第2课时 第二章有理数及其运算

合集下载

永州市第三中学七年级数学上册第二章有理数及其运算2.7有理数的乘法第2课时有理数乘法的运算律教学设计

永州市第三中学七年级数学上册第二章有理数及其运算2.7有理数的乘法第2课时有理数乘法的运算律教学设计

有理数乘法的运算律1教学目标1.经历探索有理数乘法运算律的过程,理解有理数乘法运算律. 2.能熟练运用有理数乘法运算律简化运算. 教学过程 一、情境导入中央电视台的“开心辞典”栏目,有一个“快算二十四”的趣味题,现在给出1~13之间四个自然数,将这四个数(只能用一次)进行加、减、乘、除运算,可加括号,使其结果等于24,如:对1、2、3、4可作运算“(1+2+3)×4=24”或“1×2×3×4=24”.现有四个有理数3、4、-6、10,你能运用上述规则写出两种不同的算式,使其结果等于24吗? 二、合作探究探究点一:运用有理数的乘法运算律简化运算计算: (1)(12-57-25)×70;(2)(-2)×(-127)×(-212)×79.解析:(1)可用乘法对加法的分配律来简化计算;(2)可以利用乘法的交换律和结合律来简化计算.解:(1)原式=12×70-57×70-25×70=35-50-28=-43;(2)原式=-(2×52×97×79)=-5.方法总结:运用乘法交换律或结合律时要考虑能约分的、凑整的和互为倒数的数,要尽可能地把它们结合在一起;利用乘法分配律计算时,要注意符号,以免发生错误. 探究点二:逆用乘法对加法的分配律计算:3.94×(-47)+2.41×(-47)-6.35×(-47).解析:逆用乘法对加法的分配律可简化计算.解:原式=(-47)×(3.94+2.41-6.35)=(-47)×0=0.方法总结:如果按照先算乘法,再算加减,则运算较繁琐,且符号容易出错,但如果逆用乘法对加法的分配律,则可使运算简便. 探究点三:有理数乘法的运算律的实际应用甲、乙两地相距480千米,一辆汽车从甲地开往乙地,已经行驶了全程的13,再行驶多少千米就可以到达中点?解析:把两地间的距离看作单位“1”,中点即全程12处,根据题意用乘法分别求出480千米的12和13,再求差.解:480×12-480×13=480×(12-13)=80(千米).答:再行80千米就可以到达中点.方法总结:解答本题的关键是根据题意列出算式,然后根据乘法的分配律进行简便计算.教学反思新课程理念要求把学生“学”数学放在教师“教”之前,“导学”是教学的重点.因此,在本节课的教学中,不要直接将结论告诉学生,而是引导学生从大量的实例中寻找解决问题的规律.学生经历积极探索知识的形成过程,最后总结得出有理数乘法的运算律.整个教学过程要让学生积极参与,独立思考和合作探究相结合,教师适当点评,以达到预期的教学效果.第2课时方位角理解方位角的意义,掌握方位角的辨别与应用.方位角的判别与应用.一、创设情境,导入新课海上缉私艇发现离它500海里处停着一艘可疑船只,现请你确定缉私艇的航线,画出示意图.A·可疑船B·缉私艇先分组讨论,再由各组代表上台在黑板上展示并描述本组讨论的路线图.二、探究新知师:在航行、测绘等工作以及生活中,我们经常会碰到上述类似的问题,即如何描述一个物体的方位.让学生回忆学过的描述方法,师生共同探讨解决问题的规律.方位的表示通常用“北偏东多少度”“北偏西多少度”或者“南偏东多少度”“南偏西多少度”来表示.“北偏东45°”“北偏西45°”或者“南偏东45°”“南偏西45°”,分别称为“东北方向”“西北方向”“东南方向”“西南方向”.三、巩固新知教师出示教材例4.学生讨论后交流完成,然后师生共同在黑板上画出图形,教师注意讲解过程中要给学生明确思路和方法.说明:先任选一点作为当前货轮的位置,然后依据题意再用量角器画射线,要注意两点:一是先从正南或正北方向作角的始边;二要分清东南西北,理解偏东、偏西的意义.巩固练习灯塔A在灯塔B的南偏西60°,A,B两灯塔相距20海里,现有一艘轮船C在灯塔B 的正北方向、灯塔A的北偏东30°方向.试画图确定轮船的位置.(每10海里用1厘米长的线段表示)学生讨论交流,然后独立完成,教师注意巡视指导,看一看,学生是否掌握例4当中的方法,同时本题中又增加一定的难度,使学生体会测量也是数学求值的一种手段.四、小结与作业小结:谈谈本节课的收获.作业:习题4.3第8,12题.对于方位角的确定理解和掌握,难度不大,但也需要注意一些小的细节方面,如:有一些学生容易忘记方位角度的确定必须以正北或正南方向为角的始边.本课创设了确定船只方位问题情境,在教学中,利用图片可以活动的特点,通过不断地改变可疑船只的位置,既可让学生描述不同方向的物体的方位,又可增强数学学习的趣味性,为学生营造一个自主学习、主动发展的广阔空间.乘法公式(2)教学设计思想因为乘法公式实际上是整式乘法的特殊情况,因此,呈现方式是直接推演.所以本节教学过程以学生做自主活动为主线来组织,根据学生的探究情况补充讲解.乘法公式有平方差公式和完全平方公式两部分,本节课讲解完全平方公式.首先让学生自编几道符合平方差公式结构的计算题,目的是辨认题目的结构特征.然后引入完全平方公式,让学生用文字概括公式的内容,培养抽象的数字思维能力.接着从几何背景更为形象地认识两数和的平方公式,最后举例分析如何正确使用完全平方公式,适时练习并总结,从实践到理论再回到实践,以指导今后的解题.教学目标知识与技能:1.熟记完全平方公式,并能说出它的几何背景2.会运用公式进行简单的乘法运算3.提高进一步地掌握、灵活运用公式的能力过程与方法:1.经历对完全平方公式的探索和推导,进一步发展符号(字母)的识别运用能力和推理能力2.通过对公式的推导及理解,养成思维严密的习惯情感态度价值观:感知数学公式的结构美、和谐美,在灵活运用中体验数学的乐趣二、学法引导1.教学方法:学生探索与老师讲解相结合.重点·难点及解决办法重点:会推导完全平方公式,并能运用公式进行简单的计算难点:掌握完全平方公式的结构特征,理解字母表示的广泛含义.教具学具准备投影仪或电脑、自制胶片.教学过程设计看谁算得快(1)(x+2)(x+2)(2)(1+3a)(1+3a)(3)(-x+5y)(-x+5y)(4)(-m-n)(-m-n)相乘的两个多项式的项有什么特点?它们相乘的结果又有什么规律?引例:计算,学生活动:计算,,两名学生板演,其他学生在练习本上完成,然后说出答案,得出公式.或合并为:教师引导学生用文字概括公式.方法:由学生概括,教师给予肯定、否定或更正,同时板书.两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍.【教法说明】看谁算得快部分,一是复习乘法公式,二是找规律,总结完全平方公式特征.证明:(a-b)2=[a+(-b)]2=a2+2a(-b)+(-b)2=a2-2ab+b2公式特征:(1)积为二次三项式;(2)积中两项为两数的平方和;(3)另一项是两数积的2倍,且与乘式中间的符号相同.(4)公式中的字母a,b可以表示数,单项式和多项式1.首平方,尾平方,积的2倍放中央.2.结合图形,理解公式根据图形完成下列问题:如图:A.B两图均为正方形,(1)图A中正方形的面积为 ___________,(用代数式表示)图Ⅰ、Ⅱ、Ⅲ、Ⅳ的面积分别为___________.(2)图B中,正方形的面积为 ___________Ⅲ的面积为 ______________,Ⅰ、Ⅱ、Ⅳ的面积和为 ______________,用B.Ⅰ、Ⅱ、Ⅳ的面积表示Ⅲ的面积 ___________.分别得出结论:学生活动:在教师引导下回答问题.【教法说明】利用图形讲解,增强学生对公式的直观理解,以便更好地掌握公式,同时也培养学生数形结合的数学思想.3.例题(1)引例:计算教师讲解:在中,把x看成a,把3y看成b,则就可用完全平方公式来计算,即【教法说明】引例的目的在于使学生进一步理解公式的结构,为运用公式打好基础.(2)例2 运用完全平方公式计算:(2);(3)学生活动:学生独立在练习本上尝试解题,2个学生板演.【教法说明】让学生先模仿公式解题,学生可能会出现一些问题,这也正是学生对公式理解、应用和熟练程度上存在的需要解决的问题,反馈后要紧扣公式,重点讲解,达到解决问题的目的,关于例2中(3)的计算,可对照公式直接计算,也可变形成,然后再进行计算,同时也可训练学生灵活运用学过的知识的能力.(3)(补充)例3 你觉得怎样做简单:① 102²② 99²思考(a+b)²与(-a-b)²相等吗?(a-b)²与(b-a)²相等吗?(a-b)²与a²-b²相等吗?为什么?4.尝试反馈,巩固知识练习一(P90)学生活动:学生在练习本上完成,然后同学互评,教师抽看结果,练习中存在的共性问题要集中解决.5.变式训练,培养能力练习二运用完全平方公式计算:(l)(2)(3)(4)学生活动:学生分组讨论,选代表解答.练习三(1)有甲、乙、丙、丁四名同学,共同计算,以下是他们的计算过程,请判断他们的计算是否正确,不正确的请指出错在哪里.甲的计算过程是:原式乙的计算过程是:原式丙的计算过程是:原式丁的计算过程是:原式(2)想一想,与相等吗?为什么?与相等吗?为什么?学生活动:观察、思考后,回答问题.【教法说明】练习二是一组数字计算题,使学生体会到公式的用途,也可以激发学生学习兴趣,调动学生的学习积极性,同时也起到加深理解公式的作用.练习三第(l)题实际是课本例4,此题是与平方差公式的综合运用,难度较大.通过给出解题步骤,让学生进行判断,使难度降低,学生易于理解,教师要注意引导学生分析这类题的结构特征,掌握解题方法.通过完成第(2)题使学生进一步理解与之间的相等关系,同时加深理解代数中“a”具有的广泛意义.7.总结、扩展⑴学习了完全平方公式.⑵引导学生举例说明公式的结构特征,公式中字母含义和运用公式时应该注意的问题.8.布置作业P91 A组 1,4,59.板书设计乘法公式(2)做一做几何背景引例1 例2(图)平方差公式:探究结果学生板演注意事项。

第二章 有理数的运算 考点2 有理数的减法(解析版)

第二章 有理数的运算   考点2 有理数的减法(解析版)

第二章有理数的运算(解析板)2、有理数的减法知识点梳理有理数的减法(1)有理数减法法则:减去一个数,等于加上这个数的相反数.即:a﹣b=a+(﹣b)(2)方法指引:①在进行减法运算时,首先弄清减数的符号;②将有理数转化为加法时,要同时改变两个符号:一是运算符号(减号变加号);二是减数的性质符号(减数变相反数);【注意】:在有理数减法运算时,被减数与减数的位置不能随意交换;因为减法没有交换律.减法法则不能与加法法则类比,0加任何数都不变,0减任何数应依法则进行计算同步练习一.选择题(共14小题)1.有理数a、b在数轴上的对应的位置如图所示,则()A.a+b<0B.a+b>0C.a﹣b=0D.a﹣b>0【考点】数轴;有理数的加法;有理数的减法.【分析】先根据数轴判断出a、b的正负情况,以及绝对值的大小,然后对各选项分析后利用排除法求解.【解答】解:根据图形可得:a<﹣1,0<b<1,∴|a|>|b|,A、a+b<0,故A选项正确;B、a+b>0,故B选项错误;C、a﹣b<0,故C选项错误;D、a﹣b<0,故D选项错误.故选:A.【点评】本题考查了有理数的加法、减法,根据数轴判断出a、b的情况,以及绝对值的大小是解题的关键.2.某地一天的最高气温是8℃,最低气温是﹣2℃,则该地这天的温差是()A.10℃B.﹣10℃C.6℃D.﹣6℃【考点】有理数的减法.【分析】根据题意算式,计算即可得到结果.【解答】解:根据题意得:8﹣(﹣2)=8+2=10,则该地这天的温差是10℃,故选:A.【点评】此题考查了有理数的减法,熟练掌握减法法则是解本题的关键.3.比﹣1小2的数是()A.3B.1C.﹣2D.﹣3【考点】有理数的减法.【分析】根据题意可得算式,再计算即可.【解答】解:﹣1﹣2=﹣3,故选:D.【点评】此题主要考查了有理数的减法,关键是掌握减去一个数,等于加上这个数的相反数.4.计算﹣﹣(﹣)的结果为()A.﹣B.C.﹣D.【考点】有理数的减法.【分析】根据有理数的减法法则计算即可.【解答】解:﹣﹣(﹣)==﹣.故选:A.【点评】本题主要考查了有理数的减法,熟记运算法则是解答本题的关键.减去一个数,等于加上这个数的相反数.5.我市2018年的最高气温为39℃,最低气温为零下7℃,则计算2018年温差列式正确的()A.(+39)﹣(﹣7)B.(+39)+(+7)C.(+39)+(﹣7)D.(+39)﹣(+7)【考点】有理数的减法.【分析】根据题意列出算式即可.【解答】解:根据题意得:(+39)﹣(﹣7),故选:A.【点评】此题考查了有理数的加减混合运算,熟练掌握运算法则是解本题的关键.6.若|a|=3,|b|=2,且a+b>0,那么a﹣b的值是()A.5或1B.1或﹣1C.5或﹣5D.﹣5或﹣1【考点】绝对值;有理数的加法;有理数的减法.【分析】先根据绝对值的性质,判断出a、b的大致取值,然后根据a+b>0,进一步确定a、b的值,再代入求解即可.【解答】解:∵|a|=3,|b|=2,∴a=±3,b=±2;∵a+b>0,∴a=3,b=±2.当a=3,b=﹣2时,a﹣b=5;当a=3,b=2时,a﹣b=1.故a﹣b的值为5或1.故选:A.【点评】此题主要考查了绝对值的性质,能够根据已知条件正确地判断出a、b的值是解答此题的关键.7.﹣3﹣(﹣2)的值是()A.﹣1B.1C.5D.﹣5【考点】有理数的减法.【分析】直接利用有理数的减法运算法则计算得出答案.【解答】解:﹣3﹣(﹣2)=﹣3+2=﹣1.故选:A.【点评】此题主要考查了有理数的减法运算,正确掌握运算法则是解题关键.8.下列算式正确的是()A.(﹣14)﹣5=﹣9B.|6﹣3|=﹣(6﹣3)C.(﹣3)﹣(﹣3)=﹣6D.0﹣(﹣4)=4【考点】有理数的减法.【分析】分别求出每个式子的每一部分的值,再根据结果判断即可.【解答】解:A、(﹣14)﹣5=(﹣14)+(﹣5)=﹣14﹣5=﹣19,故本选项错误;B、|6﹣3|=3,﹣(6﹣3)=﹣3,即|6﹣3|和﹣(6﹣3)不相等,故本选项错误;C、(﹣3)﹣(﹣3)=0,故本选项错误;D、0﹣(﹣4)=0+(+4)=4,故本选项正确.故选:D.【点评】本题考查了有理数的加减混合运算和绝对值,相反数等知识点,主要考查学生的计算能力和辨析能力.9.已知数a,b在数轴上表示的点的位置如图所示,则下列结论正确的是()A.a+b>0B.a﹣b>0C.﹣a>﹣b>a D.a•b>0【考点】数轴;有理数的加法;有理数的减法.【分析】根据数轴得出a<0<b,|a|>|b|,再根据有理数的加法、减法、乘法法则进行判断即可.【解答】解:从数轴可知:a<0<b,|a|>|b|,A、a+b<0,不正确;B、a﹣b<0,不正确;C、﹣a>﹣b>a,正确;D、a•b<0,不正确;故选:C.【点评】本题考查了数轴,有理数的大小比较,有理数的加法、减法、乘法法则的应用,主要考查学生对法则的理解能力,难度不是很大.10.某地一周前四天每天的最高气温与最低气温如表,则这四天中温差最大的是()星期一二三四最高气温10℃12℃11℃9℃最低气温3℃0℃﹣2℃﹣3℃A.星期一B.星期二C.星期三D.星期四【考点】有理数的减法.【分析】用最高温度减去最低温度,结果最大的即为所求;【解答】解:星期一温差10﹣3=7℃;星期二温差12﹣0=12℃;星期三温差11﹣(﹣2)=13℃;星期四温差9﹣(﹣3)=12℃;故选:C.【点评】本题考查有理数的减法;能够理解题意,准确计算有理数减法是解题的关键.11.已知a=5,|b|=8,且满足a+b<0,则a﹣b的值为()A.3B.﹣3C.﹣13D.13【考点】绝对值;有理数的加法;有理数的减法.【分析】根据绝对值的性质和有理数的加法法则确定b的值,再代入计算可得.【解答】解:∵|b|=8,∴b=±8,又∵a=5,a+b<0,∴b=﹣8,则a﹣b=5﹣(﹣8)=13,故选:D.【点评】本题主要考查有理数的加法,解题的关键是掌握有理数的加法法则和绝对值的性质.12.若a>0,b<0,那么a﹣b的值()A.大于零B.小于零C.等于零D.不能确定【考点】有理数的减法.【分析】原式利用有理数的减法法则判断即可.【解答】解:∵a>0,b<0,∴a﹣b>0,故选:A.【点评】此题考查了有理数的减法,熟练掌握运算法则是解本题的关键.13.若x的相反数是5,|y|=8,且x+y<0,那么x﹣y的值是()A.3B.3或﹣13C.﹣3或﹣13D.﹣13【考点】绝对值;有理数的加法;有理数的减法.【分析】由相反数的定义可知x=﹣5,由绝对值的性质可知y=±8,由x+y<0可知x =﹣5,y=﹣8,最后代入计算即可.【解答】解:∵﹣5的相反数是5,∴x=﹣5.∵|y|=8,∴y=±8.∵x+y<0,∴x=﹣5,y=﹣8.∴x﹣y=﹣5﹣(﹣8)=﹣5+8=3.故选:A.【点评】本题主要考查的是有理数的减法、绝对值、相反数,根据题意确定出x、y的值是解题的关键.14.已知a,b是有理数,若a在数轴上的对应点的位置如图所示,且a+b<0,有以下结论:①b<0;②a﹣b<0;③b<﹣a<a<﹣b;④|a|<|b|,其中结论正确的个数是()A.4个B.2个C.3个D.1个【考点】数轴;绝对值;有理数的加法;有理数的减法.【分析】根据图示,可得:a>0,然后根据a+b<0,逐项判断即可.【解答】解:∵a>0,a+b<0,∴b<0,∴①符合题意;∵a>0,a+b<0,∴b<0,∴a﹣b>0,∴②不符合题意;∵a>0,a+b<0,∴b<﹣a<a<﹣b,∴③符合题意;∵a>0,a+b<0,∴|a|<|b|,∴④符合题意,∴结论正确的有3个:①、③、④.故选:C.【点评】此题主要考查了有理数加减法的运算方法,以及数轴的特征和应用,要熟练掌握.二.填空题(共17小题)15.已知,|a|=﹣a,=﹣1,|c|=c,化简|a+b|﹣|a﹣c|﹣|b﹣c|=﹣2c.【考点】绝对值;有理数的减法.【分析】根据题意,利用绝对值的代数意义判断出a,b,c的正负,原式利用绝对值的代数意义化简即可得到结果.【解答】解:∵|a|=﹣a,=﹣1,|c|=c,∴a为非正数,b为负数,c为非负数,∴a+b<0,a﹣c≤0,b﹣c<0,则原式=﹣a﹣b+a﹣c+b﹣c=﹣2c,故答案为:﹣2c【点评】此题考查了有理数的减法,以及绝对值,熟练掌握绝对值的代数意义是解本题的关键.16.已知a、b互为相反数,且|a﹣b|=6,则b﹣1=2或﹣4.【考点】相反数;绝对值;有理数的减法.【分析】由a、b互为相反数,可得a+b=0;由于不知a、b的正负,所以要分类讨论b 的正负,才能利用|a﹣b|=6求b的值,再代入所求代数式进行计算即可.【解答】解:∵a、b互为相反数,∴a+b=0即a=﹣b.当b为正数时,∵|a﹣b|=6,∴b=3,b﹣1=2;当b为负数时,∵|a﹣b|=6,∴b=﹣3,b﹣1=﹣4.故答案填2或﹣4.【点评】本题主要考查了代数式求值,涉及到相反数、绝对值的定义,涉及到绝对值时要注意分类讨论思想的运用.17.若|a|=8,|b|=5,且a+b>0,那么a﹣b=3或13.【考点】绝对值;有理数的减法.【分析】先根据绝对值的性质,判断出a、b的大致取值,然后根据a+b>0,进一步确定a、b的值,再代入求解即可.【解答】解:∵|a|=8,|b|=5,∴a=±8,b=±5;∵a+b>0,∴a=8,b=±5.当a=8,b=5时,a﹣b=3;当a=8,b=﹣5时,a﹣b=13;故a﹣b的值为3或13.【点评】此题主要考查了绝对值的性质,能够根据已知条件正确地判断出a、b的值是解答此题的关键.18.计算:﹣1﹣2=﹣3.【考点】有理数的减法.【分析】根据有理数的减法运算法则,减去一个是等于加上这个数的相反数进行计算.【解答】解:﹣1﹣2=﹣1+(﹣2)=﹣3.故答案为﹣3.【点评】本题考查了有理数的减法,熟记减去一个是等于加上这个数的相反数是解题的关键.19.已知|x|=3,|y|=7,且x+y>0,则x﹣y的值等于﹣4或﹣10.【考点】绝对值;有理数的加法;有理数的减法.【分析】先根据绝对值的化简法则得出x与y的值,再根据x+y>0,分类讨论计算即可.【解答】解:∵|x|=3,|y|=7∴x=3或x=﹣3;y=7或y=﹣7,又∵x+y>0,∴当x=3,y=7时,x﹣y=3﹣7=﹣4;故答案为:﹣4或﹣10.【点评】本题考查了有理数的加减法和绝对值的化简,熟练掌握相关运算法则并分类讨论是解题的关键.20.|﹣7﹣3|=10.【考点】绝对值;有理数的减法.【分析】根据有理数的减法运算法则和绝对值的性质进行计算即可得解.【解答】解:|﹣7﹣3|=|﹣10|=10.故答案为:10.【点评】本题考查了有理数的减法运算法则和绝对值的性质,是基础题,熟记法则和性质是解题的关键.21.已知|x|=5,y2=9,且|x﹣y|=y﹣x,则x﹣y=﹣8或﹣2.【考点】绝对值;有理数的减法.【分析】根据绝对值的性质和有理数的乘方求出x、y,再根据负数的绝对值等于它的相反数判断出x﹣y<0,然后求解即可.【解答】解:∵|x|=5,y2=9,∴x=±5,y=±3,∵|x﹣y|=y﹣x,∴x﹣y<0,∴x﹣y=﹣5﹣3=﹣8,或x﹣y=﹣5﹣(﹣3)=﹣5+3=﹣2,综上所述,x﹣y=﹣8或﹣2.故答案为:﹣8或﹣2.【点评】本题考查了有理数的减法,绝对值的性质,有理数的乘方,熟记运算法则和性质是解题的关键.22.若|a|=3,|b|=2,则a﹣b的绝对值为5或1.【考点】绝对值;有理数的减法.【分析】根据绝对值的性质求出a、b的值,将a、b的值代入求出|a﹣b|的值即可.【解答】解:∵|a|=3,|b|=2,∴a=±3,b=±2,当a=﹣3,b=2时,|a﹣b|=|﹣3﹣2|=5;当a=3,b=2时,|a﹣b|=|﹣2|=1;当a=3,b=﹣2时,|a﹣b|=|3+2|=5;a﹣b的绝对值为5或1.故答案为:5或1.【点评】主要考查了绝对值的性质,要求会灵活运用该性质解题.要牢记以下规律:(1)一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.(2)|a|=﹣a时,a≤0;|a|=a时,a≥0.(3)任何一个非0的数的绝对值都是正数是解题的关键.23.甲、乙、丙三地的海拔高度分别为20m、﹣15m和﹣10m,那么最高的地方比最低的地方高35m.【考点】正数和负数;有理数的减法.【分析】根据正负数的意义判断出最高和最低的地方,然后根据减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:甲地最高的,乙地最低,20﹣(﹣15),=20+15,=35(m).故答案为:35.【点评】本题考查了有理数的减法,正负数的意义,熟记运算法则是解题的关键.24.若a<0,b<0,|a|<|b|,则a﹣b>0.【考点】有理数的减法.【分析】根据有理数的减法运算法则进行计算,结合绝对值的性质确定运算符号,再比较大小.【解答】解:∵a<0,b<0,|a|<|b|∴a﹣b>0.【点评】本题考查了有理数的减法运算,要会熟练运用法则进行计算,并掌握绝对值的性质及其运用.有理数的减法法则:减去一个数等于加上这个数的相反数.有理数加法法则:两个数相加,取较大加数的符号,并把绝对值相加.25.某天的最高气温为8℃,最低气温为﹣2℃,则这天的温差是10℃.【考点】有理数的减法.【分析】求这天的温差,即最高温度减去最低温度,再进一步根据有理数的减法法则进行计算.【解答】解:根据题意,得8﹣(﹣2)=10(℃).故答案为10.【点评】此题考查了有理数的减法法则,即减去一个数等于加上这个数的相反数.26.|a|=4,|b|=6,则|a+b|﹣|a﹣b|=±8.【考点】绝对值;有理数的加法;有理数的减法.【分析】根据|a|=4,|b|=6,可以得到a、b的值,然后即可求得所求式子的值.【解答】解:∵|a|=4,|b|=6,∴a=±4,b=±6,当a=4,b=6时,|a+b|﹣|a﹣b|=|4+6|﹣|4﹣6|=10﹣2=8;当a=4,b=﹣6时,|a+b|﹣|a﹣b|=|4+(﹣6)|﹣|4﹣(﹣6)|=﹣8;当a=﹣4,b=6时,|a+b|﹣|a﹣b|=|﹣4+6|﹣|﹣4﹣6|=﹣8;当a=﹣4,b=﹣6时,|a+b|﹣|a﹣b|=|﹣4+(﹣6)|﹣|(﹣4)﹣(﹣6)|=8;由上可得,|a+b|﹣|a﹣b|=±8,故答案为:±8.【点评】本题考查有理数的加减法和绝对值,解答本题的关键是明确它们各自的计算方法.27.计算:|﹣1|=.【考点】绝对值;有理数的减法.【分析】首先根据有理数的减法法则,求出﹣1的值是多少;然后根据一个负数的绝对值等于它的相反数,求出|﹣1|的值是多少即可.【解答】解:|﹣1|=|﹣|=.故答案为:.【点评】(1)此题主要考查了有理数的减法,要熟练掌握,解答此题的关键是要明确:①在进行减法运算时,首先弄清减数的符号;②将有理数转化为加法时,要同时改变两个符号:一是运算符号(减号变加号);二是减数的性质符号(减数变相反数).(2)此题还考查了绝对值的含义和应用,要熟练掌握,解答此题的关键是要明确:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.28.(﹣38)﹣(﹣24)﹣(+65)=﹣79【考点】有理数的减法.【分析】先去括号,再算加减.【解答】解:(﹣38)﹣(﹣24)﹣(+65)=﹣38+24﹣65=(﹣38﹣65)+24=﹣103+24=﹣79故答案为:﹣79【点评】本题考查了有理数的加减法.掌握去括号法则和有理数的加减法法则是解决本题的关键.29.在数轴上与表示﹣2的点距离3个单位长度的点表示的数是1或﹣5.【考点】数轴;有理数的减法.【分析】此题注意考虑两种情况:要求的点在已知点的左侧或右侧.【解答】解:在数轴上与表示﹣2的点距离3个单位长度的点表示的数是﹣2+3=1或﹣2﹣3=﹣5.【点评】注意数轴上距离某个点是一个定值的点有两个,左右各一个,不要漏掉任一种情况.把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的思想.30.若a<0,b<0,|a|>|b|,则a﹣b<0.(填“>”“<”或“=”)【考点】绝对值;有理数的减法.【分析】根据a<0,b<0,|a|>|b|,先判断a、b的符号和它们的绝对值的大小,再把减法转化为加法,根据加法法则确定和的符号.【解答】解:∵a<0,b<0,∴﹣b>0|a|>|b|,即|a|>|﹣b|∴a﹣b=a+(﹣b)<0【点评】本题考查了有理数的绝对值及有理数的减法.先把减法转化为加法,利用加法法则判断和的符号.31.计算:3﹣|﹣5|=﹣2.【考点】绝对值;有理数的减法.【分析】根据负数的绝对值是它的相反数,可得负数的绝对值表示的数,根据有理数的减法,可得答案.【解答】解:3﹣|﹣5|=3﹣5=3+(﹣5)=﹣2,故答案为﹣2.【点评】本题考查了有理数的减法,先求绝对值,再求有理数的减法.三.解答题(共10小题)32.计算:﹣(+9)﹣12﹣(﹣).【考点】有理数的减法.【分析】根据有理数的减法的运算方法,应用加法交换律和加法结合律,求出算式的值是多少即可.【解答】解:﹣(+9)﹣12﹣(﹣)=﹣(﹣)﹣9﹣12=1﹣21=﹣20【点评】此题主要考查了有理数的减法,要熟练掌握,注意加法交换律和加法结合律的应用.33.已知|a|=5,|b|=3,且|a﹣b|=b﹣a,求a+b的值.【考点】绝对值;有理数的加法;有理数的减法.【分析】根据绝对值的性质求出a、b,再判断出a、b的对应情况,然后相加即可得解.【解答】解:∵|a|=5,|b|=3,∴a=±5,b=±3,∵|a﹣b|=b﹣a,∴a=﹣5时,b=3或﹣3,∴a+b=﹣5+3=﹣2,或a+b=﹣5+(﹣3)=﹣8,所以,a+b的值是﹣2或﹣8.【点评】本题考查了有理数的减法,有理数的加法和绝对值的性质,难点在于确定a、b 的值的对应情况.34.观察下面的等式:﹣1=﹣|﹣+2|+3;3﹣1=﹣|﹣1+2|+3;1﹣1=﹣|1+2|+3;(﹣)﹣1=﹣|+2|+3;(﹣2)﹣1=﹣|4+2|+3回答下列问题:(1)填空:﹣3﹣1=﹣|5+2|+3;(2)已知2﹣1=﹣|x+2|+3,则x的值是0;(3)设满足上面特征的等式最左边的数为y,求y的最大值,并写出此时的等式.【考点】绝对值;有理数的减法.【分析】(1)根据a﹣1=﹣|2﹣a+2|+3即可求解;(2)由(1)的规律即可求解;(3)由(1)可得|4﹣a|=4﹣a,根据非负数的性质即可求解.【解答】解:观察可知:a﹣1=﹣|2﹣a+2|+3,则(1)﹣3﹣1=﹣|5+2|+3;(2)已知2﹣1=﹣|x+2|+3,则x的值是﹣4或0;(3)由a﹣1=﹣|2﹣a+2|+3,可得|4﹣a|=4﹣a,则4﹣a≥0,解得a≤4,即y的最大值是4,此时的等式是4﹣1=﹣|﹣2+2|+3.故答案为:﹣3;0.【点评】考查了有理数的减法,非负数的性质,关键是得到算式的特征是a﹣1=﹣|2﹣a+2|+3.35.已知|m|=4,|n|=6,且|m+n|=m+n,求m﹣n的值.【考点】绝对值;有理数的加法;有理数的减法.【分析】首先根据绝对值的性质得到m、n的值,然后再根据绝对值的性质确定m、n的值,进而可得m﹣n的值.【解答】解:∵|m|=4,|n|=6,∴m=±4,n=±6,∵|m+n|=m+n,∴m+n≥0,∴m=±4,n=6,∴当m=4,n=6时,m﹣n=﹣2,当m=﹣4,n=6时,m﹣n=﹣10,综上:m﹣n=﹣2或﹣10.【点评】此题主要考查了有理数的减法,以及绝对值的性质,关键是掌握绝对值等于一个正数的数有两个,它们互为相反数.36.已知|a|=3,|b|=5,且a<b,求a﹣b的值.【考点】绝对值;有理数的减法.【分析】计算绝对值要根据绝对值的定义求解,注意在条件的限制下a,b的值剩下2组.a =3时,b=5或a=﹣3时,b=5,所以a﹣b=﹣2或a﹣b=﹣8.【解答】解:∵|a|=3,|b|=5,∴a=±3,b=±5.∵a<b,∴当a=3时,b=5,则a﹣b=﹣2.当a=﹣3时,b=5,则a﹣b=﹣8.故a﹣b的值是﹣8或﹣2.【点评】考查了有理数的减法,绝对值,本题是绝对值性质的逆向运用,此类题要注意答案一般有2个.两个绝对值条件得出的数据有4组,再添上a,b大小关系的条件,一般剩下两组答案符合要求,解此类题目要仔细,看清条件,以免漏掉答案或写错.37.若|a|=5,|b|=3,(1)求a+b的值;(2)若|a+b|=a+b,求a﹣b的值.【考点】绝对值;有理数的减法.【分析】(1)由|a|=5,|b|=3可得,a=±5,b=±3,可分为4种情况求解;(2)由|a+b|=a+b可得,a=5,b=3或a=5,b=﹣3,代入计算即可.【解答】解:(1)∵|a|=5,|b|=3,∴a=±5,b=±3,当a=5,b=3时,a+b=8;当a=5,b=﹣3时,a+b=2;当a=﹣5,b=3时,a+b=﹣2;当a=﹣5,b=﹣3时,a+b=﹣8.(2)由|a+b|=a+b可得,a=5,b=3或a=5,b=﹣3.当a=5,b=3时,a﹣b=2,当a=5,b=﹣3时,a﹣b=8.【点评】此题主要用了分类讨论的方法,各种情况都有考虑,不能遗漏.38.计算题﹣5﹣(﹣3)﹣(﹣4)﹣[﹣(﹣2)]【考点】相反数;有理数的减法.【分析】先去括号,再根据有理数的加减法法则计算即可.【解答】解:原式=﹣5+3+4﹣2=(3+4)﹣(5+2)=7﹣7=0.【点评】本题主要考查了有理数的减法,熟记有理数减法法则是解答本题的关键.减去一个数,等于加上这个数的相反数.39.有理数a,b,c位置如图所示:(1)填空:a+b<0,b﹣1<0,a﹣c<0,1﹣c>0(2)计算:|a+b|﹣|b﹣1|﹣|a﹣c|﹣|1﹣c|【考点】绝对值;有理数的加法;有理数的减法.【分析】(1)根据图示,可得:b<a<0<c<1,据此逐项判断即可.(2)根据绝对值的含义和求法,求出|a+b|﹣|b﹣1|﹣|a﹣c|﹣|1﹣c|的值是多少即可.【解答】解:(1)∵b<a<0<c<1,∴a+b<0,b﹣1<0,a﹣c<0,1﹣c>0.(2)|a+b|﹣|b﹣1|﹣|a﹣c|﹣|1﹣c|=﹣(a+b)+(b﹣1)+(a﹣c)﹣(1﹣c)=﹣2故答案为:<、<、<、>.【点评】此题主要考查了有理数的加减法的运算方法,以及绝对值的含义和求法,要熟练掌握.40.若a、b、c是有理数,|a|=3,|b|=10,|c|=8,且a,b同号,b,c异号,求a﹣b﹣(﹣c)的值.【考点】绝对值;有理数的减法.【分析】根据绝对值的意义,可得到a、b、c取值的可能情况,再根据a,b同号,b,c 异号,确定出a,b,c的值,代入原式计算即可得出结果.【解答】解:∵|a|=3,|b|=10,|c|=8,∴a=±3,b=±10,c=±8,∵a,b同号,b,c异号,∴a=3,b=10,c=﹣8或a=﹣3,b=﹣10,c=8,①当a=3,b=10,c=﹣8时,a﹣b﹣(﹣c)=a﹣b+c=﹣15;②当a=﹣3,b=﹣10,c=8时,a﹣b﹣(﹣c)=a﹣b+c=15;综上,a﹣b﹣(﹣c)的值是15或﹣15.【点评】此题考查绝对值、有理数减法的意义及计算法则,熟练掌握运算法则是解本题的关键.41.有一只青蛙,坐在深井底,井深4m,青蛙第一次向上爬了1.2m,又下滑了0.4m;第二次向上爬了1.4m,又下滑了0.5m;第三次向上爬了1.1m,又下滑了0.3m;第四次向上爬了1.2m,又下滑了0.2m…(1)青蛙爬了四次后,距离爬出井口还有多远?(2)青蛙爬了四次之后,一共经过多少路程?(3)若青蛙第五次向上爬的路程与第一次相同,问能否爬出井?【考点】有理数的加法;有理数的减法.【分析】(1)首先把青蛙四次向上爬的路程相加,求出青蛙爬了四次后,一共向上爬的路程是多少;然后用井深减去青蛙爬了四次后,一共向上爬的路程,求出距离爬出井口还有多远即可.(2)把青蛙四次向上爬和下滑的距离相加,求出青蛙第四次之后,一共经过多少路程即可.(3)用青蛙爬了四次后,一共向上爬的路程加上青蛙第五次向上爬的路程,再把它和井深比较大小,判断出能否爬出井即可.【解答】解:(1)1.2﹣0.4+1.4﹣0.5+1.1﹣0.3+1.2﹣0.2=3.5(m)4﹣3.5=0.5(m)答:青蛙爬了四次后,离井口还有0.5m.(2)1.2+0.4+1.4+0.5+1.1+0.3+1.2+0.2=6.3(m)答:青蛙第四次之后,一共经过6.3m.(3)3.5+1.2=4.7(m)∵4.7>4,∴能爬出井.答:能爬出井.【点评】此题主要考查了有理数的加法的运算方法,以及有理数的减法的运算方法,要熟练掌握。

第二章。《有理数及其运算》易错题及难题

第二章。《有理数及其运算》易错题及难题

第二章。

《有理数及其运算》易错题及难题第二章《有理数及其运算》易错题、难题考点一:有理数的分类及应用1.下列说法正确的是().A.数是最小的整数。

B.若│a│=│b│,则a=b。

C.互为相反数的两数之和为零。

D.两个有理数,大的离原点远。

2.若两个有理数的和是正数,那么一定有结论()A.两个加数都是正数。

B.两个加数有一个是正数。

C.一个加数正数,另一个加数为零。

D.两个加数不能同为负数。

3.求1-2+3-4+5-6+……+2015-2018的结果不可能是()A.奇数。

B.偶数。

C.负数。

D.整数。

4.某粮店出售的三种品牌的面粉袋上分别标有质量为(25±0.1)kg,(25±0.•2)kg,(25±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差()A、0.8kg。

B、0.6kg。

C、0.5kg。

D、0.4kg。

考点二:数轴5.a,b,c三个数在数轴上的位置如图所示,则下列结论中错误的是()A.a+b<0.B.a+c<0.C.a-b>0.D.b-c<0.6.在数轴上表示下列各数:﹣5,-|-3.5|,2,接起来。

7.-11/22,|-53/64|,+4.并用“<”号把这些数连接起来。

11/22<|-53/64|<4.考点三:相反数8.倒数是它本身的数是;相反数是它本身的数是;绝对值是它本身的数是,绝对值最小的数是0.9.-m的相反数是m;-m+1的相反数是-m-1;m+1的相反数是-m-1.10.已知-a=9,那么-a的相反数是-9;已知a=-9,则a的相反数是9.11.两个非零有理数的和是0,则它们的商为(。

)A.0.B.-1.C.+1.D.不能确定。

考点四:绝对值12.已知数轴上的三点A、B、C分别表示有理数a,1,-1,那么|a+1|表示(。

)A.A、B两点的距离B.A、C两点的距离。

C.A、B两点到原点的距离之和。

D.A、C两点到原点的距离之和。

有理数的乘法第2课时 有理数的乘法运算律

有理数的乘法第2课时 有理数的乘法运算律
A.加法交换律 B.乘法交换律 C.乘法结合律 D.乘法对加法的分配律
3.运用分配律计算(-3)×(-8+2-3),有下列四种不同的结果,其中正
确的是(
)
D
A.-3×8-3×2-3×3
B.-3×(-8)-3×2-3×3
C.(-3)×(-8)+3×2-3×3
D.(-3)×(-8)-3×2+3×3
4.(天水中考)下列运算过程中,错误的个数是( B ) ①(3-412)×2=3-412×2; ②-4×(-7)×(-125)=-(4×125×7); ③[3×(-2)]×(-5)=3×2×5. A.0 个 B.1 个 C.2 个 D.3 个
12.下列计算(-55)×99+(-44)×99-99正确的是(
C)
A.原式=99×(-55-44)=-9801
B.原式=99×(-55-44+1)=-9702
C.原式=99×(-55-44-1)=-9900
D.原式=99×(-55-44-99)=-19602
13.计算: (1)1.25×(-2801)×(-8)=____8_21______;
5.算式(16-12-13)×24 的值为( A.-16 B.16 C.24 D.-24
A)
6.计算 25×(-4215)时,可转化为下列算式:
①25×(-4+215);②-25×(4+215);
③-25×(4-215);④25×(-4-215). 其中正确的个数是( B ) A.1 个 B.2 个 C.3 个 D.4 个
方法技能: 1.应用乘法的交换律和结合律时,要连同该项的符号一起“换位”. 2.可以考虑从正、逆两方面来运用乘法对加法的分配律. 易错提示: 运用乘法分配律时,要把括号外面的因数连同符号与括号内的每一项相 乘.

七年级数学上册 第二章 有理数及其运算 8 有理数的除法 第2课时 教材内容解析与重难点突破素材

七年级数学上册 第二章 有理数及其运算 8 有理数的除法 第2课时 教材内容解析与重难点突破素材

七年级数学上册第二章有理数及其运算8 有理数的除法第2课时教材内容解析与重难点突破素材(新版)北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(七年级数学上册第二章有理数及其运算8有理数的除法第2课时教材内容解析与重难点突破素材(新版)北师大版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为七年级数学上册第二章有理数及其运算8 有理数的除法第2课时教材内容解析与重难点突破素材(新版)北师大版的全部内容。

有理数的除法第2课时教材内容解析与重难点突破1.教材分析本节课是“有理数的除法”这一节的第二课时。

教材先通过例7引入有理数乘除混合运算,然后逐步深入,通过例8给出有理数加减乘除法混合运算问题,最后让学生利用计算器解决一个关于公司盈亏的实际问题,问题呈现由简单到复杂,由单纯的数学计算再到解决生活中的实际问题,符合学生的认知规律.2.重难点突破⑴有理数加减乘除混合运算突破建议课本安排的有理数加减乘除法混合运算涉及如下两个方面:①有理数的乘除法混合运算(例7),通常先利用有理数除法法则将有理数的除法改写为乘法,再运用乘法法则和相关运算律进行计算.借助于有理数加法、乘法的运算律,可以使运算过程得到简化。

由于有理数乘除法属于同一级运算,所以哪一种运算在前面,就先进行哪一种运算.②有理数的加减乘除法混合运算,在没有括号的前提下,应先做乘除,再算加减.有括号的,应先小括号、后中括号、再大括号。

③进行有理数的加减乘除法混合运算时,要注意运算符号与正负数性质符号的联系与区别,特别是负号的认识.一般情况下,要先弄清楚运算的先后顺序,处理好每一步运算结果的符号,再进行有关的绝对值计算.例1.计算:的结果是()。

七年级数学 第2章 有理数及其运算 7 有理数的乘法(第2课时)

七年级数学 第2章 有理数及其运算 7 有理数的乘法(第2课时)

8.(-21-14-16)×(-24)
=(-12)×(-24)+(-41)×(-24)+(-16)×(-24)①,
=12+6+4②,
以上运算( C )
A.运用了乘法结合律 B.运用了乘法交换律
C.①是分配律
D.②是分配律
12/6/2021
9.假设拧不紧的水龙头每秒滴下 2 滴水,每滴水约 0.05mL,那么经过 4
2018年秋
12/6/2021
数学 七年级 上册 • B
第二章 有理数及其运算
7 有理数的乘法 第2课时
用字母表示 1.乘法交换律 ab=ba ;2.乘法结合律 abc=a(bc) ;3.乘法的分 配律 a(b+c)=ab+ac . 易错题:计算:-691156×(-8)= (70-116)×8=560-12=55912 .
12/6/2021
17.首先阅读下列解题过程: 1×1 2+2×1 3+3×1 4+4×1 5=1-12+12-13+13=41+14-15=1-15=45. 请你运用上述方法计算: 7×1 8+8×1 9+9×110+…+2017×1 2018. 解:原式=17-81+18-19+91-110+…+20117-20118=17-20118=7×20210118= 2011 14126.
12/6/2021
16.个体儿童服装店老板以 32 元的价格购进 30 件连衣裙,针对不同的顾客, 30 件连衣裙的售价不完全相同,若以 47 元为标准价格,将超过标准价格的 售价记为正,不足标准价格的售价记为负,记录结果如下表所示:
售出件数 7 6 3 5 4 5 售价/元 +3 +2 +1 0 -1 -2 请问:该服装店老板在售完这 30 件连衣裙后赚了多少钱? 解:3×7+2×6+1×3+(-1)×4+(-2)×5=22(元),(47-32)×30+22= 472(元),答:赚了 472 元.

《2.6有理数的加减混合运算》第二课时(教案)北师大版数学七年级上册

第二章有理数及其运算··第二课时教案班级:课时:课型:一、学情分析在对本章的学习过程中,学生已经具备了一定的探究能力,能主动发现、探究一些数学活动.在上一课时学生已经掌握简单的加减混合运算,能应用加减混合运算解决一些简单问题,这为本课学习奠定了基础.二、教学目标1. 能将有理数的加减混合运算统一成加法.2. 能将加法运算写成省略括号及前面加号的形式.3. 能根据具体问题,适当运用运算律简化运算.三、重点难点【教学重点】将有理数的加减混合运算统一成加法及省略加号和括号.【教学难点】能根据具体情况,适当运用运算律简化运算.四、教学过程设计第一环节【复习旧知引入新课】1.有理数的加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加.(2)异号两数相加,绝对值相等时和为0 ;绝对值不等时取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值.(3)一个数同0 相加,仍得这个数.2.有理数的减法法则:减去一个数,等于加上这个数的相反数.3.计算:(1)(-12)+25 = 13 ;(2)17+(-21)= -4 ;(3)(-4)-16 = -20 ;(4)33-(-27)= 60 ;(5)(-37)-(-12)+(-13)+28 = -10 ;(6)(-12)+(-8)+(-6)+5 = -21 .设计意图:有理数的加减法法则是有理数加减混合运算的依据,本环节通过帮学生复习回顾,巩固学生基础,减小新课学习难度.第二环节【合作交流探索新知】一架飞机进行特技表演,起飞后的高度变化如下表:此时飞机比起飞点高了多少千米?教师提问:对于题中的“高度变化”,你是怎么理解的?你能通过列式计算此时飞机的高度吗?学生踊跃发言.教师展示PPT.关于这个问题,国国和粒粒有着不同的解法.国国的解法:粒粒的解法:-- 4.5+(-)+1.1+(-)-= 1.3+1.1+(-)--= 1(km). = 1(km).师:比较以上两种算法,你发现了什么?教师引导学生发现:4.5+(-)+1.1+(-)=--当左边省略加号和括号变成了右边的式子,因此--可以看作4.5、-3.2、1.1、-1.4 这 4 个数的和.师:有理数的加减混合运算可以统一成加法运算.如何将有理数加减法统一成加法呢?例如:(-13)-(-7)+(-8)-(+5)=(-13)+(+7)+(-8)+(-5)在和式中,通常把各个加数的括号和它前面的加号省略不写,写成省略加号的和的形式.即(-13)-(-7)+(-8)-(+5)= -13+7-8-5.师:有理数加减法统一成加法的依据是什么呢?学生思考后回答:有理数减法法则.师:-13+7-8-5按不同的意义有不同的读法.①按这个式子表示的意义来读:可读作“负13、正7、负8、负 5 的和”;②按算式来读:可读作“负13 加7 减8 减5”.--1.4 可以读作?选取一名学生代表回答:“正 4.5、负 3.2、正1.1、负1.4 的和”或“4.5 减3.2 加1.1 减1.4”.师:4.5+(-)+1.1+(-)还有其他计算方法吗?学生猜测是否可以用加法运算律进行简化运算?师生共同进行运算.4.5+(-)+1.1+(-)= 4.5+1.1+[(-)+(-)]= 5.6+(-)= 1.设计意图:本环节主要引导学生思考,通过对两种算法的比较,让学生体会到加减混合运算课统一成加法,理解利用运算律可以简化运算,为进一步学习有理数的加减混合运算做铺垫.第三环节【应用迁移巩固提高】例1.将下列式子写成省略括号和加号的形式,并用两种读法将它读出来.(1)(-12)-(+8)+(-6)-(-5);(2)(-13)-(-7)+(-21)-(+9)+(+32).例2.计算:(1)(-8)-(-15)+(-9)-(-12);(2)5.8432143++⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-; (3)()5.273165.12743--⎪⎭⎫ ⎝⎛-++⎪⎭⎫ ⎝⎛-; (4)⎪⎭⎫ ⎝⎛-+-⎪⎭⎫ ⎝⎛-341531; (5)()()10785612--+⎪⎭⎫ ⎝⎛---; (6)⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-813414215874.例3.下表是某年某市汽油价格的调整情况:注:正号表示比前一次上涨,负号表示比前一次下降.与上一年年底相比,11 月 9 日汽油价格是上升了还是下降了?变化了多少元?设计意图:通过例题教学使学生巩固解决有理数加减混合运算的方法,掌握有理数加减混合运算统一成加法的方法,进一步提高学生的运算能力.【答案】例1.解:(1)(-12)-(+8)+(-6)-(-5)=(-12)+(-8)+(-6)+(+5)= -12-8-6+5;读作负 12 减 8 减 6 加 5 或负 12,负 8,负 6,正 5 的和.(2)(-13)-(-7)+(-21)-(+9)+(+32)=(-13)+(+7) +(-21)+(-9)+(+32)= -13+7-21-9+32.读作负13 加 7 减 21 减 9 加 32 或负 13,正 7,负 21,负 9,正 32 的和.例2.解:(1)原式 =(-8)+15+(-9)+12= 15 +12+[(-8)+(-9)] = 27+(-17)= 10;(2)原式 =5.8432143+++⎪⎭⎫ ⎝⎛- =⎪⎭⎫ ⎝⎛++⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-5.8214343 =0+9=9;(3)原式 =5.273165.12743+⎪⎭⎫ ⎝⎛-++⎪⎭⎫ ⎝⎛- =()5.25.127316743++⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛- =-20+15=-5;(4)原式 =()⎪⎭⎫ ⎝⎛-+-+⎪⎭⎫ ⎝⎛-341531 =()153431-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛- =()1535-+⎪⎭⎫ ⎝⎛- =3216-;(5)原式 =10785612--+- =⎪⎭⎫ ⎝⎛-+--10756812 =2120+- =239-;(6)原式 =813414215874--+⎪⎭⎫ ⎝⎛- =813414215874----++--=()⎪⎭⎫ ⎝⎛--+-+--+-814121873454 =436-- =436-.例3.解:由题意得:-140+290+400+600-220+300-190+480 = 1520,所以与上一年年底相比,11 月 9 日汽油价格上升了,上升了 1520 元/吨.第四环节 【随堂练习 巩固新知】1.(2022秋•新乐市期末)把算式:(-5)-(-4)+(-7)-(+2)写成省略括号的形式,结果正确的是( )A .-5-4+7-2B .5+4-7-2C .-5+4-7-2D .-5+4+7-22.(2022秋•桥西区校级期中)下列式子可读作:“负 1,负 3,正 6,负 8的和”的是( )A .-1+(-3)+(+6)-(-8)B .-1-3+6-8C .-1-(-3)-(-6)-(-8)D .-1-(-3)-6-(-8)3.(2022秋•福田区校级月考)计算:()⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-++85443125.0=( ) A .415 B .4 C .853-D .-44.(2022秋•当涂县期末)8-(+11)-(-20)+(-19)写成省略加号的和的形式是 .5.(2022秋•潍城区期中)一只蜗牛从地面开始爬高为 6 米的墙,向上爬 3 米,然后向下滑 1 米,接着又向上爬 3 米,然后又向下滑1 米,则此时蜗牛离地面的距离为 米.设计意图:本环节为基础练习,让学生能熟练的进行加减混合运算统一成加法的写法,加强学生的运算技能.【答案】2.B3.B4.8-11+20-19.5.4.第五环节 【当堂检测 及时反馈】-32-23 中把省略的“+”号填上应得到( )A .1.17+32+23B .-1.17+(-32)+(-23)C .1.17+(-32)+(-23)-(+32)-(+23)2.(2022秋•点军区期中)a ,b ,c 为三个有理数,下列各式可写成a -b +c 的是( )A .a -(-b )-(+c )B .a -(+b )-(-c )C .a +(-b )+(-c )D .a +(-b )-(+c )3.(2022秋•沙河市期末)为计算简便,把(-)-(-)-()+()+(-)写成省略加号的和的形式,并按要求交换加数的位置正确的是( )A .---3.5B .--3.5C .----3.5D .---0.5+3.54.(2022秋•金堂县校级月考)计算1+(-2)+3+(-4)+5+(-6)+…+19+(-20)得( )A .10B .-10C .20D .-20a = 41-,b = -2,c = 432-,那么|a |+|b |-|c |等于( )A .21-B .211C .21D .211-6.(2022秋•淅川县期中)某件商品原价 18 元,后来又跌 1.5 元,下午又涨价 0.3 元,则这一商品最终价格是( )A .0.3 元B .16.2 元C .16.8 元D .18 元7.(2022秋•海曙区期中)和式431121132+--中第 3 个加数是 ,该和式的运算结果是 .8.数学活动课上,王老师给同学们出了一道题,规定一种新运算“☆”,对于任意有理数a 和b ,有a ☆b = a -b +1,则[2☆(-3)]☆(-2)的值为 .9.计算:--|-2.32|+(-);(2)⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛-+-21775.24335.0;(3)2134317329655-+--.10.(2022秋•槐荫区期中)上海世博会第一天(5 月 1 日)的进园人数为 20.3 万人,以后的 6 天里每天的进园数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数,(单位:万人)①5 月 2 日的进园人数是多少?② 5 月 1 日- 5 月 7 日这 7 天内的进园人数最多的是哪天?最少的是哪天?它们相差多少?③求出这 7 天进园的总人数.设计意图:通过本环节练习,巩固学生对新知识的掌握,同时进一步培养学生分析问题、解决问题的能力.【答案】1. C2.B3.A4.A5.7.311-,611. 8.9.---=(-)-()= 10-20= -10;(2)原式=21743243321++--=⎪⎭⎫⎝⎛--⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-43243321721=7-1=6;(3)原式 =2134317329655--++----=()⎪⎭⎫⎝⎛-+--+-+--2143326531795 =450- =45-.(万人),则 5 月 2 日进园人数为 21.5 万人;②根据题意得:这 7 天的人数分别为:20.3,21.5,13.1,14.5,8.2,10.9,14.8,则 5 月 2 日人数最多,5 日人数最少,-(万人);(万人),则这7 天进园总人数为103.3 万人.第六环节【拓展延伸能力提升】1.若|a|= 3,|b|= 1,|c|= 5,且|a+b|= a+b,|a+c|= -(a+c),求a-b+c的值.2.(1)有1,2,3,…,11,12 共12 个数字,请在每两个数字之间添上“+”或“-”,使它们的和为0;(2)若有1,2,3,…,2007,2008 共2008 个数字,请在每两个数字之间添上“+”或“-”,使它们的和为0;(3)根据(1)(2)的规律,试判断能否在1,2,3,…,2022,2022,共2022 个数字的每两个数字之间添上“+”或“-”,使它们的和为0?若能,请说明添法;若不能,请说明理由.设计意图:本环节为拔高练习,拓展学生的知识面,展现有梯度的教学理念.【答案】1.解:因为|a|= 3,|b|= 1,|c|= 5,且|a+b|= a+b,|a+c|= -(a+c),所以a = 3,b = ±1,c = -5,当a = 3,b = 1,c = -5 时,a-b+c = 3-1+(-5)= -3;当a = 3,b = -1,c = -5 时,a-b+c = 3-(-1)+(-5)= -1;综上所述,a-b+c的值为-3 或-1.2.解:(1)1-2+3-4+5-6-7+8-9+10-11+12 = 0;(2)1-2+3-4+...+1003-1004-1005+1006+ (2007)2008 = 0;(3)不能.因为 1 到2022 的总个数为奇数,每两个数字之间添上“+”或“-”,不能使它们的为和0.第七环节【总结反思知识内化】课堂小结:1.将有理数的加减混合运算统一成加法运算,依据是:有理数的减法法则.2.在把有理数的加减混合运算统一成加法运算的算式中,通常把各个加数的括号和它前面的加号省略不写,从而写成省略加号的和的形式.3. 运用加法交换律和结合律简化运算:(1)同号结合法;(2)凑整法;(3)相反数结合法;(4)同分母结合法;(5)同形结合法;(6)拆项法.设计意图:通过小结,使学生梳理本节课所学内容,把握本节课的核心——有理数的加减混合运算. 第八环节【布置作业夯实基础】。

北师版七年级数学上册课件(BS) 第二章 有理数及其运算 有理数的加法 第1课时 有理数的加法法则


5 . (4 分 ) 有 理 数 a , b 在 数 轴 上 的 位 置 如 图 所 示 , 则 a + b__<__0( 填 “ >”“<” 或 “=”).
7.(3分)(武汉中考)气温由-4 ℃上升7 ℃后是( A )
A.3 ℃ B.-3 ℃ C.11 ℃ D.-11 ℃ 8.(4分)(1)冰箱冷冻室的温度由-5 ℃调高4 ℃是_-__1_℃; (2)甲地的海拔是-63米,乙地比甲地高24米,则乙地的海拔为_-__3_9___米.
三、解答题(共 35 分) 15.(12 分)计算: (1)-1031 +331 ;
解:原式=-7
(2)715 +(-235 ); 解:原式=435
解:原式=-12
(4)(-134 )+(-432 ). 解:原式=-6152
16.(10分)已知|a+2|=5,|b+(-3)|=7,|a+b|≠a+b,求 a和b的值. 解:因为|a+2|=5,|b+(-3)|=7,所以a=3或-7,b=-4或10.又因为|a+ b|≠a+b,所以a+b<0.①当a=3,b=-4时,a+b=-1<0;②当a=3,b=10时, a+b=13>0,不合题意,舍去;③当a=-7,b=-4时,a+b=-11<0;④当a =-7,b=10时,a+b=3>0,不合题意,舍去.综上所述,a=3,b=-4或a= -7,b=-4
数学 七年级上册 北师版
第二章 有理数及其运算
2.4 有理数的加法
第1课时 有理数的加法法则
1.(4分)在每题后面的横线上填写和的符号、运算过程及结果. (1)(-16)+6=_-___(|-16|-|+6|)=_-__1_0___;
(2)(-17)+(-8)=_-___(|-17|+|-8|)=-__2_5____; (3)(-8)+23=_+___(|+23|-|-8|)=_1_5__; (4)0+(-12)=__-__1_2__.

2.5 有理数的混合运算(第2课时 用计算器进行运算)(课件)-七年级数学上册(北师大版2024)

4
4

解:不正确,错误原因是没按照运算顺序进行运算,乘除混合运
算应按照从左到右的顺序进行.
正确解法:
3
4
15 ( 4) 15 ( 4) 80
4
3
4.与同伴玩“24点”游戏,并将你在游戏中积累的经验写成小短文。
解:(2)由(1)知原轴的范围是2.595 m≤ x <2.605 m,2.56与
2.62均不在此范围内,故我认为小王加工的车轴不合格.
课堂小结
计算器的按键方法
1. 用计算器进行计算
用计算器计算
2. 近似数
在许多情况下,很难
取得_______,或者
准确数
不必使用________,
准确数
而可以使用______
1cm3,并将你的结果与商标上的数据进行比较。
以330 mL的易拉罐为例,
底面半径约为3.3 cm,高约为11.5 cm。
列算式为 π×3.32×11.5,计算结果为 393.237 9cm3,
约等于393 mL。
计算所得结果大于330 mL。
(2)近似数的产生大致有哪些情形?
①使用测量工具测量所得的数据;
AC 键的功能是(
C )
A. 开启计算器
B. 关闭计算器
C. 清除全部内容或清除刚输入的内容
D. 计算乘方
知识点2
用计算器进行计算
2. [2024烟台期中]用计算器求0.25×12,按键正确的是
(
A
)
A.
0
.
2
5
×
1
2
B.
2
.
5
×
1
2

第二章 有理数及其运算回顾与思考

1减5学习工作室 有理数及其运算回顾与思考一:基本概念1.三个重要的定义:(1)正数:______的数叫做正数;(2)负数:______的数叫做负数;(3)0即不是正数也不是负数 注意:带正号的数不一定是正数,带负号的数不一定是负数2.有理数的分类整数和分数统称为有理数按定义分:0,⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数,整数负整数,有理数正分数,分数负分数; 按性质符号分:0,⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数,正有理数正分数,有理数负整数,负有理数负分数. 3.有理数中的“三重锤”(1)数轴 数轴的三要素: _____注意:①有理数可以用数轴上的点表示,但数轴上的点并不都表示有理数②在数轴上表示的两个数,右边的数总比左边的数_______(2)相反数:如果两个数只有________不同,那么其中一个数就叫另一个数的相反数,0的相反数是0注意: ①除零以外,相反数总是一正一负,成对出现的,通常用a 与-a 表示一对相反数②若a 与b 互为相反数,则a b +=0③在数轴上看,表示互为相反数的两个点分别在原点的两侧,而且到原点的距离相等互为相反数的两个数的绝对值相等,即-=a a ④若a b =,则a b =,或a b =-(a 与b 互为相反数) (3)绝对值: ①绝对值的几何意义:一个数的绝对值是指在数轴上表示该数的点与原点的距离。

因为距离总是正数或零,所以有理数的绝对值不可能是负数,即a ≥0②绝对值的代数意义: 一个正数的绝对值是 ,一个负数的绝对值是它的 ,0的绝对值是 ,综合到一起我们可以得到任何一个有理数的绝对值都是非负数,可用字母a 表示如下:(0),0(0),(0).a a a a a a >⎧⎪==⎨⎪-<⎩③利用绝对值比较大小:两个负数比较大小,绝对值大的反而 .二:基本运算1.运算法则(1)有理数的加法法则:同号两数相加,取_____的符号,并把绝对值______;异号两数相加,取 的符号,并用较大的绝对值减去较小的绝对值;互为相反的两个数相加得 ;一个数同0相加, . (2)有理数的减法法则:减去一个数等于加上这个数的 . 有理数加减混合运算步骤:先把减法变成加法,再按有理数加法法则进行运算.(3)有理数的乘法法则:两个有理数相乘,同号得 ,异号得 ,并把绝对值 ;任何数与0相乘都得0. 倒数的定义:乘积是1的两个有理数互为倒数,即ab =1,那么a 和b 互为倒数(4)有理数的除法法则:除以一个数,等于乘上这个数的 ,0除以任何一个不等于0的数都等于0. 除法法则也可以看成是:两个数相除,同号得 ,异号得 ,并把绝对值相除, 注意:0不能做除数(5)有理数的乘方①定义:求几个相同因数a 的积的运算叫做乘方,,乘方的结果叫做 .②性质:正数的任何次方都是 ,负数的偶数次方是 ,负数的奇数次方是 .(6)有理数的混合运算顺序:先算乘方,再算乘除,最后算加减,如果有括号,先算括号里面的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 第2课时 第二章有理数及其运算(2) 一、学习目标 1、复习上一节课的基础上继续有理数运算学习 2、通过老师讲解能独立做有理数的运算题

二、知识回顾 1.相反数 (1)相反数的定义 像4和-4,3和-3,2.5和-2.5等这样只有符号不同的两个数,我们称其中一个数是另一个数的相反数,也称这两个数互为相反数,特别地,0的相反数是0. 辨误区 相反数的理解 ①相反数“只有符号不同”,即符号相反,数字相同,不能误理解为“只要符号不同”就行,例如:-1与2符号不同,但不是互为相反数.②相反数是成对出现的,不能单独存在.例如,5是-5的相反数,-5也是5的相反数.③0的相反数为0是相反数定义的重要组成部分. 【例1】 关于相反数下列说法正确的是( ).

A.-14和0.25不互为相反数 B.-3是相反数 C.任何一个数都有相反数 D.正数与负数互为相反数 解析: A × 只有符号不同,互为相反数 B × 相反数是成对出现的 C √ 正数、0、负数都有相反数 D × 正数与负数中的数字不一定相同,不一定是互为相反数 答案:C (2)相反数的求法 求一个数的相反数,只要在这个数的前面添上“-”号,就表示这个数的相反数. 一个有理数a,它的相反数是多少呢? 有理数a的相反数是-a.这里a可以表示任意一个数,可以是正数,可以是0,可以是负数,还可以是一个式子.比如:当a=2时,-a=-2,2与-2是互为相反数;当a=-1时,-a=-(-1),因为-1的相反数是1,所以-(-1)=1;当a=m+n时,-a=-(m+n),所以m+n的相反数是-(m+n). 【例2】 填空: (1)-8的相反数是__________;-(-2.8)的相反数是__________;__________的相反

数是14;100和__________是互为相反数. (2)如果m=-9,则-m=__________. 解析:(1)根据相反数的定义和求法直接写出相反数即可.其中应注意-(-2.8)表示-2.8的相反数,等于2.8,所以-(-2.8)的相反数也就是2.8的相反数,应该填-2.8.(2)-m表示m的相反数,也就是求-9的相反数. 2

答案:(1)8 -2.8 -14 -100 (2)9 (3)相反数的几何意义 一对相反数在数轴上对应的点,位于原点的两侧,并且到原点的距离相等. 【例3】 如图,数轴上的点A,B,C,D,E表示的数中哪些互为相反数?

分析:

解:(方法1)由图可知A,B,C,D,E各点分别表示-4,-2.5,0.5,2.5,4.因为-4与4互为相反数,-2.5与2.5互为相反数,所以A与E,B与D表示的数互为相反数. (方法2)由图可知,点A,B在原点的左侧,且到原点的距离分别是4个单位长度和2.5个单位长度.C,D,E在原点的右侧,且到原点的距离分别是0.5个单位长度,2.5个单位长度和4个单位长度.根据互为相反数的几何意义可得A与E,B与D表示的数互为相反数. 2.有理数的加法法则 ①同号两数相加,取相同的符号,并把绝对值相加. ②异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值. ③一个数同0相加,仍得这个数. 【例4】 下列计算正确的个数是( ).

①(-5)+(-5)=0;②(-6)+(+4)=-10;③0+(-2)=-2;④+56+-16=23;

⑤23+-723=-7. A.0 B.1 C.2 D.3 解析:①误将(-5)+(-5)当成了两个互为相反数的和,②(-6)+(+4)=-(|6|-|4|)=-2,所以①②错误;根据有理数的加法法则可知,③④⑤正确.故选D 总结:有理数的加法运算可以概括为“一定、二求、三和差”. ①定:先判断两个加数的符号,并确定出和的符号; ②求:求加数的绝对值; ③和差:确定是绝对值相加还是相减. (2)加法运算法则的符号表示

【例5】 计算: (1)+23+-34;(2)-514+(-3.5); (3)(-16)+16;(4)(-8)+0. 【例5-2】 已知a的相反数是2,|b|=3,则a+b=__________. 解析:先确定a和b的值,再按有理数的加法计算.因为2的相反数是-2,所以a=-2;因为|b|=3,所以b=3,或b=-3,所以a+b=(-2)+3=1,或a+b=(-2)+(-3)=-5. 答案:1或-5

【例6】 青云中学学生会为了解该校学生喜欢球类活动的情况,抽取了一部分学生进行调查,从足球、乒乓球、篮球、排球等四个方面调查了若干名学生的兴趣爱好(要求每位同学只能选择一种自己喜欢的球类,从图中你知道一共调查了多少名学生吗? 3

分析:从折线统计图中可以看出这次调查的学生中,喜欢足球的有30人,喜欢乒乓球的有20人,喜欢篮球的有40人,喜欢排球的有10人,再求和即可. 解:30+20+40+10=100(人). 答:一共调查了100名学生. 3.有理数的乘法法则 两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘,积仍为0. ①两个有理数相乘,积的符号是由两个因数的符号确定:同号(+,+或-,-)得正,异号(+,-或-,+)得负;②0与任何数相乘,积都是0;③1乘任何数得原数,-1乘任何数得原数的相反数. 【例1】 计算:(1)(+4)×(-5); (2)(-0.75)×(-1.2);

(3)-29×0.3;

(4)0×-17; (5)-112×113×-114×-115×116. 4.有理数的乘法运算律 (1)乘法交换律:两个数相乘,交换因数的位置,积不变. 用字母表示为:a×b=b×a. (2)乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变. 用字母表示为:(a×b)×c=a×(b×c). (3)乘法对加法的分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加. 用字母表示为:a×(b+c)=a×b+a×c.

【例2】 计算:(1)(-8)×9×(-1.25)×-19;

(2)114-56+12×(-12); (3)-5.372×(-3)+5.372×(-17)+5.372×4; (4)-243435×2.5×(-8);

(5)1112-79-518×36-6×1.43+3.93×6.

5.与绝对值、相反数、倒数有关的混合运算 【例5】 已知a与b互为倒数,c与d互为相反数,m的绝对值是4,求m×(c+d)+a×b-3×m的值. 分析:互为倒数的两个数的积是1,互为相反数的两个数的和是0,绝对值是4的数是±4,所以本题要分情况计算. 解:因为a与b互为倒数,c与d互为相反数,m的绝对值是4,所以a×b=1,c+d=0,m=±4. 当m=4时,m×(c+d)+a×b-3×m=4×0+1-3×4=-11; 当m=-4时,m×(c+d)+a×b-3×m=(-4)×0+1-3×(-4)=13. 4

【例6】 一天,小刚和小明利用温差测量山峰的高度,小明在山顶测得的温度是-2 ℃,小刚在山脚测得的温度是4 ℃.已知该地区的高度每增加100 m,气温大约下降0.6 ℃,求这个山峰的高度大约是多少.

解:4-(-2)0.6×100=10×100=1 000(m). 答:这个山峰的高度大约为1 000 m. 6.有理数的除法法则 (1)除法法则1:两个有理数相除,同号得正,异号得负,并把绝对值相除; 0除以任何不为0的数都得0. ①注意:0不能作除数;②除法法则1与有理数的乘法法则相类似,都是先确定运算结果的符号,再确定绝对值. (2)两个有理数相除的步骤 ①先确定商的符号;②求出商的绝对值. 【例1】 下面的计算中,正确的有( ). ①(-800)÷(-20)=-(800÷20)=-40; ②0÷(-2 013)=0; ③(+18)÷(-6)=+(18÷6)=3; ④(-0.72)÷0.9=-(0.72÷0.9)=-0.8. A.①②③ B.①③④ C.①②④ D.②④ 解析:①③错误,②④正确. 答案:D

【例2】 计算:15-13×14+15÷-120÷-13. 分析:本题是有理数的加减乘除混合运算,可按四则混合运算的顺序进行计算,有括号的要先算括号里面的或运用运算律简化运算.

解:方法1:15-13×14+15÷-120÷-13=-215×920×(-20)×(-3)=-

215×920×20×3=-185.

方法2:15-13×14+15÷-120÷-13=15-13×14+15×(-20)×(-3)=

15-1

3

×14+15×20×3=15-13×3×14+15×20=35-1×(5+4)=-25×9=-185.

【例3】 若有理数x,y满足xy≠0,则m=x|x|+|y|y的最大值是__________. 解析:当x>0,y>0时,原式=1+1=2; 当x>0,y<0时,原式=1-1=0; 当x<0,y>0时,原式=-1+1=0; 当x<0,y<0时,原式=-1-1=-2. 所以m的最大值是2. 答案:2 7.有理数的乘方 (1)乘方的定义 求n个相同因数a的积的运算叫做乘方,乘方的结果叫做幂.如图,a叫做底数,n叫做指数,an读作:a的n次幂(a的n次方).

相关文档
最新文档