)

一次函数专项训练 专训1.一次函数的两种常见应用 名师点金: 一次函数的两种常见应用主要体现在解决实际问题和几何问题.能够从函数图象中得到需要的信息,并求出函数解析式从而解决实际问题和几何问题,是一次函数应用价值的体现,这种题型常与一些热点问题结合,考查学生综合分析问题、解决问题的能力.利用函数图象解决实际问题 题型1行程问题 (第1题) 1.甲、乙两车从A城出发匀速行驶至B城,在整个行驶过程中,甲、乙两车离开A城的距离y(km)与甲车行驶的时间t(h)之间的函数关系如图所示,则下列结论 ①A,B两城相距300 km; ②乙车比甲车晚出发1 h,却早到1 h; ③乙车出发后2.5 h追上甲车; ④当甲、乙两车相距50 km时,t=5 4 或 15 4 . 其中正确的结论有( ) A.1个B.2个C.3个D.4个

2.甲、乙两地相距300 km,一辆货车和一辆轿车先后从甲地出发驶向乙地.如图,线段OA表示货车离甲地的距离y(km)与时间x(h)之间的函数关系,折线BCDE表示轿车离甲地的距离y(km)与时间x(h)之间的函数关系,根据图象,解答下列问题: (1)线段CD表示轿车在途中停留了________h; (2)求线段DE对应的函数解析式; (3)求轿车从甲地出发后经过多长时间追上货车. (第2题) 题型2工程问题 3.甲、乙两组工人同时加工某种零件,乙组在工作中有一段时间停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y(件)与时间x(h)之间的函数图象如图所示. (1)求甲组加工零件的数量y与时间x之间的函数解析式. (2)求乙组加工零件总量a的值. (3)甲、乙两组加工出的零件合在一起装箱,每够300件装一箱,零件装箱的时间忽略不计,经过多长时间恰好装满第1箱?再经过多长时间恰好装满第2箱?

构建数学模型 解决生活中的实际问题

构建数学模型解决生活中的实际问题 青州市王府街道刘井小学邢文谦 每次听课对我的课堂教学都有一个新的提升,今天我听了本校教师刘老师的“相遇问题”这节课,我有一种新的感觉是老师引导的太到位了,从学生的生活实际出发,创设与学生的日常生活紧密联系的上学情境,且采用动画形式呈现,学生在现实而有趣的情境吸引下,主动发现问题、提出问题,进而提炼生成完整的数学问题、解决问题,帮助学生构建起“相遇问题的情景模型”。通过观课学习和根据自己的教学实践浅谈一下如何帮助学生构建数学模型: 第一,应激发学生学习数学的兴趣。学生在实际的操作过程中,必须考虑这些背景材料学生是否熟悉,学生是否对这些背景材料感兴趣。只有对实际原形有充分的了解,明确原型的特征,只有做到这一点,才能使学生对实际问题进行简化。从而培养学生对事物的观察和分辨能力,增强学生的数学意识。结合学生的生活实际,把学生所熟悉的或了解的一些生活实例作为应用题教学的问题背景,这样既克服了教材的不足,又对问题背景有一个详实的了解,这不但有利于学生对实际问题的简化,而且能提高学生的数学应用意识。 第二,要让学生参与数学模型的建立形成过程。数学模型的建立过程中教师要善于调动学生主动建模的积极性,千万不能对学生的不合理的归纳或不恰当的抽象,以及不合常情的假设加以批评和指责,恰恰相反要抓住他们闪光的地方加以表扬、鼓励,并通过适度的引导和点拨使学生对实际问题的简化更加清楚。 总之,我们要提供实际问题不同层面学生对数模的理解,问题的难易是有层次。例如基本练习,拓展练习和延伸练习。在本节相遇问题的课例中,刘老师通过三个层次的练习:基本练习,拓展练习和延伸练习。让学生将相遇问题的解题策略和解题经验进行迁移,解决生活中简单的实际问题,体会数学与生活的密切联系,获得数学学习的积极情感体验。

建立函数模型的常用方法

建立函数模型的常用方法 函数是重要的数学模型,对于函数模型的应用,一方面是利用已知的函数模型解决问题,另一方面是建立恰当的函数模型,并利用所得的函数模型解释有关现象,对此发展趋势进行预测,下面对建立函数模型解决实际问题常用的方法举例说明。 一、列表法 例1、某服装厂每天生产童装200套或西服50套,已知每生产一套童装需成本40元, 可获得利润22元;每生产一套西服需成本150元,可获得利润80元;已知该厂每月成本支出不超过23万元,为使赢利尽量大,若每月按30天计算,应安排生产童装和西服各多少天?(天数为整数),并求出最大利润。 分析:通过阅读、审题找出此问题的主要关系(目标与条件的关系),即“生产童装与西服的天数”决定了“利润”,所以将生产童装的参数变量设为x 天,则生产西服的天数为(30-x )天,于是每项利润即可表示了。在把“问题情景”译为“数学语言”时,为便于数据处理,运用表格或图形处理数据,有利于寻找数量关系。 解:设生产童装的天数为x 天,则生产西服的天数为(30-x )天,从而建立总利润模型为:y =22×200x +80×50(30-x ),化简得有=400x +120000,同时注意到每月成本支出不超过23万元,据此可得40×200x +150×50(30-x )≤230000,从中求出x 的取值范围为100≤≤x ,且x 为正整数,显然当x =10时赢利最大,最大利润124000max =y 元。 点评:现实生活中很多事例可以用一次函数知识和方法建模解决,对一次函数来说,当一次项系数为正时,表现为匀速增长,即为增函数,一次项系数为负时,为减函数。 二、拟合法 例2、某地西红柿从2月1日起上市,通过市场调查得到西红柿种植成本Q (单位:元/2 10kg )与上市时间t (单位:天)的数据如下表: 根据上表数据,从下列函数中选取一个函数描述西红柿种植成本Q 与上市时间t 的变化关 系:(1)b at Q +=;(2)c bt at Q ++=2;(3)t b a Q ?=;(4)t a Q b log ?= 利用你选取的函数,求西红柿种植成本最低时的上市天数及最低种植成本。 解:(1)由提供的数据知道,描述西红柿种植成本Q 与上市时间t 的变化关系的函数不可 能是常数函数,从而用函数b at Q +=; t b a Q ?=; t a Q b log ?=中的任意一个进行描 述时都应有0a ≠,而此时上述三个函数均为单调函数,这与表格所提供的数据不吻合,所

八年级数学一次函数图象题(行程问题)

八年级数学一次函数图象题(行程问题) 1.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,给出以下结论:①a=8;②b=92;③c=123.其中正确的是()A.①②③B、仅有①②C.仅有①③D.仅有②③ 2、甲、乙两车同时从A地出发,以各自的速度匀速向B地行驶.甲车先到达B地,停留1小时后按原路以另一速度匀速返回,直到两车相遇.乙车的速度为每小时60千米.上图2是两车之间的距离y(千米)与乙车行驶时间x(小时)之间的函数图象. (1)请将图中的()内填上正确的值,并直接写出甲车从A到B的行驶速度; (2)求从甲车返回到与乙车相遇过程中y与x之间的函数关系式,并写出自变量x的取值范围.(3)求出甲车返回时行驶速度及A、B两地的距离.

3.甲船从A 港出发顺流匀速驶向B 港,行至某处,发现船上一救生圈不知何时落入水中,立刻原路返回,找到救生圈后,继续顺流驶向B 港.乙船从B 港出发逆流匀速驶向A 港.已知救生圈漂流的速度和水流速度相同;甲、乙两船在静水中的速度相同.甲、乙两船到A 港的距离y 1、y 2(km )与行驶时间x (h )之间的函数图象如图所示. (1)写出乙船在逆流中行驶的速度. (2)求甲船在逆流中行驶的路程. (3)求甲船到A 港的距离y 1与行驶时间x 之间的函数关系式. (4)求救生圈落入水中时,甲船到A 港的距离. 4、某市接到上级通知,立即派出甲、乙两个抗震救灾小组乘车沿同一路线赶赴距出发点480千米的灾区.乙组由于要携带一些救灾物资,比甲组迟出发1.25小时(从甲组出发时开始计时).图中的折线、线段分别表示甲、乙两组的所走路程y 甲(千米)、y 乙(千米)与时间x (小时)之间的函数关系对应的图像.请根据图像所提供的信息,解决下列问题: (1)由于汽车发生故障,甲组在途中停留了 小时; (2)甲组的汽车排除故障后,立即提速赶往灾区.请问甲组的汽车在排除故障时,距出发点的路程是多少千米?(3)为了保证及时联络,甲、乙两组在第一次相遇时约定此后两车之间的路程不超过25千米,请通过计算说明,按图像所表示的走法是否符合约定.

数学人教版八年级下册利用函数图像解决实际问题

19.1.2函数的图象 第1课时函数的图象 教学目标1.理解函数图象的意义; 2.能够结合实际情境,从函数图象中获取信息并处理信息.教学重点:理解函数图象的意义 教学难点:能够结合实际情境,从函数图象中获取信息并处理信息. 教学过程 下图是自动测温仪记录的图象,它反映了北京春季某天气温T如何随时间t 变化而变化,你从图象中得到了哪些信息 气温T是时间t的函数 (1)最低、最高温度分别是多少? (2)哪些时段温度呈下降状态?上升状态呢? (3)我们可以从图象中看出这一天中任一时刻的气温大约是多少吗? (4)如果长期观察这样的气温图象,我们能总结出气温的变化规律吗? 例1 下图表示一辆汽车的速度随时间变化的情况:

①汽车行驶了多长时间?它的最高时速是多少? ②汽车在哪些时间段保持匀速行驶?时速分别是多少? ③出发后8分到10分之间可能发生了什么情况? ④用自己的语言大致描述这辆汽车的行驶情况. 例2小明骑单车上学,当他骑了一段时,想起要买某本书,于是又折回到刚经过的新华书店,买到书后继续去学校,以下是他本次所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题: (1)小明家到学校的路程是多少米? (2)小明在书店停留了多少分钟? (3)本次上学途中,小明一共行驶了多少米?一共用了多少分钟? (4)我们认为骑单车的速度超过300米/分就超越了安全限度.问:在整个上学的途中哪个时间段小明骑车速度最快,速度在安全限度内吗? 解析:根据图象进行分析即可. 解:(1)根据图象,学校的纵坐标为1500,小明家的纵坐标为0,故小明家到学校的路程是1500米; (2)根据题意,小明在书店停留的时间为从8分钟到12分钟,故小明在书店停留了4分钟; (3)一共行驶的总路程为1200+(1200-600)+(1500-600)=1200+600+900=2700(米);共用了14分钟; (4)由图象可知:0~6分钟时,平均速度为1200 6=200(米/分);6~8分钟时, 平均速度为1200-600 8-6 =300(米/分);12~14分钟时,平均速度为 1500-600 14-12 = 450(米/分).所以,12~14分钟时小明骑车速度最快,不在安全限度内.

构建数学模型解决实际问题

构建数学模型解决实际问题 “能够运用所学知识解决简单的实际问题”是九年义务教育数学教学大纲规定的初中数学教学目的之一。能够解决实际问题是学习数学知识、形成技能和发展能力的结果,也是对获得知识、技能和能力的检验。构建数学模型解决实际问题基本程序如下: 解题步骤如下: 1、阅读、审题: 要做到简缩问题,删掉次要语句,深入理解关键字句;为便于数据处理,最好运用表格(或图形)处理数据,便于寻找数量关系。 2、建模: 将问题简单化、符号化,尽量借鉴标准形式,建立数学关系式。 3、合理求解纯数学问题 4、解释并回答实际问题 一、方程模型 例:小刚为书房买灯,现有两种灯可供选购,其中一种是9瓦(即0.009千瓦)的节能灯,售价49元/盏;另一种是40瓦(即0.04千瓦)的白炽灯,售价为18元/盏。假设两种灯的照明亮度一样,使用寿命都可以达到2800小时,已知小刚家所在地的电价是每千瓦0.5元。 ⑴设照明时间是x小时,请用含x的代数式分别表示用一盏节能灯的费用和用一盏白炽灯的费用(注:费用=灯的售价+电费) ⑵小刚想在这两种灯中选购一盏: ①当照明时间是多少时,使用两种灯的费用一样多; ②试用特殊值推断: 照明时间在什么范围内,选用白炽灯费用低; 照明时间在什么范围内,选用节能灯费用低; ⑶小刚想在这两种灯中选购两盏

假定照明时间是3000小时,使用寿命都是2800小时,请你帮他设计费用最低的选灯方案,并说明理由。 解:(1)用一盏节能灯的费用是(49+0.0045x)元, 用一盏白炽灯的费用是(18+0.02x)元. (2)①由题意,得49+0.0045x=18+0.02x ,解得x=2000, 所以当照明时间是2000小时时,两种灯的费用一样多. ②取特殊值x=1500小时, 则用一盏节能灯的费用是49+0.0045×1500=55.75(元), 用一盏白炽灯的费用是18+0.02×1500=48(元), 所以当照明时间小于2000小时时,选用白炽灯费用低; 取特殊值x=2500小时, 则用一盏节能灯的费用是49+0.0045×2500=60.25(元), 用一盏白炽灯的费用是18+0.02×2500=68(元), 所以当照明时间超过2000小时时,选用节能灯费用低. (3)分下列三种情况讨论: ①如果选用两盏节能灯,则费用是98+0.0045×3000=111.5元; ②如果选用两盏白炽灯,则费用是36+0.02×3000=96元; ③如果选用一盏节能灯和一盏白炽灯,由(2)可知,当照明时间大于2000小时时,用节能灯比白炽灯费用低,所以节能灯用足2800小时时,费用最低. 费用是67+0.0045×2800+0.02×200=83.6元 综上所述,应各选用一盏灯,且节能灯使用2800小时,白炽灯使用200小时时,费用最低. 变式1:某出租汽车公司有出租车100辆,平均每天每车消耗的汽油费为80元,为了减少环境污染,市场推出一种叫“CNG ”的改烧汽油为天然汽的装置,每辆车改装价格为4000元。公司第一次改装了部分车辆 后核算:已改装后的车辆每天的燃料费占剩下末改装车辆每天燃料费用的 20 3 ,公司第二次再改装同样多的车辆后,所有改装后的车辆每天的燃料费占剩下末改装车辆每天燃料费用的5 2 。问: (1)公司共改装了多少辆出租车?改装后的每辆出租车平均每天的燃料费比改装前的燃料费下降了百分之多少? (2)若公司一次性将全部出租车改装,多少天后就可以从节省的燃料费中收回成本? 解:(1)设公司第一次改装了y 辆车,改装后的每辆出租车每天的燃料费比改装前的燃料费下降的百分数为x

建立函数模型,解决实际问题

建立函数模型,解决实际问题 建立函数模型解决实际决策型问题是实践性,创新性很强的命题亮点,其解题步骤一般如下: 由实际问题???????→分析抽象转化数学模型(如函数等)???→?推理演算 解答数学问题 ??→?校验回归实际问题。 一、建立一次函数模型 例1.鞋子的“鞋码”y 与鞋长x (cm )存在一次函数的关系,下表是几组“鞋码”与鞋长的对应数值: (1(2)如果你需要的鞋长为26cm ,那么应该买多大码的鞋? 【命题意图】本题旨在考查根据表格提供的数据,利用待定系数法建立一次函数(模型)关系,然后用所求的函数关系(模型)解决问题。 【思路点拔】可先设一次函数解析式为:y =k x +b ,根据表中所提供的数据,取两组值分别代入解析式中的x 与y 得到方程组,解方程组即可求出函数解析式 解:(1)设y =k x +b ,则由题意,得 ???+=+=b k b k 19281622,解得:? ??-==102b k , ∴ y =2x -10; (2)当x =26时,y =2×26-10=42 答:应该买42码的鞋。 二、建立反比例函数模型 例2.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P (千帕)是气球体积V (米3 )的反比例函数,其图象如图所示(千帕是一种压强单位). (1)写出这个函数的解析式; (2)当气球的体积是0.8立方米时,气球内的气压是多少千帕? (3)当气球内的气压大于144千帕时,气球将爆炸,为了安全起见,气球的体积应不少于多少立方米? 【命题意图】本题旨在考查根据图象(点的坐标),利用待定系数法确定反比例函数关系(模型),然后用所求的函数关系(模型)解决问题。 【思路点拔】由图象中A 点的坐标求得反比例函数解析式;对于(3),可利用反比例函数的性质,先求出气压是144千帕时对应的体积,再分析出气球的体积应不小于多少. 解:(1)设此反比例函数为)0(≠=k V k p . 由图象知反比例函数的图象经过点A (1.5,64), ∴5 .164k =,∴k=96. 故此函数的解析式为V p 96=; (2)当V=0.8时,1208.09696===V p (千帕);

相关文档
最新文档